On inverse operations in the lattices of submodules

A. I. Kashu
Dedicated to Prof. V.V. Kirichenko
on the occasion of his seventieth birthday

Abstract. In the lattice $L\left({ }_{R} M\right)$ of submodules of an arbitrary left R-module ${ }_{R} M$ four operation were introduced and investigated in the paper [3]. In the present work the approximations of inverse operations for two of these operations (for α-product and ω-coproduct) are defined and studied. Some properties of left quotient with respect to α-product and right quotient with respect to ω-coproduct are shown, as well as their relations with the lattice operations in $\boldsymbol{L}\left({ }_{R} M\right)$ (sum and intersection of submodules). The particular case ${ }_{R} M={ }_{R} R$ of the lattice $L\left({ }_{R} R\right)$ of left ideals of the ring R is specified.

1. Preliminaries

Let R be an associative ring with unity and R-Mod be the category of unitary left R-modules. We denote by $\boldsymbol{L}\left({ }_{R} M\right)$ the lattice of submodules of an arbitrary left R-module ${ }_{R} M$, and by $\boldsymbol{L}^{c h}\left({ }_{R} M\right)$ the lattice of characteristic (fully invariant) submodules of ${ }_{R} M$ (i.e. submodules $N \in \boldsymbol{L}\left({ }_{R} M\right)$ such that $f(N) \subseteq N$ for every $\left.f:{ }_{R} M \rightarrow{ }_{R} M\right)$.

We remind that a preradical r in the category R-Mod is a subfunctor of identity functor of R-Mod, i.e. $r(M) \subseteq M$ and $f(r(M)) \subseteq r\left(M^{\prime}\right)$ for every

[^0]$f:{ }_{R} M \rightarrow{ }_{R} M^{\prime}([4],[5],[6])$. Every pair $N \subseteq M$, where $N \in \boldsymbol{L}\left({ }_{R} M\right)$, defines two preradicals α_{N}^{M} and ω_{N}^{M} by the rules:
$$
\alpha_{N}^{M}(X)=\sum_{f: M \rightarrow X} f(N), \quad \omega_{N}^{M}(X)=\bigcap_{f: X \rightarrow M} f^{-1}(N),
$$
for each $X \in R$-Mod. We mention the following two particular cases: every module ${ }_{R} M$ defines the preradical r^{M} by $r^{M}(X)=\sum_{f: M \rightarrow X} \operatorname{Im} f$ (i.e. $r^{M}=\alpha_{M}^{M}$) and the preradical r_{M} by $r_{M}(X)=\bigcap_{f: X \rightarrow M} \operatorname{Ker} f \quad$ (i.e. $\left.r_{M}=\omega_{0}^{M}\right)$. We denote by $\operatorname{Gen}\left({ }_{R} M\right)$ the class of modules generated by ${ }_{R} M$.

Using the preradicals of types α_{N}^{M} and ω_{N}^{M}, in the works [1], [2] and [3] four operations in $\boldsymbol{L}\left({ }_{R} M\right)$ were introduced and studied for an arbitrary module ${ }_{R} M$. We remind two of these operations (α-product and ω-coproduct), which will be used in continuation.

Definition 1.1. Let $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$. The $\boldsymbol{\alpha}$-product of K and N is defined as the following submodule of ${ }_{R} M$:

$$
K \cdot N=\alpha_{K}^{M}(N)=\sum_{f: M \rightarrow N} f(K) .
$$

In the next statement we give some properties of this operation ([1], [2], [3]).

Proposition 1.1. 1) The operation of α-product is monotone in both variables:
$K_{1} \subseteq K_{2} \Rightarrow K_{1} \cdot N \subseteq K_{2} \cdot N$, for every $N \in \boldsymbol{L}\left({ }_{R} M\right) ;$
$N_{1} \subseteq N_{2} \Rightarrow K \cdot N_{1} \subseteq K \cdot N_{2}$, for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$.
2) $K \cdot N=0 \Leftrightarrow K \subseteq \bigcap_{f: M \rightarrow N} \operatorname{Ker} f\left(=r_{N}(M)\right)$; in particular, $0 \cdot N=0$ and $K \cdot 0=0$.
3) $M \cdot N=\sum_{f: M \rightarrow N} f(M)\left(=r^{M}(N)\right) ; M \cdot N=N \Leftrightarrow N \in \operatorname{Gen}\left({ }_{R} M\right)$.
4) $(K \cdot N) \cdot L \subseteq K \cdot(N \cdot L)$, for every $K, N, L \in \boldsymbol{L}\left({ }_{R} M\right)$.
5) If ${ }_{R} M$ is a projective module, then the operation of α-product is associative, i.e. $(K \cdot N) \cdot L=K \cdot(N \cdot L)$, for every $K, N, L \in L\left({ }_{R} M\right)$.
6) $\left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right) \cdot N=\sum_{\alpha \in \mathfrak{A}}\left(K_{\alpha} \cdot N\right)$, for every $K_{\alpha}, N \in L\left({ }_{R} M\right)$.
7) If $R_{R} M={ }_{R} R$, then the α-product of two left ideals $K, N \in L\left({ }_{R} M\right)$ coincides with their ordinary product in the ring $R: K \cdot N=K N$.

Now we remind the definition of ω-coproduct in $\boldsymbol{L}\left({ }_{R} M\right)$ and some properties of this operation ([1], [2], [3]).

Definition 1.2. Let $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$. The $\boldsymbol{\omega}$-coproduct of N and K is defined as the following submodule of ${ }_{R} M$:

$$
\begin{aligned}
N \odot K= & \pi_{N}^{-1}\left(\omega_{K}^{M}(M / N)\right)=\left\{m \in M \mid m+N \in \bigcap_{f: M / N \rightarrow M} f^{-1}(K)\right\}= \\
& =\{m \in M \mid f(m+N) \in K \quad \forall f: M / N \rightarrow M\}
\end{aligned}
$$

where $\pi_{N}: M \rightarrow M / N$ is the natural morphism. Therefore:

$$
(N \odot K) / N=\omega_{K}^{M}(M / N)=\bigcap_{f: M / N \rightarrow M} f^{\nabla 1}(K) .
$$

In other form:

$$
N \odot K=\{m \in M \mid g(m) \in K \quad \forall g: M \rightarrow M, g(N)=0\}
$$

In the next statement we enumerate some properties of ω-coproduct which are necessary for the further investigations.

Proposition 1.2. 1) $N \odot K \supseteq N$, for every $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$; if $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $N \odot K \supseteq K$.
2) $M \odot K=M$, for every $K \in \boldsymbol{L}\left({ }_{R} M\right) ; N \odot M=M$, for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$.
3) 0 © K is the greatest characteristic submodule of M which is contained in K; therefore, if $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $0 \odot K=K$.
4) $N \odot 0=\pi_{N}^{-1}\left(\bigcap_{f: M / N \rightarrow N} \operatorname{Ker} f\right)=\pi_{N}^{-1}\left(r_{M}(M / N)\right)$, for every $N \in$ $L\left({ }_{R} M\right)$.
5) The operation of ω-coproduct is monotone in both variables.
6) $(N \odot K) \odot L \subseteq N \odot(K) \subset L)$, for every $K, L, N \in L\left({ }_{R} M\right)$.
7) If the module ${ }_{R} M$ is injective and artinian, then the operation of ω-coproduct in $\boldsymbol{L}\left({ }_{R} M\right)$ is associative:
$(N \odot K) \odot L=N \odot(K \odot L)$, for every $K, L, N \in \boldsymbol{L}\left({ }_{R} M\right)$.
8) $N \odot\left(\bigcap_{\mathcal{A}} K_{\alpha}\right)=\bigcap_{(}\left(N \odot K_{\alpha}\right)$, for every $N, K_{\alpha} \in L\left({ }_{R} M\right)$.
9) If ${ }_{R} M \stackrel{\alpha \in \mathfrak{A}}{=}{ }_{R} R$, then $\stackrel{\alpha \in \mathfrak{A}}{N} \odot K=\left(K \odot(0 \odot N)_{r}\right)_{l}$, for every left ideals $K, N \in L\left({ }_{R} R\right)$.

2. Left quotient with respect to α-product

Now we introduce a new operation in the lattice $\boldsymbol{L}\left({ }_{R} M\right)$, which in some sense can be considered as an (approximation of) inverse operation for the α-product (just as the left quotient $(N: K)_{l}=\{a \in R \mid a K \subseteq N\}$ of left ideals of R can be considered as the inverse operation for the product of left ideals in R).

Definition 2.1. Let $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$. The left quotient of N by K with respect to α-product is defined as the greatest among submodules $L_{\alpha} \in \boldsymbol{L}\left({ }_{R} M\right)$ with the property $L_{\alpha} \cdot K \subseteq N$. We denote this submodule by $N / . K$ and observe that it is defined by the conditions:
a) $(N / . K) \cdot K \subseteq N$;
b) if $L \cdot K \subseteq N$ for some $L \in \boldsymbol{L}\left({ }_{R} M\right)$, then $L \subseteq N / . K$.

The next statement is useful for applications.
Proposition 2.1. If $K, N, L \in \boldsymbol{L}\left({ }_{R} M\right)$, then:

$$
L \cdot K \subseteq N \Leftrightarrow L \subseteq N / . K
$$

Proof. (\Rightarrow) The condition $b)$ in Definition 2.1.
(\Leftarrow) If $L \subseteq N / . K$, then by the monotony of α-product and condition a), we have: $L \cdot K \subseteq(N / . K) \cdot K \subseteq N$.

From the properties of α-product the existence of the left quotient for every pair of submodules follows.

Proposition 2.2. For every submodules $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$ there exists the left quotient $N / . K$ with respect to α-product and it can be represented in the form:

$$
N / . K=\sum\left\{L_{\alpha} \in \boldsymbol{L}\left({ }_{R} M\right) \mid L_{\alpha} \cdot K \subseteq N\right\}
$$

Proof. The indicated family of submodules L_{α} with $L_{\alpha} \cdot K \subseteq N$ is not empty, since it contains the submodule 0 , because $0 \cdot K=0 \subseteq N$. By the distributivity of α-product with respect to the sum of submodules (Proposition 1.1, 6)) we obtain: $\left(\sum_{\alpha \in \mathfrak{A}} L_{\alpha}\right) \cdot K=\sum_{\alpha \in \mathfrak{A}}\left(L_{\alpha} \cdot K\right) \subseteq N$. Therefore the submodule $\sum_{\alpha \in \mathfrak{A}} L_{\alpha}$ satisfied the condition a), and by construction it is clear that it is the greatest submodule with this property.

In continuation we indicate other two forms of the left quotient $N / . K$ with respect to α-product.

Proposition 2.3. For every submodules $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$ we have:

$$
N / . K=\{l \in M \mid f(l) \in N \quad \forall f: M \rightarrow K\}
$$

Proof. Denote by L the right side of this relation. Then $L \in L\left({ }_{R} M\right)$ and since $f(L) \subseteq N$ for every $f: M \rightarrow K$, we obtain $L \cdot K=$ $\sum_{f: M \rightarrow K} f(L) \subseteq N$. Moreover, if $L_{1} \cdot K \subseteq N$ for some $L_{1} \in \boldsymbol{L}\left({ }_{R} M\right)$, then $\sum_{f: M \rightarrow K} f\left(L_{1}\right) \subseteq N$, so $f\left(L_{1}\right) \subseteq N$ for every $f: M \rightarrow K$. From definition
of L we have $L_{1} \subseteq L$, therefore L is the greatest submodule of M with $L \cdot K \subseteq N$, i.e. $L=N / . K$.

Corollary 2.4. N /. $K=\bigcap_{f: M \rightarrow K} f^{-1}(N \cap K)$ for every $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$.
Proof. (\supseteq) If $l \in \bigcap_{f: M \rightarrow K} f^{-1}(N \cap K)$, then $f(l) \in N$ for every $f: M \rightarrow K$, so by Proposition $2.3 l \in N / . K$.
(\subseteq) If $l \in N / . K$, then $f(l) \in N \cap K$ for every $f: M \rightarrow K$ (Proposition 2.3), therefore $l \in f^{-1}(N \cap K)$ for every $f: M \rightarrow K$, i.e. $l \in \bigcap_{f: M \rightarrow K} f^{-1}(N \cap K)$.

Now we will show the value of left quotient $N / . K$ in some particular cases.

Proposition 2.5. 1) If $K \subseteq N$, then $N / . K=M$. If $K \in$ $G e n\left({ }_{R} M\right)$, then the inverse implication is true: $N / . K=M \Rightarrow K \subseteq N$. In particular, $N / .0=M$ for every $N \in L\left({ }_{R} M\right)$ and $M / . K=M$ for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$.
2) If $N=0$, then $0 / . K=\bigcap_{f: M \rightarrow K} \operatorname{Ker} f=r_{K}(M)$ for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$.
3) If $K=M$, then for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$ the left quotient $N / . M$ is the greatest characteristic submodule of M which is contained in N.

Proof. 1) If $K \subseteq N$, then by Corollary 2.4

$$
N / . K=\bigcap_{f: M \rightarrow K} f^{-1}(N \cap K)=\bigcap_{f: M \rightarrow K} f^{-1}(K)=M
$$

If $K \in G e n\left({ }_{R} M\right)$, then every element $k \in K$ is of the form $k=\sum_{i=1}^{n} f_{i}\left(m_{i}\right)$, where $f_{i}: M \rightarrow K$ and $m_{i} \in M$. Therefore, if $N / . K=M$ then $f_{i}\left(m_{i}\right) \in N$, for every $i=1, \ldots, n$, so $k \in N$, i.e. $K \subseteq N$.
2) It follows from definitions:
$0 / . K=\bigcap_{f: M \rightarrow K} f^{-1}(K \cap 0)=\bigcap_{f: M \rightarrow K} f^{-1}(0)=\bigcap_{f: M \rightarrow K} \operatorname{Ker} f=r_{K}(M)$.
3) If $K=M$, then by Corollary 2.4

$$
L=N / . M=\bigcap_{f: M \rightarrow M} f^{-1}(N) \subseteq N
$$

since for $f=1_{M}$ we have $f^{-1}(N)=N$.

Moreover, the submodule $L=N / . M$ is characteristic in ${ }_{R} M$. Indeed, for every $g: M \rightarrow M$ and $l \in L$ we have $f(g(l))=(f g)(l) \in N$ for every $f: M \rightarrow M$, so $g(l) \in L$. Therefore $g(L) \subseteq L$, i.e. $L \in L^{c h}\left({ }_{R} M\right)$.

If $L_{1} \subseteq N$ and $L_{1} \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then for every $f: M \rightarrow M$ and $l_{1} \in L_{1}$ we have $f\left(l_{1}\right) \in L_{1} \subseteq N$ and by definition of $L=N / . M$ it follows $l_{1} \in L$, i.e. $L_{1} \subseteq L$. Thus L is the greatest characteristic submodule in ${ }_{R} M$ which is contained in N.

The next two statements show the connection between the left quotient $N / . K$ and the partial order (\subseteq) in $\boldsymbol{L}\left({ }_{R} M\right)$.

Proposition 2.6. (Monotony in the numerator). If $N_{1} \subseteq N_{2}$, then $N_{1} / . K \subseteq N_{2} / . K$ for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$.

Proof. If $N_{1} \subseteq N_{2}$, then $\left(N_{1} / . K\right) \cdot K \subseteq N_{1} \subseteq N_{2}$ and by the definition of left quotient it follows that $N_{1} / . K \subseteq N_{2} / . K$.

Proposition 2.7. (Antimonotony in the denominator). If $K_{1} \subseteq K_{2}$, then $N / . K_{2} \subseteq N / . K_{1}$ for every $N \in L\left({ }_{R} M\right)$.

Proof. From $K_{1} \subseteq K_{2}$ and the monotony of α-product it follows: $\left(N / . K_{2}\right) \cdot K_{1} \subseteq\left(N / . K_{2}\right) \cdot K_{2} \subseteq N$, therefore $N / . K_{2} \subseteq N / . K_{1}$.

Proposition 2.8. $(L \cdot N) / . N \supseteq L$ for every submodules $N, L \in \boldsymbol{L}\left({ }_{R} M\right)$.
Proof. By definition $(L \cdot N) / . N$ is the greatest among submodules L_{α} with $L_{\alpha} \cdot N \subseteq L \cdot N$, and since L is one of such submodules, we have $L \subseteq(L \cdot N) / . N$.

Some properties of the left quotient $N / . K$ with respect to α-product can be proved by assumption that the operation of α-product in $\boldsymbol{L}\left({ }_{R} M\right)$ is associative (for example, it is sufficient to suppose that the module ${ }_{R} M$ is projective, see Proposition 1.1,5)).

Proposition 2.9. Let ${ }_{R} M$ be a module with the property that in $\boldsymbol{L}\left({ }_{R} M\right)$ the operation of α-product is associative. Then for every submodules $K, N, L \in \boldsymbol{L}\left({ }_{R} M\right)$ the following relations are true:

1) $(N / . K) / . L=N / .(L \cdot K)$;
2) $(N / . K) / .(L / . K) \supseteq N / . L$;
3) $(N \cdot K) / \cdot(L \cdot K) \supseteq N / . L$;
4) $N \cdot(K / . L) \subseteq(N \cdot K) / . L$.

Proof. 1) (\subseteq) From the definition of left quotient it follows:

$$
N \supseteq(N / . K) \cdot K, \quad N / . K \supseteq[(N / . K) / . L] \cdot L
$$

Multiplying on the right the last relation by K and using the monotony and associativity of α-product, we obtain:

$$
\begin{gathered}
N \supseteq(N / . K) \cdot K \supseteq([(N / . K) / . L] \cdot L) \cdot K= \\
=[(N / . K) / . L] \cdot(L \cdot K)
\end{gathered}
$$

By definition of left quotient (or by Proposition 2.1) we have: $(N / . K) / . L \subseteq N / .(L \cdot K)$.
(\supseteq) By definition of left quotient and associativity of α-product we obtain:

$$
N \supseteq[N / \cdot(L \cdot K)] \cdot(L \cdot K)=([N / \cdot(L \cdot K)] \cdot L) \cdot K
$$

therefore $N / . K \supseteq[N / .(L \cdot K)] \cdot L$, which means that $(N / . K) / . L \supseteq$ $N / .(L \cdot K)$.
2) This statement (as well as the property 3)) follows from 1), but we prefer the direct proof.

By definition $L \supseteq(L / . K) \cdot K$. Applying the monotony and associativity of α-product we have:
$N \supseteq(N / . L) \cdot L \supseteq(N / . L) \cdot[(L / . K) \cdot K]=[(N / . L) \cdot(L / . K)] \cdot K$.
Therefore $(N / . L) \cdot(L / . K) \subseteq N / . K$, thus

$$
N / . L \subseteq(N / . K) / .(L / . K)
$$

3) From $(N / . L) \cdot L \subseteq N$, associativity and monotony of α-product it follows:

$$
(N / . L) \cdot(L \cdot K)=[(N / . L) \cdot L] \cdot K \subseteq N \cdot K
$$

therefore $N / . L \subseteq(N \cdot K) \%(L \cdot K)$.
4) The similar reasons as above imply $(K / . L) \cdot L \subseteq K$ and $[N \cdot(K / . L)] \cdot L=N \cdot[(K / . L) \cdot L] \subseteq N \cdot K$, therefore $N \cdot(K / . L) \subseteq$ $(N \cdot K) / . L$.

Now we will discuss the question of the relations between the left quotient $N / . K$ in $\boldsymbol{L}\left({ }_{R} M\right)$ and the lattice operations of $\boldsymbol{L}\left({ }_{R} M\right)$ (sum and intersection of submodules).

Proposition 2.10. $\left(N_{1} \cap N_{2}\right) / . K=\left(N_{1} / . K\right) \cap\left(N_{2} / . K\right)$ for every submodules $N_{1}, N_{2}, K \in \boldsymbol{L}\left({ }_{R} M\right)$.

Proof. (\subseteq) It follows from the monotony of left quotient in the numerator (Proposition 2.6).
(\supseteq) We denote the right side of relation by L. Then $L \subseteq N_{1} / . K$ and $L \subseteq N_{2} / . K$, therefore $L \cdot K \subseteq N_{1}$ and $L \cdot K \subseteq N_{2}$, so $L \cdot K \subseteq N_{1} \cap N_{2}$ and $L \subseteq\left(N_{1} \cap N_{2}\right) / . K$.

Corollary 2.11. $N / . K=(N \cap K) / . K$ for every $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$.
Proof. Since $K / . K=M$ (Proposition 2.5, 1)), from Proposition 2.10 it follows:

$$
(N \cap K) / . K=(N / . K) \cap(K / . K)=(N / . K) \cap M=N / . K
$$

Remark. The relation of Proposition 2.10 can be obviously generalized for every family of submodules $\left\{N_{\alpha} \mid \alpha \in \mathfrak{A}\right\} \subseteq \boldsymbol{L}\left({ }_{R} M\right)$:

$$
\left(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}\right) / . K=\bigcap_{\alpha \in \mathfrak{A}}\left(N_{\alpha} / . K\right)
$$

Some more statements on this subject follow from the monotony and antimonotony of Propositions 2.6 and 2.7.

Proposition 2.12. 1) $\left(N_{1}+N_{2}\right) / . K \supseteq\left(N_{1} / . K\right)+\left(N_{2} / . K\right)$;
2) $N / .\left(K_{1}+K_{2}\right) \subseteq\left(N / . K_{1}\right) \cap\left(N / . K_{2}\right)$;
3) $N / .\left(K_{1} \cap K_{2}\right) \supseteq\left(N / . K_{1}\right)+\left(N / . K_{2}\right)$.

The next two statements show when the cancellation properties for the left quotient hold, supplementing Proposition 2.8.

Proposition 2.13. For every submodules $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$ the following conditions are equivalent:

1) $(N \cdot K) / . K=N$;
2) $N=L / . K$ for some submodule $L \in L\left({ }_{R} M\right)$.

Proof. 1) $\Rightarrow 2$) is obvious.
$2) \Rightarrow 1$). If $N=L / . K$, then using the inclusion $(L / . K) \subseteq L$ and the monotony of left quotient in the numerator, we obtain:

$$
(N \cdot K) / . K=[(L / . K) \cdot K] / . K \subseteq L / . K=N
$$

By Proposition $2.8(N \cdot K) / . K \supseteq N$, therefore $(N \cdot K) / . K=N$.

Proposition 2.14. For every submodules $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$ the following conditions are equivalent:

1) $(N / . K) \cdot K=N$;
2) $N=L \cdot K$ for some submodule $L \in \boldsymbol{L}\left({ }_{R} M\right)$.

Proof. 1) $\Rightarrow 2$) is obvious.
$2) \Rightarrow 1)$. Let $N=L \cdot K$. By definition $(N / . K) \cdot K \subseteq N$ and by Proposition $2.8(L \cdot K) / . K \supseteq L$. Now the monotony implies:

$$
(N / . K) \cdot K=[(L \cdot K) / . K] \cdot K \supseteq L \cdot K=N
$$

therefore $(N / . K) \cdot K=N$.
Finishing this section we consider the particular case when ${ }_{R} M={ }_{R} R$.
Proposition 2.15. In the lattice $\boldsymbol{L}\left({ }_{R} R\right)$ of left ideals of the ring R the left quotient $N / . K$ of left ideals $N, K \in \boldsymbol{L}\left({ }_{R} R\right)$ coincides with their ordinary left quotient in R :

$$
N / . K=(N: K)_{l}=\{a \in R \mid a K \subseteq N\}
$$

Proof. In the lattice $\boldsymbol{L}\left({ }_{R} R\right)$ the α-product coincides with the ordinary product of left ideals in R (Proposition 1.1, 7)): $L \cdot K=L K$. So we have $(N: K)_{l} K \subseteq N$ and it is obvious that $(N: K)_{l}$ is the greatest left ideal of R with this property.

Since the α-product (\equiv product) of left ideals in $\boldsymbol{L}\left({ }_{R} R\right)$ is associative (${ }_{R} R$ is projective), all mentioned above properties of left quotients hold in the lattice $\boldsymbol{L}\left({ }_{R} R\right)$.

3. Right quotient with respect to ω-coproduct

In this section we introduce and investigate the inverse operation for the ω-coproduct (see Section 1) in the lattice of submodules $\boldsymbol{L}\left({ }_{R} M\right)$ of an arbitrary module ${ }_{R} M \in R$-Mod.

Definition 3.1. Let $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$. The right quotient of K by N with respect to ω-coproduct is defined as the least submodule $L \in \boldsymbol{L}\left({ }_{R} M\right)$ with the property $N \odot L \supseteq K$. We denote this submodule by $N \odot K$. It is determined by the conditions:
a) $N \odot\left(N_{\odot} \backslash K\right) \supseteq K$;
b) if $N \odot L \supseteq K$ for some $L \in L\left({ }_{R} M\right)$, then $L \supseteq N_{\odot} \backslash K$.

The right quotient $N_{\odot} \backslash K$ is described by the following statement.
Proposition 3.1. If $K, N, L \in \boldsymbol{L}\left({ }_{R} M\right)$, then:

$$
K \subseteq N \odot L \Leftrightarrow N_{\odot} \backslash K \subseteq L
$$

Proof. (\Rightarrow) The condition $b)$ of Definition 3.1.
(\Leftarrow) If $N_{\odot} \backslash K \subseteq L$, then from the condition $\left.a\right)$ and the monotony of the operation $(;)$ it follows:

$$
K \subseteq N \odot\left(N_{\odot} \backslash K\right) \subseteq N \odot L
$$

From the properties of ω-coproduct (Proposition 1.2) the existence of the right quotient $N_{\odot} \backslash K$ for every pair of submodules of ${ }_{R} M$ follows.

Proposition 3.2. For every submodules $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$ there exists the right quotient N ๑ K with respect to ω-coproduct, and it can be presented in the form:

$$
N_{\circlearrowleft}<K=\cap\left\{L_{\alpha} \in L\left({ }_{R} M\right) \mid N \odot L_{\alpha} \supseteq K\right\}
$$

Proof. Since $N \odot M=M \supseteq K$, the indicated family of submodules is not empty. By Proposition 1.2, 8) we have:

$$
N \odot\left(\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha}\right)=\bigcap_{\alpha \in \mathfrak{A}}\left(N \odot L_{\alpha}\right) \supseteq K
$$

therefore $\bigcap_{\alpha \in \mathfrak{A}} L_{\alpha}$ has the property a), while b) follows from construction.

Remark. For every submodules $N, K, L \in \boldsymbol{L}\left({ }_{R} M\right)$ from the definition of N © L it follows that:

$$
\begin{aligned}
N \odot L & \supseteq K \Leftrightarrow f(k+N) \in L \quad \forall k \in K, \quad \forall f: M / N \rightarrow N \Leftrightarrow \\
& \Leftrightarrow f((K+N) / N) \subseteq N \quad \forall f: M / N \rightarrow N
\end{aligned}
$$

Now we can indicate another form of representation of the right quotient N_{\odot}) K.

Proposition 3.3. If $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$ then:

$$
N \odot \sum_{f: M / N \rightarrow N} f((K+N) / N) .
$$

Proof. We denote the right side of this relation by L. Since $f((K+N) / N) \subseteq L$ for every $f: M / N \rightarrow N$, from the above remark we have $N \odot L \supseteq K$.

If $N \odot L^{\prime} \supseteq K$ for some $L^{\prime} \in \boldsymbol{L}\left({ }_{R} M\right)$, then $f((K+N) / N) \subseteq L^{\prime}$ for every $f: M / N \rightarrow N$ and so $L \subseteq L^{\prime}$. Therefore L is the least submodule of ${ }_{R} M$ with $N \odot L \supseteq K$, i.e. $L=N \odot K$.

Proposition 3.4. If $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $N_{\odot} \backslash K \subseteq K$ for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$.

Proof. From $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$ it follows that $K \subseteq N \odot K$ (Proposition $1.2,1)$), therefore by Proposition 3.1 we have $N_{\odot} \backslash K \subseteq K$.

Now we indicate the behaviour of the right quotient with respect to the order relation (\subseteq) of $\boldsymbol{L}\left({ }_{R} M\right)$.
Proposition 3.5. (Monotony in the numerator). If $K_{1} \subseteq K_{2}$, then $N \odot K_{1} \subseteq N_{\odot}^{\circlearrowleft} \backslash K_{2}$ for every $N \in L\left({ }_{R} M\right)$.

Proof. By definition $N \subset\left(N_{\odot} \backslash K_{2}\right) \supseteq K_{2} \supseteq K_{1}$, therefore Proposition 3.1 implies: $N_{\odot} K_{2} \supseteq N_{\odot} K_{1}$.

Proposition 3.6. (Antimonotony in the denominator). If $N_{1} \subseteq N_{2}$, then $N_{2} \odot K \subseteq N_{1} \odot K$ for every $K \in \boldsymbol{L}\left({ }_{R} M\right)$.

Proof. By definition of right quotient, using the inclusion $N_{1} \subseteq N_{2}$ and the monotony of ω-coproduct, we obtain:

$$
K \subseteq N_{1} \odot\left(N_{1} \odot K\right) \subseteq N_{2} \odot\left(N_{1} \odot K\right)
$$

therefore by Proposition $3.1 \quad N_{2} \odot K \subseteq N_{1} \odot K$.
Proposition 3.7. For every submodules $N, L \in \boldsymbol{L}\left({ }_{R} M\right)$ we have the relation:

$$
N \odot(N \odot L) \subseteq L
$$

Proof. If we denote $K=N \odot L$, then by Proposition 3.1 from the inclusion $K \subseteq N \odot L$ it follows that $N \odot K \subseteq L$.

The next statement show the value of the right quotient $N_{\odot}^{\circ} K$ in some particular cases.

Proposition 3.8. 1) If $K \subseteq N$, then $N \odot K=0$. Therefore:
a) if $N=M$, then $M \circlearrowleft K=0$ for every $K \in L\left({ }_{R} M\right)$;
b) if $K=0$, then $N \odot 0=0$ for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$;
c) if $N=K$, then $N_{\odot}<1=0$.
2) If $N=0$, then $0_{\odot} \backslash K$ is the least characteristic submodule of M which contains K; so if $K \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$, then $0 \odot K=K$.
3) If $K=M$, then $N_{\odot}^{\odot} \backslash M=\sum_{f: M / N \rightarrow M} \operatorname{Im} f\left(=r^{M / N}(M)\right)$ for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$.

Proof. 1) Let $K \subseteq N$. Since $N \odot{ }_{\odot} K=\cap\left\{L_{\alpha} \in \boldsymbol{L}\left({ }_{R} M\right) \mid N \odot L_{\alpha} \supseteq K\right\}$, we have $N \odot L_{\alpha} \supseteq N \supseteq K$ for every $L_{\alpha} \in L\left({ }_{R} M\right)$. Therefore $\cap L_{\alpha}=0$, i.e. $N \circlearrowleft K=0$.
2) If $N=0$, then from Proposition 3.3 we obtain:

$$
L=00_{\circlearrowleft} \backslash K=\sum_{f: M \rightarrow M} f(K)=\alpha_{K}^{M}(M) \supseteq K
$$

Therefore $L=0 \odot K$ is a characteristic submodule of M containing K. If $K^{\prime} \in \boldsymbol{L}^{c h}\left({ }_{R} M\right)$ and $K \subseteq K^{\prime}$, then $f\left(K^{\prime}\right) \subseteq K^{\prime}$ for every $f: M \rightarrow M$ and so $f(K) \subseteq f\left(K^{\prime}\right) \subseteq K^{\prime}$. Therefore $L=\sum_{f: M \rightarrow M} f(K) \subseteq K^{\prime}$ and $L=00_{\odot} \backslash K$ is the least characteristic submodule of M containing K.
3) If $K=M$, then for every $N \in \boldsymbol{L}\left({ }_{R} M\right)$ by definition of right quotient $N_{\odot} \backslash M=\cap\left\{L_{\alpha} \in \boldsymbol{L}\left({ }_{R} M\right) \mid N \odot L_{\alpha^{\prime}}=M\right\}$. Now by definition of ω-coproduct we obtain:
$N \odot L_{\alpha}=M \Leftrightarrow \omega_{L_{\alpha}}^{M}(M / N)=M / N \Leftrightarrow \operatorname{Im} f \subseteq L_{\alpha} \forall f: M / N \rightarrow M \Leftrightarrow$

$$
\Leftrightarrow \sum_{f: M / N \rightarrow M} \operatorname{Im} f \subseteq L_{\alpha}
$$

Therefore
$N_{\odot}^{\odot} \backslash M=\cap\left\{L_{\alpha} \in \boldsymbol{L}\left({ }_{R} M\right) \mid \sum_{f: M / N \rightarrow M} \operatorname{Im} f \subseteq L_{\alpha}\right\}=\sum_{f: M / N \rightarrow M} \operatorname{Im} f$.
Now we formulate some properties of the right quotient $N_{\odot} \backslash K$ which hold in the case when the operation of ω-coproduct in $\boldsymbol{L}\left({ }_{R} M\right)$ is associative (Proposition 1.2, 7)).

Proposition 3.9. Let ${ }_{R} M$ be a module with the property that in the lattice $\boldsymbol{L}\left({ }_{R} M\right)$ the operation of ω-coproduct is associative. Then for every submodules $K, N, L \in \boldsymbol{L}\left({ }_{R} M\right)$ the following relations hold:

1) $L \odot\left(N_{\odot}^{\circ} K\right)=(N \odot L) \odot K$;
2) $\left(L_{\odot} \backslash N\right) \odot\left(L_{\odot}^{\circlearrowleft} \backslash K\right) \subseteq N \odot K$;
3) $(L \odot N) \odot(L \odot K) \subseteq N_{\odot}^{\odot} \backslash K$;
4) $L_{\odot}^{\circ}(N \odot K) \subseteq\left(L_{\odot}^{\circ} N\right) \odot K$.

Proof. 1) (\supseteq) By definition, $K \subseteq N \subset\left(N_{\odot} \backslash K\right)$ and $N_{\odot} \backslash K \subseteq$ $L \subset\left[L \oint_{ف}\left(N \Theta_{\mathrm{C}} K\right)\right]$. By the monotony and the associativity of ω-coproduct we obtain:

$$
\begin{gathered}
K \subseteq N \odot\left(N_{\odot} \backslash K\right) \subseteq N \odot\left[L \odot\left(L_{\odot} \backslash\left(N_{\odot} \backslash K\right)\right)\right]= \\
=(N \odot L) \odot\left[L_{\odot}^{\odot}\left(N_{\odot} \backslash K\right)\right]
\end{gathered}
$$

From Proposition 3.1 it follows that $\left.(N \odot L)_{\odot} \backslash K \subseteq L_{\odot} \backslash\left(N_{\odot}\right) K\right)$.
(\subseteq) The inverse inclusion in 1) is obtained by the definition of right quotient and associativity of ω-coproduct:

$$
K \subseteq(N \odot L) \odot[(N \odot L) \odot K]=N \odot[L \odot((N \odot L) \odot K)]
$$

Applying Proposition 3.1 we have $N_{\odot} \backslash K \subseteq L \odot[(N \odot L) \odot K]$ and $L \odot(N \odot K) \subseteq(N \odot L) \circlearrowleft K$.
2) By definition, $N \subseteq L \odot\left(L_{\odot} \backslash N\right)$. From the monotony and associativity of ω-coproduct it follows:

$$
\begin{gathered}
K \subseteq N \odot\left(N_{\odot} \backslash K\right) \subseteq\left[L \odot\left(L_{\odot} \backslash N\right)\right] \odot\left(N_{\odot} K\right)= \\
=L \odot\left[\left(L_{\odot} \backslash N\right) \odot\left(N_{\odot}^{\circlearrowleft} K\right)\right]
\end{gathered}
$$

By Proposition $3.1 L_{\odot} \backslash K \subseteq\left(L_{\odot} \backslash N\right) \odot(N \odot K)$, therefore $\left(L_{\odot} \backslash N\right) \odot\left(L_{\odot}^{\circlearrowleft} \backslash\right) \subseteq N_{\odot} \backslash K$.
3) By definition, $K \subseteq N \odot(N \odot K)$. From the monotony and associativity of ω-coproduct it follows:

$$
L \odot K \subseteq L \odot\left[N \odot\left(N_{\odot}^{\odot} K\right)\right]=(L \odot N) \odot\left(N_{\odot}^{\odot} K\right),
$$

therefore $\left.(L \odot N) \odot(L \odot K) \subseteq N_{\odot}^{\circ}\right) K$.
4) In a similar way we have $N \subseteq L \odot\left(L_{\odot} \backslash N\right)$ and

$$
\left.N \odot K \subseteq\left[L \odot\left(L_{\odot}^{\odot} N\right)\right] \odot K=L \odot\left[\left(L_{\odot}\right) N\right) \odot K\right]
$$

therefore $L_{\odot} \backslash(N \odot K) \subseteq\left(L_{\odot} N\right) \odot K$.
Now we will indicate some relations between the right quotient with respect to ω-coproduct and the lattice operations of $L\left({ }_{R} M\right)$.

Proposition 3.10. For every $N \in \boldsymbol{L}\left({ }_{R} M\right)$ and every family of submodules $\left\{K_{\alpha} \in \boldsymbol{L}\left({ }_{R} M\right) \mid \alpha \in \mathfrak{A}\right\}$ the following relation holds:

$$
N_{\odot}^{\odot}\left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right)=\sum_{\alpha \in \mathfrak{A}}\left(N_{\odot}^{\circlearrowleft} K_{\alpha}\right) .
$$

Proof. (\supseteq) It follows from the monotony of right quotient in the numerator (Proposition 3.5).
(\subseteq) We denote $N_{0}=\sum_{\alpha \in \mathfrak{A}}\left(N_{\odot} \odot K_{\alpha}\right)$. Since $N \odot K_{\alpha} \subseteq N_{0}$ for every $\alpha \in \mathfrak{A}$, by the definition and monotony we have:

$$
\left.K_{\alpha} \subseteq N \odot\left(N_{\odot}\right) K_{\alpha}\right) \subseteq N \odot N_{0}
$$

for every $\quad \alpha \in \mathfrak{A}$. Therefore $\sum_{\alpha \in \mathfrak{A}} K_{\alpha} \subseteq N \odot N_{0}$ and from Proposition 3.1 it follows that $N_{\odot}^{\odot}\left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right) \subseteq N_{0}$.

Corollary 3.11. $N_{\odot} \backslash K=N_{\odot} \backslash(K+N)$ for every $N, K \in \boldsymbol{L}\left({ }_{R} M\right)$. Proof. Since $N \odot N=0$ (Proposition 3.8, 1)), from Proposition 3.10 it follows:

$$
N_{\odot} \backslash(K+N)=\left(N_{\odot} \backslash K\right)+\left(N_{\odot} \backslash N\right)=N_{\odot} K
$$

We formulate also some more relations between the right quotient and the lattice operations of $\boldsymbol{L}\left({ }_{R} M\right)$, which immediately follow from the properties of monotony and antimonotony of Propositions 3.5 and 3.6.

Proposition 3.12. In the lattice $\boldsymbol{L}\left({ }_{R} M\right)$ the following relations hold:

1) $\left.N_{\odot}^{\odot}\left(\bigcap_{\alpha \in \mathfrak{A}} K_{\alpha}\right) \subseteq \bigcap_{\alpha \in \mathfrak{A}}\left(N_{\odot}^{\odot}\right) K_{\alpha}\right)$;
2) $\left(\sum_{\alpha \in \mathfrak{A}} N_{\alpha}\right)_{\odot} \backslash K \subseteq \bigcap_{\alpha \in \mathfrak{A}}\left(N_{\alpha \odot} K\right)$;
3) $\left(\bigcap_{\alpha \in \mathfrak{A}} N_{\alpha}\right) \odot K \supseteq \sum_{\alpha \in \mathfrak{A}}\left(N_{\alpha} \odot K\right)$.

In the next two statements it is shown when the cancellation properties hold (see Proposition 3.7).
Proposition 3.13. Let $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$. The following conditions are equivalent:

1) $N=K_{\odot} \backslash(K \odot N)$;
2) $N=K_{\odot} L$ for some submodule $L \in \boldsymbol{L}\left({ }_{R} M\right)$.

Proof. 1) $\Rightarrow 2$) is obvious.
$2) \Rightarrow 1)$. Let $N=K_{\odot} \backslash L$, where $L \in L\left({ }_{R} M\right)$. By definition and monotony we have $\left.K \odot\left(K_{\odot}\right) L\right) \supseteq L$ and

$$
K_{\odot} \backslash\left[K \odot\left(K_{\odot} \backslash L\right)\right] \supseteq K_{\odot} \backslash L
$$

From Proposition 3.7 the inverse inclusion follows and so we obtain:

$$
N=K_{\odot} \backslash L=K_{\odot} \backslash\left[K \odot\left(K_{\odot}^{\odot} L\right)\right]=K_{\odot} \backslash(K \odot N)
$$

Proposition 3.14. Let $K, N \in \boldsymbol{L}\left({ }_{R} M\right)$. The following conditions are equivalent:

1) $N=K \odot\left(K_{\odot}^{\circ} N\right)$;
2) $N=K \odot L$ for some submodule $L \in \boldsymbol{L}\left({ }_{R} M\right)$.

Proof. 1) $\Rightarrow 2$) is obvious.
$2) \Rightarrow 1)$. Let $N=K \odot L$, where $L \in \boldsymbol{L}\left({ }_{R} M\right)$. From Proposition 3.7 it follows that $K_{\odot} \backslash(K \odot L) \subseteq L$ and by monotony

$$
K \odot\left[K_{\odot} \backslash(K \odot L)\right] \subseteq K \odot L
$$

On the other hand, from the definition the inverse inclusion follows, therefore:

$$
\left.N=K \odot L=K \odot[K \circlearrowleft(K \odot L)]=K \odot\left(K_{\odot}\right) N\right) .
$$

Finally, we consider the case ${ }_{R} M={ }_{R} R$ and show the form of the right quotient $N_{\odot} \backslash K$ for the left ideals of the ring R. It is known (Proposition 1.2, 9)) that for every $N, K \in \boldsymbol{L}\left({ }_{R} R\right)$ the ω-coproduct of these left ideals is of the form:

$$
N \odot K=\left(K:(0: N)_{r}\right)_{l}=\{a \in R \mid a b \in K \quad \forall b \in R, N b=0\} .
$$

Proposition 3.15. $\quad N_{\odot} \backslash K=K \cdot(0: N)_{r}$, for every left ideals $K, N \in \boldsymbol{L}\left({ }_{R} R\right)$, where $(0: N)_{r}=\{b \in R \mid N b=0\}$.

Proof. Denote $L=K \cdot(0: N)_{r}$, and verify the conditions $\left.a\right)$ and b) of Definition 3.1.
a) Since $N \odot L=\left(L:(0: N)_{r}\right)_{l}$, we have:
$N \subset L=N \odot\left[K \cdot(0: N)_{r}\right]=\left(\left[K \cdot(0: N)_{r}\right]:(0: N)_{r}\right)_{l} \supseteq K$.
$b)$ If $N \odot L_{0} \supseteq K$, then $\left(L_{0}:(0: N)_{r}\right)_{l} \supseteq K$, therefore $K \cdot(0: N)_{r} \subseteq L_{0}$, i.e. $L \subseteq L_{0}$.

This form of the right quotient in $L\left({ }_{R} R\right)$ is convenient for proving a series of properties of this operation. For example (see Proposition 3.10):

$$
\begin{gathered}
N_{\odot}^{\circlearrowleft} \backslash\left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right)=\left(\sum_{\alpha \in \mathfrak{A}} K_{\alpha}\right) \cdot(0: N)_{r}=\sum_{\alpha \in \mathfrak{A}}\left(K_{\alpha} \cdot(0: N)_{r}\right)= \\
=\sum_{\alpha \in \mathfrak{A}}\left(N_{\odot}^{\circ} \backslash K_{\alpha}\right) .
\end{gathered}
$$

References

[1] L. Bican, P. Jambor, T. Kepka, P. Nemec, Prime and coprime modules, Fundamenta Mathematicae, $\mathbf{1 0 7}(1), 1980$, pp. 33-45.
[2] A.I. Kashu, Preradicals and characteristic submodules: connections and operations, Algebra and discrete mathematics, v. 9, N.2, 2010, pp. 61-77.
[3] A.I. Kashu, On some operations in the lattice of submodules determinined by preradicals, Bulet. A.Ş.M. Matematica, N. 2 (66), 2011, pp. 5-16.
[4] L. Bican, P. Kepka, P. Nemec, Rings, modules and preradicals, Marcel Dekker, New York, 1982.
[5] J.S. Golan, Linear topologies on a ring, Longman Sci. Techn., New York, 1987.
[6] F. Raggi, J.R. Montes, H. Rincon, et al., The lattice structure of preradicals, Commun. in Algebra, 30(3), 2002, pp. 1533-1544.

Contact information

A. I. Kashu
Institute of Mathematics and Computer
Science, Academy of Sciences of Moldova, 5 Academiei str., Chişinău, MD - 2028 MOLDOVA
E-Mail: kashuai@math.md

Received by the editors: 22.02.2012 and in final form 22.02.2012.

[^0]: 2010 MSC: 16D90, 16S90, 06B23.
 Key words and phrases: ring, module, preradical, lattice, α-product of submodules, left (right) quotient.

