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Abstract. The article contains the results about invariants
of solvable groups with given structure of Sylow subgroups and
information about the nilpotent π-length of π-solvable groups. Open
questions are formulated.

Introduction

We consider only finite groups. The derived and nilpotent lengths,
the p-length, the π-length and the nilpotent π-length, the rank and the
p-rank are carried to invariants of solvable groups.

The review of the results connected with invariants of finite solvable
groups and researches of authors are provided in this article. Section 1
contains the list of used designations and definitions. In section 2 data
on invariants of solvable groups with given structure of Sylow subgroups
are collected. Section 3 contains information on the nilpotent π-length of
π-solvable groups. Open questions are formulated.

Article has survey character. Proofs of statements aren’t provided.

1. Preliminaries

All notation and definitions agree with [1]-[4].
Let P be the set of all primes, and let π be the set of primes. Denote

the complement to π in P by π′. Let π(a) be the set of primes dividing a
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108 Invariants of groups

positive integer a. Let G be a group and H be a subgroup of G. Assume
that π(G) = π(|G|) and π(G : H) = π(|G : H|). Let’s fix up some set of
primes π. If π(m) ⊆ π then a positive integer m is called a π-number.
If π(G) ⊆ π then G is called a π-group and if π(G) ⊆ π′ then G is
called a π′-group. The Frattini and Fitting subgroups of G are denoted
by Φ(G) and F (G), respectively, and Oπ(G) denotes the greatest normal
π-subgroup of G. The notation G = [A]B is used for a semidirect product
with a normal subgroup A.

A normal series of G is a finite sequence of normal subgroups Gi such
that

1 = G0 ⊆ G1 ⊆ . . . ⊆ Gm = G. (1)

We call the groups Gi+1/Gi the factors of the normal series (1).
Let G be a group of order pa1

1 p
a2

2 . . . pak

k , where p1 > p2 > . . . > pk.
We say that G has an ordered Sylow tower of supersolvable type if there
exists a series

1 = G0 ⊆ G1 ⊆ G2 ⊆ . . . ⊆ Gk−1 ⊆ Gk = G

of normal subgroups of G such that Gi/Gi−1 is isomorphic to a Sylow
pi-subgroup of G for each i = 1, 2, . . . , k.

For group G it is possible to construct a chain of derived subgroups

G ⊇ G′ ⊇ (G′)′ ⊇ . . . ⊇ G(i) ⊇ G(i+1) ⊇ . . . .

Here G′ is the derived subgroup of G and G(i+1) = (G(i))
′

. If there is n
such that G(n) = 1 then G is called solvable. The smallest positive integer
n such that G(n) = 1 is called the derived length of G and is denoted
by d(G).

Let G be a group and F0(G) = 1,
F1(G) = F (G) is the Fitting subgroup of G,
F2(G)/F1(G) = F (G/F1(G)), . . . ,
Fi(G)/Fi−1(G) = F (G/Fi−1(G)), . . .
It is clear that 1 = F0(G) ⊆ F1(G) ⊆ F2(G) ⊆ . . ..
It is well known that the Fitting subgroup F (G) of a solvable non-

identity group G is non-identity. Then there is positive integer n such
that Fn(G) = G. The smallest positive integer n such that Fn(G) = G is
called the nilpotent length of G and is denoted by n(G). Thus n(G) = 1
if and only if G is nilpotent. If G contains a nilpotent normal subgroup
such that the corresponding quotient group is also nilpotent then G is
called metanilpotent. It is clear that the nilpotent length of metanilpotent
group is at most 2.
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If chief factors (i.e. the factors of the chief series) of group G are
either elementary Abelian p-groups for p ∈ π or π′-groups then G is called
π-solvable [1]. As well known that the indices of the maximal subgroups
of any π-solvable group are either primary π-numbers or π′-numbers ([1],
Theorem 1.8.1).

Let G be a p-solvable group. Then G has a normal series

1 = G0 ⊆ G1 ⊆ . . . ⊆ Gn = G,

such that every quotient factor Gi+1/Gi is either a p-group or a p′-group.
Then we can define the (p′, p)-series for G:

1 = P0 ⊆ N0 ⊆ P1 ⊆ N1 ⊆ P2 ⊆ . . . ⊆ Pl ⊆ Nl = G,

where Ni/Pi = Op′(G/Pi) is the greatest normal p′-subgroup of G/Pi and
Pi+1/Ni = Op(G/Ni) is the greatest normal p-subgroup of G/Ni. The
smallest positive integer l such that Nl = G is called the p-length of G
and is denotes by lp(G).

Let G be a p-solvable group. If pn is the greatest orders of the p-chief
factors of G then n is called p-rank of G and is denoted by rp(G) ([4],
p. 685). A solvable group G is p-solvable for every p ∈ π(G). The rank
of non-identity solvable group G is max

p∈π(G)
rp(G) and is denoted by r(G).

For the identity group 1 we put r(1) = 0 = rp(1). By the Jordan-Hölder
theorem all chief series of a group are isomorphic; therefore, the values of
rank and p-rank are well-defined.

If chief factors of G are either of prime orders or p′-groups then G is
called p-supersolvable.

It is clear that a non-identity p-supersolvable group is p-solvable and
its p-rank is equal to 1. If G is p-supersolvable for any p ∈ π(G) then G
is called supersolvable. The rank of non-identity supersolvable group is
equal to 1.

2. Invariants of group depending on Sylow subgroups

P.Hall and G. Higman [5] established dependence of p-length of a p-
solvable group from some invariants of its Sylow p-subgroups. Elementary
theory of p-length is stated in the monograph of Huppert ([4], VI.6; [6], IX).
The estimations of p-length of a p-solvable group depending on invariants
of intersection of Sylow p-subgroups are found in work of A.G. Anishchenko
and V.S. Monakhov [7]. The review of results about p-length of solvable
groups as of 1980 contains in article of V.D. Mazurov [8].
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110 Invariants of groups

L.A. Shemetkov extended the concept of p-length for any groups and
proved that p-length of any group doesn’t exceed the minimal number
of generators of its Sylow p-subgroup [9]. For p-solvable groups this fact
is given in Huppert’s monograph ([4], Theorem VI.6.6). Naturally there
was the following question formulated in review [10], page 15.

Question 1. How much essential the condition of p-solvability in known
theorems about p-length?

In work [11] L.A. Shemetkov received the positive solution of this
question for groups in which the non-solvable composition factors have
cyclic Sylow p-subgroup. In Kourov’s Writing-Book he wrote down the
following question ([12], Question 3.60).

Question 2. To investigate dependence between p-length of group and
invariants cp, dp, ep of its Sylow p-subgroups.

Here cp, dp, ep are the nilpotent class, the derived length and the
exponent respectively.

By the Zassenhaus Theorem ([4], Theorem IV.2.11) the derived sub-
group of a group with cyclic Sylow subgroups is a cyclic Hall subgroup such
that the corresponding quotient group is also cyclic. Hence the derived
length of such group is at most 2.

It follows from the Hall-Higman theorem ([4], Theorem IV.14.16) that
the derived length of a solvable group with abelian Sylow subgroups does
not exceed the number of different prime divisors of the order of such
group, d(G) ≤ |π(G)|.

Recall that a group is metacyclic, if it contains cyclic normal subgroup
such that the corresponding quotient group is also cyclic. For the groups
with metacyclic Sylow subgroup the following statements are known.

Theorem 1 ([4], Theorems IV.2.8, IV.5.10, IV.8.6).

1. Let p be a smallest prime divisor of |G|. If Sylow p-subgroup P
of G is cyclic then G is p-nilpotent (there is a normal subgroup H such
that quotient subgroup G/H is isomorphic to P ). In particular, if Sylow
2-subgroup of G is cyclic then G is 2-nilpotent.

2. If Sylow p-subgroup of G is metacyclic and the order of G is mutually
simple with p2 −1 then G is p-nilpotent. In particular, if Sylow 2-subgroup
of G is metacyclic and the order of G is not divisible by 3 then G is
2-nilpotent.

3. If p > 2 and Sylow p-subgroup of G is metacyclic and non-abelian
then there exists a normal subgroup of index p.
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The groups with metacyclic Sylow 2-subgroup are studied in work of
V.D. Mazurov [13]. Theorem 1 of this article fully describe all non-solvable
group with cyclic Sylow p-subgroups for odd prime p and metacyclic Sylow
2-subgroups. Information about solvable groups with metacyclic Sylow
2-subgroups is presented in Lemmas 3, 4 of [13].

Signs of solvability of a group with metacyclic Sylow 2-subgroup are
received in work of A.R. Camina and T.M. Gagen [14]. The result of this
work are combined in the following theorem.

Theorem 2 ([13], [14]). Let G be a group with metacyclic Sylow 2-sub-
group G2. Then the following statements hold.

1. If G2 has a cyclic normal subgroup N such that G2/N is cyclic and
|G2/N | ≥ 4 then G is solvable.

2. If G is solvable then |G/O2′,2(G)| ≤ 6.

3. If G is solvable and Z(G2) is non-cyclic then G has a normal series

1 ⊆ U ⊆ UG2 ⊆ G,

where |U | is odd and |G : UG2| = 1 or 3.

4. If G is solvable and Z(G2) is cyclic then G has a normal series

1 ⊆ U1 ⊆ T1 ⊆ U2 ⊆ G,

where |U1| is odd, T1/U1 is 2-group, |U2 : T1| is equal to 1 or 3, |G : U2| = 1
or 2.

The groups with metacyclic Sylow subgroups are investigated in work
of D. Chillag and J. Sonn [15]. Theorem 1 of this article fully describes
such non-solvable groups and contains following statement for solvable
groups.

Theorem 3 ([15]). Let G be a solvable group with metacyclic Sylow p-
subgroups for any p ∈ π(G). Then {2, 3}′-Hall subgroup of G is normal
and possesses an ordered Sylow tower of supersolvable type.

Recall that a group is bicyclic if it is the product of two cyclic sub-
groups.

It is clear that metacyclic group is bicyclic. The general properties
of bicyclic groups are received in works [16]–[20] and have entered into
the monography [4]. In particular, bicyclic primary group of odd order
is metacyclic ([4], Theorem III.11.5). Bicyclic 2-groups and non-primary
bicyclic groups of odd order can be not metacyclic.
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112 Invariants of groups

Example 1. In Huppert’s article [16] the 2-group

G =< a, b, c | a2 = b8 = c2 = 1, [a, b] = c, [b, c] = b4, [a, c] = 1 >,

which contains a normal elementary abelian subgroup

N = < a >×< b4 >×< c >

of order 8 such that G/N is cyclic and |G/N | = 4 is constructed. Besides,

Z(G) =< b4 >, G′ =< c > × < b4 >, Φ(G) = ℧1(G) =< b2, c >,

(ab)2 = cb2 /∈< b >, (ab)4 = b4, G =< ab >< b > .

Then G is bicyclic of order 25. Since it contains a normal elementary
abelian subgroup N of order 8, it is non-metacyclic.

Example 2. The calculations in the computer system GAP [21] show
that the group G of order 189 = 337 having number 7 in the library
SmallGroups,

G =< a, b, c, d | b3 = c3 = d7 = 1, a3 = c, [a, b] = c−1,

[a, d] = d−1, [a, c] = [b, c] = [b, d] = [c, d] = 1 >,

is the product of two cyclic subgroups A =< bd > of order 21 and
B =< ab > of order 9. Hence G is bicyclic non-primary group of odd
order. There are only three non-identity cyclic normal subgroups in G:
N1 =< c > of order 3, N2 =< d > of order 7, N3 =< cd > of order 21.
Since G/Ni is non-cyclic, it follows that G is non-metacyclic.

Bicyclic group G = AB is supersolvable, the derived subgroup of G is
abelian and A contains non-identity normal subgroup in G for |A| ≥ |B|
([4], Theorems VI.4.4 and VI.10.1). From definition of bicyclic group
follows that the Sylow subgroups and its any quotient groups are bicyclic.
Let G be a bicyclic primary group. Then the Frattini subgroup of G, the
center of G and ℧1(G) =< xp | x ∈ G > are bicylic [16]. Other properties
of bicyclic primary groups are listed in the following theorem.

Theorem 4 ([16], [22]). Let G be a bicyclic p-group. Then the following
statements hold.

1. Let p > 2. Then:
1.1) G is metacyclic;
1.2) any two subgroups of G is permutable;
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1.3) if N is a complemented normal subgroup of G then either
N = G or N is cyclic.

2. Let p = 2. Then:
2.1) any normal subgroup of G is generated no more than three

elements;
2.2) if N is a complemented normal subgroup of G then |N/Φ(N)| ≤ 4.

V.D. Mazurov proved that if α 6= 1 is automorphism of odd order
of metacyclic 2-group T then the order of α is equal to 3, T is either a
quaternion group of order 8 or a direct product of two isomorphic cyclic
subgroup, but in the latter case α acts on T without fixed points ([13],
Lemma 1). It is simple to check up that the statement remains for bicyclic
2-groups.

It is known also that quotient group G/G′ of bicyclic 2-group G with
non-cyclic derived subgroup G′ is abelian of type (n, 1), where n > 1 is
integer [18]. In the same work bicyclic 2-groups G with cyclic derived
subgroup G′ are considered. It has appeared that if there is no cyclic
subgroup N , which is not containing G′, then quotient group G/G′ is
abelian of type (2r, 2). Blackburn [19] proved that non-cyclic derived
subgroup of bicyclic 2-group G with quotient group G/G′ of type (n, 1),
n > 2 is abelian of type (m, 1) for some m.

The invariants of the groups with bicyclic Sylow subgroups were found
in work of V.S. Monakhov and E.E. Gribovskaya [22]. Let’s give the full
formulation of these results.

Theorem 5 ([22], Theorems 1–2, Lemma 2). 1. Let G be a solvable group
with bicyclic Sylow subgroups. Then the following statements hold:

1.1) n(G) ≤ 4 and d(G) ≤ 6;
1.2) {2, 3}′-Hall subgroup is normal and possesses an ordered Sylow

tower of supersolvable type;
1.3) 2′-Hall subgroup G2′ possesses an ordered Sylow tower of super-

solvable type, its derived subgroup is nilpotent and d(G2′) ≤ 3;
1.4) 3′-Hall subgroup G3′ possesses an ordered Sylow tower of super-

solvable type, its supersolvable residual is nilpotent and d(G3′) ≤ 4;
1.5) n(G{2,3}) ≤ 3 and d(G{2,3}) ≤ 4;
1.6) {2, p}-Hall subgroup G{2,p} possesses an ordered Sylow tower of

supersolvable type and d(G{2,p}) ≤ 4 for every p > 3.
2. If G is a p-solvable group with bicyclic Sylow p-subgroup then

lp(G) ≤ 1 for p > 2 and l2(G) ≤ 2 for p = 2.

Corollary 1 ([22], Corollary). Any group G of odd order with metacyclic
Sylow subgroups is possesses an ordered Sylow tower of supersolvable type
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and its derived subgroup is nilpotent. In particular, G is metanilpotent
and d(G) ≤ 3.

In 2009 authors of the review showed that in formulation of Theorem 5
it is possible to add condition "Sylow p-subgroups have an order p3". The
estimation of derived length will remain.

Theorem 6 (V.S. Monakhov, A.A. Trofimuk [23]). Let G be a solvable
group in which the Sylow p-subgroups are either bicyclic or of order p3 for
any p ∈ π(G). Then the derived length of G is at most 6 and l2(G) ≤ 2,
l3(G) ≤ 2 and lp(G) ≤ 1 for every prime p > 3. In particular, if G is an
A4-free group, then the derived length of G is at most 5.

A group G is A4-free if there is no section isomorphic to the alternating
group A4 of degree 4.

Corollary 2. ([23], Corollary) Let G be a group of odd order in which
Sylow p-subgroups are either bicyclic or of order p3 for any p ∈ π(G).
Then the derived length of G is at most 3.

Example 3. The group GL(2, 3) is generated matrices

a =

(
0 1
1 1

)
, b =

(
−1 0
−1 1

)
, c =

(
1 0
1 1

)
,

then

a8 = b2 = c3 = 1, ab = a3, (a2)c = ab, (ab)c = aba2, cb = c−1

([24], Lemma XII.5.3). It is clear that GL(2, 3) =< a > ([< c >] < b >)
(GL(2, 3) is a product of subgroup < a > of order 8 and [< c >] < b > of
order 6). The derived length ofGL(2, 3) is equal to 4. Hence the estimation
of the derived length, which is obtained in Theorem 5(1.5), is exact.

Example 4. Let S be a extraspecial group of order 73 and

H = 〈a, b, c | a2 = b3 = c4 = abc〉

be a group of order 48 = 24 · 3 in which Sylow 2-subgroup is quaternion
group Q16 of order 16. With the computer algebra system GAP we can
construct the group G = [S]H of order 16464 = 24 · 3 · 73. The derived
length of G is equal to 6 and the nilpotent length of G is equal 4. Hence
the estimations of the derived and the nilpotent lengths in Theorem 6
are exact.
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Example 5. Let E73 be an elementary abelian group of order 73, S be
a extraspecial group of order 27, Q8 be a quaternion group of order 8.
With the computer algebra system GAP we can construct the group
G = [E73 ]([S]Q8) of order 74088 = 23 · 33 · 73 such that it is A4-free. The
derived length of G is equal to 5 and the p-length is equal to 1 for any
p ∈ π(G). Hence the estimation of the derived length, which is obtained
in Theorem 6, is exact.

Let’s notice that Theorems 5 and 6 cover all solvable groups G =
AB with cyclic Sylow subgroups in factors A and B. But such groups
possess new properties, which not inherited to groups with bicyclic Sylow
subgroups.

Let p is prime. A zp-group is a group with cyclic Sylow p-subgroup
and a z-group is a group, in which all Sylow subgroups are cyclic.

Theorem 7 (J.G. Berkovich [25], R. Maier [26]). Let G = AB, where A
and B are the zp-subgroups. Then the following statements hold.

1. If |G| is odd then G is p-supersolvable.

2. If G is p-solvable, A and B are p-nilpotent then G is p-supersolvable.

3. If |G| is odd, A and B are the z-subgroups then G is supersolvable.

If the order of G = AB is even, A and B are the z-subgroup then
G can be non-solvable. As example there is the symmetric group S5 of
degree 5, which is product of z-subgroup of order 20 and cyclic subgroup
of order 6.

V.D. Mazurov [27] proved that G = AB is non-simple if A and B are
the z-subgroups. Besides, V.D. Mazurov ([28], p. 75) for any prime p > 2
has specified examples not p-supersolvable solvable group of even order,
which is product of two zp-groups.

New information about solvable groups that are product of two z-
subgroups is received by V.S. Monakhov.

Theorem 8 ([29], Theorem, Corollaries 2–4). 1. If G = AB is a 3-
solvable group, where A and B are the zp-subgroups for p = 2 and p = 3,
then G is 3-supersolvable.

2. If G = AB is a {2, 3}-group, where A and B are the z-subgroups
and l2(G) ≤ 1, then G supersolvable.

3. If G = AB is a S4-free {2, 3}-group, where A and B are the
z-subgroups, then G supersolvable.

4. A solvable group G = AB, where A and B are the z-subgroups, has
a normal series of length ≤ 3 with supersolvable factors.
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Let’s note that for receiving 3-supersolvability of G in a condition of
Theorem 8 can’t be replaced a factorization with the requirement that
Sylow 2- and 3-subgroups in group are bicyclic. As example, the group
[E9]Z8. It is a extension of elementary abelian group E9 of order 32 by
cyclic group Z8 of order 23, which irreducible acts on E9.

A.R. Camina and T.M. Gagen proved that if G = AB is non-solvable
group, where A is cyclic and B is metacyclic then G/S(G) ≃ PGL(2, p),
p > 3, p is prime, [30]. Here S(G) is a largest normal solvable subgroup
of G.

V.S. Monakhov proved that if G = AB, A∩B = 1, A is a z2-subgroup
of even order, B is proper subgroup then G contains a subgroup of index 2
([31], Lemma 2). V.D. Mazurov [27] weakened the requirement A∩B = 1
to following: the intersection A ∩B has an odd order.

A group G is said to be a mutually m-permutable product of the
subgroups G1 and G2 if G = G1G2 and G1 permutes with every maximal
subgroup of G2 and G2 permutes with every maximal subgroup of G1.

In 2011 V.S. Monakhov and M. Assaad [32] give a generalization of
Berkovich’s result [25] for an arbitrary number of factors.

Theorem 9 (V.S. Monakhov and M. Assaad [32],Theorems 1.1 and
1.3, Corollary 1.2). Let G = G1G2 · · ·Gn be the product of the pairwise
permutable subgroups G1, . . . , Gn. Then the following statements hold.

1. If G is a group of odd order and the Sylow p-subgroups of any Gi
are cyclic then G is p-supersolvable.

2. If G is a group of odd order and the Sylow subgroups of any Gi are
cyclic then G is supersolvable.

3. If G is a group of even order, G2G3 · · ·Gn is of odd order, G1Gi
is a mutually m-permutable product i = 2, . . . , n and the Sylow subgroups
of any Gi are cyclic then G is supersolvable.

The normal rank rn(P ) of a p-group P is defined thus:

rn(P ) = max
X⊳P

logp|X/Φ(X)|, (2.1)

where X runs over all normal subgroups of P including P . Here Φ(X) is
the Frattini subgroup of X. The basis theorem of Burnside ([4], Theorem
III.3.15) implies that the normal rank, rn(P ), is the least positive integer
k such that every normal subgroup of a p-group P is generated by at
most k elements. It is obvious that p-group is cyclic, if its normal rank
is equal to 1. The normal rank of metacyclic p-group is at most 2. The
normal rank of bicyclic p-group is at most 3.
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The development of Theorem 5 is the following theorem.

Theorem 10 ([33]). 1. If G is solvable with Sylow subgroups of normal
rank ≤ 3 then the nilpotent length of G is at most 5 and the p-length is
at most 2 for any prime p.

2. If G is solvable with Sylow 2-subgroup of normal rank ≤ 3 and Sylow
p-subgroups of normal rank ≤ 2 for all p > 2 then n(G) ≤ 4, l2(G) ≤ 2,
l3(G) ≤ 2 and lp(G) ≤ 1 for all prime p > 3.

3. If G is an odd order with Sylow subgroups of normal rank ≤ 2 then
G is metanilpotent.

4. If G is solvable with Sylow subgroups of normal rank ≤ 2 then
n(G) ≤ 4, l2(G) ≤ 2, l3(G) ≤ 2 and lp(G) ≤ 1 for all prime p > 3.
Besides, for Hall subgroups of G the following statements hold:

4.1) n(G2′) ≤ 2;
4.2) n(G3′) ≤ 3;
4.3) n(G{2,3}) ≤ 3;
4.4) n(G{2,p}) ≤ 2 for all p > 3.

V.S. Monakhov [34] established dependence of invariants solvable
group from orders of Sylow subgroups.

Theorem 11 ([34]). Let the order of a soluble group G not be divisible
by (n+ 1)th degrees of primes. Then:

1) if n ∈ {2, 3, 4} then d(G/Φ(G)) ≤ 3 + n;
2) if n ∈ {5, 6, 7} then d(G/Φ(G)) ≤ 8;
3) if n ∈ {8, 9} then d(G/Φ(G)) ≤ 1 + n;
4) if n ∈ {10, . . . , 17} then d(G/Φ(G)) ≤ 11;
5) if n ∈ {18, . . . , 25} then d(G/Φ(G)) ≤ 12;
6) if n ∈ {26, . . . , 33} then d(G/Φ(G)) ≤ 13;
7) if n ∈ {34, . . . , 65} then d(G/Φ(G)) ≤ 14;
8) if n ≥ 66 then d(G/Φ(G)) ≤ 1 + 5log(n− 2) + 53/10.
In particular, d(G/Φ(G)) ≤ 3 + n in any case.

Theorem 12 ([34]). Assume that the order of a soluble group G is odd
and is not divisible by (n+ 1)th degrees of primes. Then:

1) if n ≤ 2 then d(G/Φ(G)) ≤ 2;
2) if n ∈ {3, 4} then d(G/Φ(G)) ≤ 3;
3) if 5 · 7x ≤ n < 15 · 7x then d(G/Φ(G)) ≤ 4 + 2x;
4) if 15 · 7x ≤ n < 5 · 7x+1 then d(G/Φ(G)) ≤ 5 + 2x.

It should be noted that the estimation of the derived length received
on the basis of the general technique of research of solvable groups with



Jo
ur

na
l
A
lg

eb
ra

D
is
cr

et
e

M
at

h.

118 Invariants of groups

restrictions on orders of Sylow subgroups, is non-exact for small values of
orders. For example, if orders of Sylow subgroups of solvable group G are
cube-free then d(G) ≤ 3, but d(G/Φ(G)) ≤ 5 by Theorem 11. Information
on a structure of groups cube-free order is presented in the following
theorem.

Theorem 13 ([35]). Let G be a solvable group in which the Sylow p-
subgroups are either cyclic or of order p2 for any p ∈ π(G). Then the
following statements hold:

1) the derived length of G is at most 3;
2) 2′-Hall subgroup is metabelian.

The chief factor H/K is called the Fitting chief factors, if the Fitting
subgroup F (G) of G contains a subgroup H.

In 1978 Gashutz [36] proved the following statement: let H/K be
a chief factor of the greatest order of G. Then H ≤ F (G). From this
statement does not follow that each chief factor of order pr(G) is a Fitting
chief factor, where p is prime. Any supersolvable non-nilpotent group is
an example of this fact.

Hence the following Question was arose: Let G be a solvable group.
Are there the Fitting chief factors of order pr(G) for some prime p? The
following theorem gives answer on this Question.

Theorem 14 (V.S. Monakhov [37], Theorem 2). Every finite solvable non-
identity group G contains a nilpotent normal subgroup K such that Φ(G) ≤
K, the quotient group K/Φ(G) is a chief factor of G and |K/Φ(G)| =
pr(G/Φ(G)) for some prime p.

In particular, Huppert’s well-known result from here follows.

Corollary 3 ([38], Theorem 13; [4], Theorem V.9.9). Let G be a finite
solvable group. If

Φ(G) = N0 ⊳N1 ⊳ . . .⊳Nm−1 ⊳Nm = F (G),

is a normal series such that Ni ⊳ G and Ni/Ni−1 has a prime order,
i = 1, 2, . . . ,m then G is supersolvable.

A.A. Trofimuk [39] noticed that, to estimate the derived length, it
suffices to consider the orders of the Sylow subgroups only Fitting subgroup
of a group. Besides, a substantial influence on the upper bound of the
derived length of a group is due the Sylow subgroups in the Fitting
subgroup, which are not bicyclic (if they exist), rather than all Sylow
subgroups of this kind.
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Theorem 15 (A.A. Trofimuk [39]). Let G be a solvable non-primary
group and F is its Fitting subgroup. Then the following statements hold.

1. If π∗(F ) 6= ∅ then d(G) ≤ ρ(t(F )) +max{d(Fp) | p ∈ π(F )}.
2. If π∗(F ) = ∅ then d(G) ≤ 6.

Here π∗(F ) is the set of all primes p in π(F ) for which Sylow p-
subgroup of F is not bicyclic. If π∗(F ) = ∅ then all Sylow subgroups of
F are bicyclic. The function tp(F ) and t(F ) are defined thus:

tp(F ) = logp(|Fp|), t(F ) = max
p∈π∗(F )

tp(F ).

Here ρ(n) is the maximum of the derived lengths of the completely
reducible solvable subgroups of GL(n,F), where F is a field. By the
Zassenhaus Theorem [40] this function ρ(n) : N → N exists and is
independent on the field F. The values of ρ(n) are known for every n,
[41]–[44].

Corollary 4 ([39]). Let G be a solvable non-primary group and F is its
Fitting subgroup. Then the following statements hold.

1. If the Sylow subgroups of F are bicyclic then the derived length is
at most 6.

2. If π∗(F ) 6= ∅ then d(G) ≤ ρ(t(F )) + δ(t(F )) + 1.

Here δ(n) = max{d ∈ N | n ≥ 2d + 2d− 2}.
The dependence of the rank and the derived length of solvable group

from index of Fitting subgroups in their normal closure is established in
[45].

Theorem 16 (A.A. Trofimuk [45], Theorem 1). Let G be a solvable group.
Then the following statements hold.

1. r(G/Φ(G)) ≤ 1 + tF (G).
2. d(G/Φ(G)) ≤ 1 + ρ(1 + tF (G)) ≤ 4 + tF (G).

Theorem 17 (A.A. Trofimuk [45], Theorem 2). Let G be a solvable group
and tF (G) ≤ 2. Then d(G/Φ(G)) ≤ 6, n(G) ≤ 4 and lp(G) ≤ 2 for any
prime p. In particular, if G is A4-free then d(G/Φ(G)) ≤ 5.

Here the function tFp (G) and tF (G) are defined thus:

tFp (G) = max{n | pn || |HG : H|, H ≤ F (G)}, p ∈ π(G);

tF (G) = max
p∈π(G)

tFp (G).
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We denote by pk || n that pk divides n, but pk+1 does not divide n; HG

is the smallest normal subgroup of G that contains H.

The examples that show accuracy of received estimations in Theo-
rem 17 are constructed.

Example 6. Let E73 be an elementary abelian group of order 73 and K
be a extraspecial group of order 27. With the computer algebra system
GAP we can construct the group G = [E73 ]([K]SL(2, 3)) of order 222 264.
The Fitting subgroup of G is coincide with E73 and tF (G) = 2. The
Frattini subgroup Φ(G) is identity, the derived length of G is equal to 6
and nilpotent length of G is equal 4.

Example 7. The A4-free group G = [E73 ]([S]Q8) of order 74088 =
23 · 33 · 73 of example 5 has F (G) = E73 and tF (G) = 2. Besides, the
derived length of G is equal to 5. Hence the estimation of the derived
length, which is obtained in Theorem 17, is exact.

Finding of invariants of solvable groups with the set properties of
Sylow subgroups has found development in researches of a structure of
groups on properties of Sylow subgroups in factors of their normal series.

If G has a normal series with cyclic Sylow subgroups in factors then
G is supersolvable. Therefore, G possesses an ordered Sylow tower of
supersolvable type, the derived subgroup ofG is nilpotent and the nilpotent
length of G is at most 2. As any p-group has a normal series with factors
of prime orders then the derived length of such groups to limit from above
it is impossible. However, the derived length of G/Φ(G) is at most 2.

The research of the solvable groups having a normal series whose
factors have bicyclic Sylow subgroups, is spent to 2009 by authors of the
present review.

Theorem 18 (V.S. Monakhov, A.A. Trofimuk [46]). Let G be a solvable
group having a normal series such that every Sylow subgroup of its factors
is bicyclic. Then the following statements hold.

1. The nilpotent length of G is at most 4 and the derived length of
G/Φ(G) is at most 5;

2. l2(G) ≤ 2, l3(G) ≤ 2 and lp(G) ≤ 1 for every prime p > 3;
3. If G is an A4-free group then the following statements hold:
3.1) lp(G) ≤ 1 for every prime p;
3.2) the derived length of G/Φ(G) is at most 3.
4. If G is a group of odd order then the derived subgroup of G is

nilpotent. In particular, G/Φ(G) is metabelian.
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Clearly, that the Theorem 18 covers all groups having a normal series
with bicyclic factors.

Examples that show accuracy of the estimations in Theorem 18 are
constructed.

Example 8. It is well known that S4 has the normal series

1 ≤ E4 ≤ A4 ≤ S4

with bicyclic factors and l2(S4) = 2. The group G = [E32 ]SL(2, 3) has
the normal series

1 ≤ E32 ≤ [E32 ]Z2 ≤ [E32 ]Q8 ≤ [E32 ]SL(2, 3)

with bicyclic factors and l3(G) = 2.

Example 9. Let E72 be an elementary Abelian group of order 72. The
automorphism group of E72 is the general linear group GL(2, 7) with
cyclic center Z = Z(GL(2, 7)) of order 6. We choose a subgroup C of
order 2 in Z. Evidently, C is normal in GL(2, 7). The calculations in the
computer system GAP show that GL(2, 7) has a subgroup S of order
48 such that S/C is isomorphic to the symmetric group S4 of degree 4.
The semidirect product G = [E72 ]S is a group of order 2352 = 24723. In
particular, Φ(G) = 1. The nilpotent length of G is equal to 4, the derived
length of G is equal to 5. The group G has the chief series

1 ⊂ E72 ⊂ [E72 ]Z2 ⊂ [E72 ]Q8 ⊂ [[E72 ]Q8]Z3 ⊂ [E72 ]S = G

with bicyclic factors:

E72 , ([E72 ]Z2)/(E72) ≃ Z2, ([E72 ]Q8)/([E72 ]Z2) ≃ E4,

([[E72 ]Q8]Z3)/([E72 ]Q8) ≃ Z3, (G/[[E72 ]Q8]Z3) ≃ Z2.

Hence the estimations of the nilpotent length and the derived length,
which are obtained in Theorem 18, are exact.

Example 10. Let E52 be an elementary Abelian group of order 52. The
automorphism group of E52 is the general linear group GL(2, 5). The
group GL(2, 5) has a subgroup, which is isomorphic to the symmetric
group S3 of degree 3. The semidirect product G = [E52 ]S3 is an A4-free
group with identity Frattini subgroup. The derived length of G is equal
to 3. The group G has the chief series

1 ⊂ E52 ⊂ [E52 ]Z3 ⊂ [E52 ]S3 = G
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with bicyclic factors:

E52 , ([E52 ]Z3)/(E52) ≃ Z3, ([E52 ]S3)/([E52 ]Z3) ≃ Z2.

Consequently, the estimation of the derived length, which is obtained in
Theorem 18, is exact.

It is well known that a p-solvable group of p-rank 1 is called p-super-
solvable ([4], p. 713). If G is solvable of rank 1 then it has the following
properties: G possesses an ordered Sylow tower of supersolvable type; the

nilpotent length of G and the derived length of G/Φ(G) are at most 2;

the p-length lp(G) equals 1 for all p ∈ π(G) ([4], VI.9).
Huppert [38] and Rose [47] studied solvable groups of rank 2 and

proved the two theorems.

Theorem 19 ([38], Theorem 14; [4], Theorem VI.9.1(d)). Consider a
solvable group G of rank ≤ 2 and the greatest prime divisor p of |G|. If
p > 3 then the Sylow p-subgroup is normal in G. In particular, if the
order of the group is not divisible by 2 or 3 then the group possesses an
ordered Sylow tower of supersolvable type.

Theorem 20 ([47], Corollary 1). Consider a solvable group G and the
greatest prime divisor p of |G|. If rt(G) ≤ 2 for all t ∈ π(G) \ {p} and
G includes no sections isomorphic to the alternating group A4 then G
possesses an ordered Sylow tower of supersolvable type.

Theorem 19 implies that each solvable group of rank ≤ 2 has a
normal {2, 3}′-Hall subgroup that possesses an ordered Sylow tower of
supersolvable type.

In [48] new properties of solvable groups of rank 2 are established
and study solvable groups of rank 3. In particular, we prove the following
theorems.

Theorem 21 (V.S. Monakhov and A.A. Trofimuk [48], Theorem 1).
Let G be a solvable group with r(G) ≤ 2. Then the following statements
hold.

1. The nilpotent length of G is at most 4.
2. The derived length of G/Φ(G) is at most 5.
3. lp(G) ≤ 1 for every prime p > 3, while l2(G) ≤ 2 and l3(G) ≤ 2.

Theorem 22 (V.S. Monakhov and A.A. Trofimuk [48], Theorem 2).
Let G be a solvable group with r(G) ≤ 3. Then the following statements
hold.
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1. The nilpotent length of G is at most 4.
2. The derived length of G/Φ(G) is at most 6.
3. lp(G) ≤ 1 for every prime p > 3, while l2(G) ≤ 2 and l3(G) ≤ 2.

Solvable groups of rank ≤ 2 and rank ≤ 3 admit identical upper
bounds on nilpotent length and p-length, while the upper bounds on
derived length differ. But if we bound the p-rank of a solvable group G for
a small values of p by 3, and for the remaining p by 2 then we can retain
the upper bound on the derived length of G/Φ(G) as in Theorem 21.

Theorem 23 (V.S. Monakhov and A.A. Trofimuk [48], Theorem 3). Let
G be a solvable group with rp(G) ≤ 2 for every prime p > 5 and rp(G) ≤ 3
for every p ∈ {2, 3, 5}. Then the following statements hold.

1. The derived length of G/Φ(G) is at most 5.
2. The group G includes a normal {2, 3, 5, 7, 13, 31}′-Hall subgroup

that possesses an ordered Sylow tower of supersolvable type.

The next theorem establishes the dependence of the derived length
of G/Φ(G) and the p-length on the rank of a solvable group G in the
general case.

Theorem 24 (V.S. Monakhov and A.A. Trofimuk [48], Theorem 4).
1. If G is a solvable group then the derived length of G/Φ(G) is at most
1 + ρ(r(G)). In particular, it is at most 3 + r(G).

2. If G is a p-solvable group then lp(G) < 2 + log2 rp(G).

For p-solvable group G it is known that lp(G) ≤ rp(G) ([4], Theo-
rem VI.6.6). We refine this as

Corollary 5 (V.S. Monakhov and A.A. Trofimuk [48], Corollary 1). Let G
be a p-solvable group. If lp(G) = rp(G) then either rp(G) = 1 or rp(G) = 2
and p ∈ {2, 3}. In particular, if rp(G) ≥ 3 then lp(G) ≤ rp(G) − 1.

Example 11. Let S be a extraspecial group of order 27. The semidirect
product G = [S]GL(2, 3) is a solvable group of rank 2 with the Frattini
subgroup Φ(G) of order 3. The nilpotent length of G equals 4, the derived
length of G/Φ(G) equals 5, 2- and 3-lengths of this group equal 2. Hence,
the estimations of Theorem 21 are exact.

Example 12. The group G = [E73 ]([K]SL(2, 3)) of order 222 264 of
an example 6 has r2(G) = r3(G) = 2, r7(G) = 3. Besides, the Frattini
subgroup of this group is identity, the nilpotent length equals 4 and the
derived length equals 6. Hence the estimations of the nilpotent and the
derived lengths in Theorem 22 are exact.
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3. The nilpotent π-length of finite π-solvable group

For a group G consider a series

1 = P0 ⊆ N0 ⊆ P1 ⊆ N1 ⊆ P2 ⊆ N2 ⊆ . . . ,

Ni/Pi = Oπ′(G/Pi), Pi+1/Ni = Oπ(G/Ni), i = 0, 1, 2, . . . .

Here Oπ′(X) and Oπ(X) denote the largest normal π′- and π-subgroup
of the group X respectively. If G is π-solvable then Nk = G for some
positive integer k. The least positive integer k possessing this property is
called the π-length of a π-solvable group G and is denoted by lπ(G). For
π = {p} the definition of the π-length of a π-solvable group turns to the
definition of the p-length.

The concept of the π-length of a π-solvable group is related to the
following Shemetkov’s problem ([12], Question 11.119).

Question 5. Let π be a non-empty set of prime numbers. Is it true that
the π-length of a π-solvable group is bounded from above by the derived
length d(Gπ) of its π-Hall subgroup?

N.S.Chernikov and A.P. Petravchuk [49] proved that lπ(G) ≤ 2d(Gπ)
and L.S. Kazrin [50] obtained a positive answer for the case 2 6∈ π. In
general case this question is opened.

R. Carter, B. Fischer, T. Hawkes [51] suggested the concept of the
nilpotent π-length of a solvable group as generality of the nilpotent length
and the p-length simultaneously. The nilpotent π-length of a π-solvable
group G is defined as follows. Let

Pn0 = 1, Nn
i /P

n
i = Oπ′(G/Pni ), Pni+1/N

n
i = F (G/Nn

i ), i = 0, 1, 2, . . . .

For π-solvable group G there exists a number k such that Nn
k = G.

The least positive integer k such that Nn
k = G is called the nilpotent

π-length of G and is denoted by lnπ(G). Since Pni+1/N
n
i is a nilpotent

π-group and Nn
i /P

n
i is a π′-group then lπ(G) ≤ lnπ(G). If π = {p} then

lnπ(G) = lπ(G) = lp(G). It is also clear that the equality lπ(G) = lnπ(G)
remains valid for a π-solvable group with a nilpotent π-Hall subgroup.

If π(G) ⊆ π then a π-solvable group G becomes solvable and the value
of the nilpotent π-length of G coincides with the value of the nilpotent
length. If G is solvable and π ⊆ π(G), π 6= π(G) then the concept of the
nilpotent π-length and the π-length are of individual interest.

Work of Numata [52] was one of the first works on the nilpotent
π-length of a π-solvable group. In it following three facts are established.
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Theorem 25. 1. If G is π-solvable then lnπ(G) ≤ 1+cmπ (G), where cmπ (G)
is the number of classes of the conjugacy non-normal maximal subgroups
of G, whose indexes belong to π.

2. If G is solvable then n(G) ≤ 1+ cm(G), where cm(G) is the number
of classes of the conjugacy non-normal maximal subgroups of G.

3. For any n there is a solvable group G such that the nilpotent length
of G is equal to n and the number of classes of the conjugacy non-normal
maximal subgroups is equal to n− 1.

In view of item 3 as composed in item 1 and 2 Theorem 25 it is
impossible to get rid of unit. But if to consider all maximal subgroups,
then it is possible to make. This supervision leads to the following theorem.

Theorem 26 ([53]). 1. If G is π-solvable then lnπ(G) is at most the number
of classes of the conjugacy maximal subgroups of its π-Hall subgroups.

2. Let G be a π-solvable group. Let’s fix up the maximal subgroup H,
which index is π-number. Let K be a intersection of all non-conjugacy with
H maximal subgroups of G, which index is π-number. Then lnπ(K) ≤ 2.

3. The nilpotent length of solvable group is at most the number of
classes of the conjugacy maximal subgroups.

In connection with item 3 of Theorems 25 and 26 there is the following
question.

Question 6. How the derived length of solvable group is connected with
number of classes of conjugacy (non-normal) maximal subgroups?

The work of N.S. Chernikov and A.P. Petravchuk [49] devoted to
estimations of the nilpotent π-length of a π-solvable group.

Theorem 27 ([49], Theorem 1). Let G be a π-solvable group. If one of the
following conditions is hold: G2 is abelian; 2 ∈ π and Gπ is 2-separable;
2 6∈ π and Gπ is 3-separable; 2 6∈ π and G3 is abelian, then lnπ(G) ≤ d(Gπ).

V.S. Monakhov and O.A. Shpyrko proved the following theorem.

Theorem 28 ([54]). Let G be a π-solvable group. Then the following
statements hold:

1) if 2 6∈ π then lnπ(G) ≤ d(Gπ);
2) lnπ(G) ≤ 2d(Gπ).

Since lπ(G) ≤ lnπ(G) for every π-solvable group G, this theorem gen-
eralizes the results given above L.S. Kazarin [50], N.S. Tchernikov and
A.P. Petravchuk [49] in which similar estimates are received for lπ(G).
In connection with Theorem 28 there is the following question.
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Question 7. Let π be a non-empty set of prime numbers. Whether it is
true that the nilpotent π-length of a π-solvable group G is limited from
above by the derived length d(Gπ) of its π-Hall subgroup?

It is clear that the positive solution of this question will lead to the
decision formulated above L.A. Shemetkov’s task.

The following hypothesis offered by V.S. Monakhov ([12], Question 15.61)
connected with concept of the nilpotent π-length.

Question 8. Whether it is true that lnπ(G) ≤ n(Gπ) − 1 + max
p∈π

lp(G) for

any π-solvable group?

Here n(Gπ) is the nilpotent length of π-Hall subgroup Gπ of G.
If π-Hall subgroup is nilpotent then the hypothesis is fair ([49], Lemma 4).

If π-Hall subgroup is either supersolvable, or a minimal non- supersolvable
group then the hypothesis is fair. It follows from following theorem.

Theorem 29 ([54], [55]). 1. Let G be a π-solvable group such that the
derived subgroup of its π-Hall subgroup is nilpotent. Then lnπ(G) ≤ 1 +
max
p∈π

lp(G).

2. Let G be a π-solvable and let all proper subgroups of its π-Hall
subgroups are supersolvable. Then

lnπ(G) ≤ n(Gπ) − 1 + max
p∈π

lp(G) ≤ 2 + max
p∈π

lp(G).

A number of the corollaries giving new estimations of nilpotent π-
length of a π-solvable group depending on either the structure of its π-Hall
subgroup, or from types of Sylow p-subgroups for p ∈ π, follows from this
theorem.

Corollary 6. 1. If Sylow p-subgroups of π-solvable group G are cyclic
for all p ∈ π then lnπ(G) ≤ 2.

2. Let G be a π-solvable group with metabelian π-Hall subgroup. Then
lnπ(G) ≤ 3, but if 2 6∈ π then lnπ(G) ≤ 2.

3. If G is a π-solvable group with totally factorizable π-Hall subgroup
then lnπ(G) ≤ 1 +max

p∈π
lp(G) ≤ 2.

4. If G is π-solvable and its π-Hall subgroup is Schmidt subgroup then
lnπ(G) ≤ 2.

Let’s remind that a group G is called totally factorizable, if there is
the complements to any subgroup. A Schmidt group is a non-nilpotent
group all of whose proper subgroups are nilpotent.
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Let N denote the class of all nilpotent groups and k be a positive
integer. Then Nk is the class of all solvable group of the nilpotent length
≤ k. It is known that Nk is a saturated formation and is the Fitting
class ([3], Theorem 5.39). Therefore, in each solvable group there are
Nk-projectors and Nk-injector ([3], Theorems 5.15 and 5.45).

K. Doerk [56] proved the following statements.

Theorem 30 ([56], [3], Theorems 4.30 and 5.54). 1. If M is a maximal
subgroup of solvable group G then n(M) = n(G) − i, i ∈ {0, 1, 2}.

2. Let G be a solvable group. If G has a subgroup H such that H is a
Nk-projector and a Nk-injector, k ≥2 then G ∈ Nk.

Example 13. All three values of i ∈ {0, 1, 2} in item 1 of Theorem 30
are possible. In a non-identity nilpotent group it is true that i = 0 for any
maximal subgroup. In the symmetric group S3 it is true that i = 1 for
any maximal subgroup. In the symmetric group S4 it is true that i = 2
for the maximal subgroup coinciding with Sylow 2-subgroup.

The second statement is broken for k = 1. As an example serves
the symmetric group S4 of degree 4 in which Sylow 2-subgroup are a
N-projector and a N-injector.

A. Ballester-Bolinches and M. Perez-Ramos [57] have transferred the
first statement for the F-length. If F is a saturated formation then the
F-length of solvable group G is the nilpotent length of its F-residual
([57], [58], V.5.2). In other words the F-length of solvable group G is the
least positive integer n = nF(G) such that G ∈ NnF. Obviously, it is a
definition of the nilpotent length for F = (1).

Theorem 31 ([57], Theorem 1). If F is a subgroup closed saturated
formation and M is a maximal subgroup of G then nF(M) = nF(G) − i,
i ∈ {0, 1, 2}.

V.S. Monakhov and O.A. Shpyrko have transferred the Doerk’s theo-
rem on π-solvable groups. In the beginning we will define for each positive
integer k following classes:

Lπ(k) is a class of all solvable group of π-length ≤ k,

Lnπ(k) is a class of all solvable group of nilpotent π-length ≤ k.

Both classes are saturated formations and Fitting classes ([3], Theorem
5.39). Then every solvable group has a Lπ(k)- and a Lnπ(k)-projector, a
Lπ(k)- and a Lnπ(k)-injector ([3], Theorems 5.15 and 5.45).

It is clear that if π is a set of prime then Lnπ(k) = Nk.
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Theorem 32 (V.S. Monakhov, O.A. Shpyrko [59]). 1. If G is π-solvable
and M is its maximal subgroup then lnπ(M) = lnπ(G) − i, i ∈ {0, 1, 2}.

2. If G is solvable and some Lnπ(k)-projector is Lnπ(k)-injector, k ≥ 2
then G ∈ Lnπ(k).

Theorem 33 (V.S. Monakhov, O.A. Shpyrko [59]). 1. If G is π-solvable
and M is its maximal subgroup then lπ(M) = lπ(G) − i, i ∈ {0, 1}.

2. If G is solvable and some Lπ(k)-projector is Lπ(k)-injector then
G ∈ Lπ(k).

For π = {p} we will receive

Corollary 7. 1. Let p be a prime and G is p-solvable. If M is a maximal
subgroups then lp(M) = lp(G) − i, i ∈ {0, 1}.

2. If G is solvable and some Lp(k)-projector is Lp(k)-injector then
G ∈ Lp(k).

The results of Doerk are special cases of Theorem 32 in the case
π = π(G). If π ⊆ π(G), π 6= π(G) then all statements of Theorems 32
and 33, Corollary 7 are new to any finite solvable group G.

Other results connected with π-length and nilpotent π-length contained
in works [60]–[64].

In connection with Theorems 30–33 there is the following task.

Question 9. To find the smallest positive integer k, if it exists, such that
d(G) − d(M) ≤ k for any finite solvable group G and any its maximal
subgroup M .
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