Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 14 **(2012)**. Number 1. pp. 37 – [48](#page-11-0) c Journal "Algebra and Discrete Mathematics"

On locally soluble AFN**-groups**

Olga Yu. Dashkova

Communicated by L. A. Kurdachenko

Abstract . Let *A* be an **R***G*-module, where **R** is a commutative ring, *G* is a locally soluble group, $C_G(A) = 1$, and each proper subgroup *H* of *G* for which $A/C_A(H)$ is not a noetherian **R**-module, is finitely generated. We describe the structure of a locally soluble group *G* with these conditions and the structure of *G* under consideration if *G* is a finitely generated soluble group and the quotient module $A/C_A(G)$ is not a noetherian **R**-module.

Introduction

Algebra and Discrete Mathematics

RESEARCH ARTIQUE Volume 14 (2012), Number 1, pp. 37 – 18

Schermal "Algebra and Discrete Mathematics"

Communicated by L. A. Kundachenko

Communicated by L. A. Kundachenko

Algebra Discr Let *A* be a vector space over a field F , $GL(F, A)$ be the group of all automorphisms of *A*. Subgroups of *GL*(*F, A*) are called linear groups. If *A* has a finite dimension over *F*, *GL*(*F, A*) can be considered as a group of non-singular $(n \times n)$ -matrixes over *F*, where $n = dim_F A$. Finite dimensional linear groups have been studied by many authors. In the case when *A* has infinite dimension over *F*, the situation is rather different. Infinite dimensional linear groups were investigated a little. Study of this class of groups requires some finiteness conditions. The one from these finiteness conditions is a finitarity of infinite dimensional linear group. We recall that a linear group is called finitary if for each element $g \in G$ the subspace $C_A(g)$ has finite codimension in *A* (see [\[1\]](#page-11-1), [\[2\]](#page-11-2), for example). Many results have been obtained conserning finitary linear groups [\[2\]](#page-11-2).

In [3] antifinitary linear groups are investigated. Let $G \leq GL(F, A)$, $A(wFG)$ be the augmentation ideal of the group ring FG , $augdim_F(G)$

²⁰¹⁰ MSC: 20F19.

Key words and phrases: locally soluble group, noetherian module, group ring.

 $dim_F(A(wFG))$. A linear group *G* is called antifinitary if each proper subgroup *H* of infinite dimension $augdim_F(H)$ is finitely generated [3].

38 ON LOCALLIN SOLUBLE APN-GROUPS

dim_p:($A(wE)$), A linear group of is called antimitary if each proper subgroup H of infinite dimension *conging* (H) is initialy generated [3], if $G \leq G L(F, A)$ then at our be consid If $G \leq GL(F, A)$ then *A* can be considered as an *FG*-module. The natural generalization of this case is a consideration of an **R***G*-module *A* where **R** is a ring. B.A.F. Wehrfritz have considered artinian-finitary groups of automorphisms of a module *M* over a ring **R** and noetherianfinitary groups of automorphisms of a module M over a ring \bf{R} which are the analogues of finitary linear groups $[4, 5, 6]$. A group of automorphisms $F_1Aut_R M$ of a module M over a ring **R** is called artinian-finitary if $A(g-1)$ is an artinian **R**-module for each $g \in F_1Aut_R M$. A group of automorphisms $FAut_R M$ of a module M over a ring \overline{R} is called noetherianfinitary if $A(g-1)$ is a noetherian **R**-module for each $g \in FAut_R M$. B.A.F. Wehrfritz have investigated the relation between F_1Aut_RM and *FAut***R***M* [\[6\]](#page-11-6).

In [\[7\]](#page-11-7) the notion of the cocentralizer of a subgroup *H* in the module *A* have been introduced. Let *A* be an **R***G*-module where **R** is a ring, *G* is a group. If $H \leq G$ then $A/C_A(H)$ considered as an **R**-module is called the cocentralizer of a subgroup *H* in *A*.

In this paper we consider the analogue of antifinitary linear groups in theory of modules over group rings. Let *A* be an **R***G*-module where **R** is a ring, *G* is a group. We say that a group *G* is an AFN-group if each proper subgroup *H* of *G* for which $A/C_A(H)$ is not a noetherian **R**-module, is finitely generated.

In the paper locally soluble AFN-groups are investigated. Later on it is considered **R***G*-module *A* such that **R** is a commutative ring, $C_G(A) = 1$. The main results ate theorems 1, 2. In theorem [1](#page-8-0) the structure of a locally soluble AFN-group is described. In theorem [2](#page-9-0) the structure of a finitely generated soluble AFN-group *G* is described in the case where the cocentralizer of *G* in *A* is not a noetherian **R**-module.

1. Prelimlnary results

We begin by assembling some elementary facts about AFN-groups.

Lemma 1. *Let A be an* **R***G-module.*

(1) If $L \leq H \leq G$ and the cocentralizer of a subgroup H in A is a *noetherian* **R***-module, then the cocentralizer of a subgroup L in A is a noetherian* **R***-module.*

 (2) If $L, H \leq G$ *and the cocentralizers of subgroups* L, H *in* A *are noetherian* **R***-modules, then the cocentralizer of* $\langle L, H \rangle$ *in A is a noetherian* **R***-module.*

Corollary 1. *Let A be an* **R***G-module, ND*(*G*) *be a set of all elements* $x \in G$ *such that the cocentralizer of* $\langle x \rangle$ *in A is a noetherian* **R***-module. Then* $ND(G)$ *is a normal subgroup of G.*

Proof. By lemma [1](#page-1-0) $ND(G)$ is a subgroup of *G*. Since $C_A(x^g)$ $C_A(x)g$ for all $x, g \in G$ then $ND(G)$ is a normal subgroup of *G*.

Corollary 2. *Let A be an* **R***G-module, G be an* AFN*-group. If G has proper non-finitely generated subgroups K and L then the cocentralizer of* $\langle K, L \rangle$ *in A is a noetherian* **R***-module.*

Lemma 2. *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that H is a subgroup of G and K is a normal subgroup of H such that* $H/K = Dr_{\lambda \in \Lambda}(H_{\lambda}/K)$ *where* $H_{\lambda} \neq K$ *for every* $\lambda \in \Lambda$ *and the index set* Λ *is infinite. Then the cocentralizer of H in A is a noetherian* **R***-module.*

Proof. The quotient group H/K is decomposed in the direct product $H/K = H_1/K \times H_2/K$ such that H_1/K and H_2/K are non-finitely generated quotient groups. Since *G* is an AFN-group then by Lemma [1](#page-1-0) the cocentralizer of H in A is a noetherian \mathbb{R} -module.

O. Yii. Dasaucova
 \sim Corollary 1. Let A is an act of modelle, ND(G) is a set of all energy $x \in G$ such that the construction of Q is not a nonetherian R-module.

Then ND(G) is a uncount subgroup of G . Since $C_A(x^g)$ **Corollary 3.** *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that H is a subgroup of G and K is a normal subgroup of H such that* $H/K = Dr_{\lambda \in \Lambda}(H_{\lambda}/K)$, $H_{\lambda} \neq K$ for every $\lambda \in \Lambda$ and the index set Λ is *infinite. If g is an element of G such that* H_{λ} *is* $\langle g \rangle$ *-invariant for every* $\lambda \in \Lambda$ *, then* $g \in ND(G)$ *.*

Proof. The subgroup *K* is $\langle g \rangle$ -invariant. Since the index set Λ is infinite,

$$
Dr_{\lambda \in \Lambda}(H_{\lambda}/K)\langle gK \rangle = (H_1/K)((H_2/K)\langle gK \rangle),
$$

where H_1 and $H_2\langle g \rangle$ are proper non-finitely generated subgroups of *G*. It follows that the cocentralizer of $\langle H, g \rangle$ in *A* is a noetherian **R**-module. By lemma [1](#page-1-0) the cocentralizer of $\langle g \rangle$ in *A* is a noetherian **R**-module.

Corollary 4. *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that H is a subgroup of G and K is a normal subgroup of H such that* $H/K = Dr_{\lambda \in \Lambda}(H_{\lambda}/K)$, $H_{\lambda} \neq K$ for every $\lambda \in \Lambda$ and the index set Λ is *infinite. If* H_{λ} *is G*-*invariant for every* $\lambda \in \Lambda$ *, then* $G = ND(G)$ *.*

Corollary 5. *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that H is a subgroup of G and K is a normal subgroup of H such that H/K is an infinite elementary abelian p-group for some prime p. If g is an element of G such that H and K are* $\langle g \rangle$ *-invariant and* $g^k \in C_G(H/K)$ *for some* $k \in \mathbb{N}$ *then* $g \in ND(G)$ *.*

Proof. Let $1 \neq h_1K \in H/K, H_1/K = \langle h_1K \rangle^{\langle gK \rangle}$. Since the element *g* induced on the quotient group H/K an automorphism of finite order, H_1/K is finite. Since the quotient group H/K is elementary abelian then $H/K = H_1/K \times C_1/K$. Note that the set $\{C_1^y\}$ $\binom{g}{1}$ $y \in \langle g \rangle$ is finite. Let

$$
\{C_1^y | y \in \langle g \rangle\} = \{U_1, \cdots, U_m\}.
$$

Then the $\langle g \rangle$ -invariant subgroup $D_1 = U_1 \cap \cdots \cap U_m = Core_{\langle g \rangle}(C_1)$ has finite index in *H*. Moreover, since the subgroup *K* is $\langle g \rangle$ -invariant, $K \leq D_1$. Let $1 \neq h_2 K \in D_1/K$, $H_2/K = \langle h_2 K \rangle^{\langle gK \rangle}$. Then

$$
\langle H_1/K, H_2/K \rangle = H_1/K \times H_2/K.
$$

Again we have $H/K = (H_1/K \times H_2/K) \times C_2/K$ for some subgroup C_2 . Reasoning in a similar way, we construct an infinite family ${H_n/K|n \in \mathbb{N}}$ of non-identity $\langle q \rangle$ -invariant subgroups such that

$$
\langle H_n/K | n \in \mathbb{N} \rangle = Dr_{n \in \mathbb{N}} H_n/K.
$$

By corollary [3](#page-2-0) $g \in ND(G)$.

2. On locally soluble AFN**-groups**

A group *G* is said to have finite 0-rank $r_0(G) = r$ if *G* has a finite subnormal serires with exactly *r* infinite cyclic factors, all other factors being periodic. It is well known that the 0-rank is independent of the chosen series.

Lemma 3. *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that a group G has a normal subgroup K such that G/K is an abelian quotient group of infinite* 0*-rank. Then the cocentralizer of G in A is a noetherian* **R***-module.*

10 ON LOCALLY SOLUBLE APN-GROUPS

Proof. Let 1 $\neq h_1K \in H(K, H_1/K)$ and H_1K in a midding roup H/K in an induced particle entergy that H_1/K is finite. Similar that $H/K = H_1/K \times C_1/K$. Note that the set $\{G_{\parallel}^{\mu}y \in \langle y$ *Proof.* Let *B/K* be a free abelian subgroup of *G/K* such that *G/B* is periodic. If $\pi(G/B)$ is infinite then the cocentralizer of *G* in *A* is a noetherian **R**-module by lemma [2.](#page-2-1) Suppose that $\pi(G/B)$ is finite and choose a prime *q* such that $q \notin \pi(G/B)$. Put $C/K = (B/K)^q$ so that B/C is a Sylow *q*-subgroup of G/C . Let P/C be the Sylow *q*'-subgroup of *G/C*. Then *G/P* is an infinite elementary abelian *q*-group. By lemma [2](#page-2-1) the cocentralizer of *G* in *A* is a noetherian **R**-module.

Corollary 6. *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that G has a normal subgroup K such that G/K is an abelian-by-finite*

group of infinite 0*-rank. Then the cocentralizer of G in A is a noetherian* **R***-module.*

O.YE. DASHROVA

The original Algebra Discrete Math. Then the contribution of G in A is a nonthering
 P_{PDE} . Let L/K be a normal abelian subgroup of G/K such that
 P_{PDE} is the inter-Then $\eta_G(K/K)$ is infinite. Pick *Proof.* Let *L/K* be a normal abelian subgroup of *G/K* such that *G/L* is finite. Then $r_0(L/K)$ is infinite. Pick $g \in G \backslash L$. Let B/K be a free abelian subgroup of L/K such that the quotient group L/B is periodic. The rank $r_0(B/K)$ is infinite. Choose an element $a_1 \in B\backslash K$. Put $A_1/K =$ $(\langle a_1 \rangle K/K) \langle gK \rangle$. Since G/L is finite, A_1/K is a finitely generated abelian group. It follows that $A_1/K \cap B/K$ is finitely generated. Choose the subgroup C_1/K of B/K which maximal under

$$
(A_1/K \cap B/K) \cap C_1/K = \langle 1 \rangle.
$$

Then L/C_1 is a group of finite 0-rank. Since G/L is finite, the family $\{(C_1/K)^{yK}|y \in \langle g \rangle\}$ is finite. Let

$$
\{(C_1/K)^{yK}|y \in \langle g \rangle\} = \{D_1/K, \cdots, D_n/K\},\
$$

and put

$$
E/K = D_1/K \cap \cdots \cap D_n/K.
$$

Then $E/K \leq B/K$, E/K is $\langle q \rangle$ -invariant. By Remak's theorem L/E has finite 0-rank. In particular, *E/K* has infinite 0-rank. Choose an element $a_2 \in E\backslash K$. Put $A_2/K = (\langle a_2 \rangle K/K)^{\langle gK \rangle}$. Then $A_2/K \leq E/K$, $(A_1/K) \cap (A_2/K) = 1$. Proceeding in the same way, we construct a family ${A_n/K|n \in \mathbb{N}}$ of non-identity $\langle g \rangle$ -invariant subgroups such that

$$
\langle A_n/K | n \in \mathbb{N} \rangle = Dr_{n \in \mathbb{N}}(A_n/K).
$$

By corollary [3](#page-2-0) $q \in ND(G)$. We can choose a finitely generated subgroup *F* of *G* such that $G/K = (FK/K)(L/K)$ and for each element *g* of *F* $g \in ND(G)$. Since *F* is a finitely generated subgroup then $F \leq ND(G)$. By lemma [3](#page-3-0) the cocentralizer of *L* in *A* is a noetherian **R**-module. Since $G = FL$ then by lemma 1 the cocentralizer of *G* in *A* is a noetherian **R**-module.

Lemma 4. *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that G* has subgroups $L \leq K \leq H$ such that L and K are normal subgroups of *H, K/L is a divisible Chernikov group and H/K is a polycyclic-by-finite group. If the cocentralizer of H in A is not a noetherian* **R***-module, then* $H = G$ *. Moreover, either* $G = K$ *(so that* G/L *is a Prüfer p-group for some prime p)* or G/K *is a cyclic q-group for some prime q.*

Proof. Suppose that H/L is finitely generated. By P. Hall theorem (theorem 5.34 [\[8\]](#page-11-8)) *H/L* satisfies the maximal condition for normal subgroups. In particular, K/L satisfies the condition $max - H$. Since K/L is a divisible Chernikov group, this is impossible. Therefore *H/L* can not be finitely generated and thus *H* is non finitely generated subgroup. Since the cocentralizer of *H* in *A* is not a noetherian **R**-module, then $H = G$.

Suppose that $G \neq K$. Then $G = \langle K, M \rangle$ for some finite set *M*. Since *M* is finite, we may choose a subset *S* of *M* such that $G = \langle K, S \rangle$ but $G \neq \langle K, X \rangle$ for any proper subset *X* of *S*. Let

$$
S = \{x_1, \cdots, x_m\}.
$$

If $m > 1$, then $\langle K, x_1, \cdots, x_{m-1} \rangle$ and $\langle K, x_m \rangle$ are proper non finitely generated subgroups of *G*. Since *G* is an AFN-group then the cocentralizers of subgroups $\langle K, x_1, \cdots, x_{m-1} \rangle$ and $\langle K, x_m \rangle$ in *A* are noetherian **R**-modules. Since $G = \langle \langle K, x_1, \cdots, x_{m-1} \rangle, \langle K, x_m \rangle \rangle$, by lemma 1 the cocentralizer of *G* in *A* is a noetherian **R**-module. This is a contradiction that shows that $m = 1$. Therefore $G/K = \langle xK \rangle$ is cyclic. If G/K is infinite, then *G* must be a product of two proper non finitely generated subgroups, what again gives a contradiction. If G/K is finite but $|\pi(G/K)| > 1$, we again have a contradiction. Hence G/K is a cyclic *a*-group for some prime *a*. a contradiction. Hence *G/K* is a cyclic *q*-group for some prime *q*.

Lemma 5. *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that H is a normal subgroup of G such that G/H is an infinite abelian-byfinite periodic group. If the cocentralizer of G in A is not a noetherian* **R**-module, then either G/H is a Prüfer p-group for some prime p or G *has a normal subgroup K such that G/K is a cyclic q-group for some prime* q *,* $H \leq K$ *and* K/H *is a Chernikov divisible p-group for some prime p.*

12 ON LOCALLIN SOLUBLE APN-GROUPS

Proof. Suppose th[a](#page-1-0)t H/N is finithly generated. By P. Hall the
given (theorem 5.34 [8]) H/L satisfies the meaninm condition for normal
 subpropes, In particular, K/L satisfies the mean *Proof.* Let *L/H* be an abelian normal subgroup of *G/H* such that *G/L* is finite. If $\pi(L/H)$ is infinite, then the cocentralizer of *L* in *A* is a noetherian **R**-module by lemma [2.](#page-2-1) By corollary $4 G = ND(G)$ $4 G = ND(G)$. Since G/L is finite, it follows that the cocentralizer of *G* in *A* is a noetherian **R**-module by lemma 1. This contradiction proves that $\pi(L/H)$ is finite. Then there exists a prime p such that the Sylow p-subgroup P/H of L/H is infinite. Let F/H be the Sylow p' -subgroup of L/H . There is a finite subgroup S/H such that $G/H = (L/H)(S/H)$. If F/H is infinite then both subgroups $(P/H)(S/H)$ and $(F/H)(S/H)$ are not finitely generated. Therefore the cocentralizers of subgroups *PS* and *FS* in *A* are noetherian **R**-modules. By lemma 1 the cocentralizer of *G* in *A* is a noetherian **R**-module. This

O. Yii. Dasaucova

Contradiction shows that k/H is finite. $\mu(H + (H + H + H + G + H)H = (P/H)^2$. If P/H is a more
timitive them I'/B is not finitely generated. Therefore the coordination

of P in [A](#page-6-0) is a more than the coordinatio contradiction shows that F/H is finite. Put $B/H = (P/H)^p$. If P/B is infinite then P/B is not finitely generated. Therefore the cocentralizer of *P* in *A* is a noetherian **R**-module. By corollary $5 G = ND(G)$ $5 G = ND(G)$. Since *G/P* is finite, it follows that the cocentralizer of *G* in *A* is a noetherian **R**-module by lemma [1.](#page-1-0) This contradiction proves that (*P/H*)*/*(*B/H*) is finite. By lemma 3 [\[9\]](#page-11-9) $P/H = (V/H) \times (D/H)$ where D/H is divisible and V/H is finite. *D* is a *G*-invariant subgroup. Put $K = D$. Since G/D is finite, it is suffices to apply lemma [4.](#page-4-0)

Lemma 6. *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that G* has normal subgroups $K \leq H$ such that G/H is finite and H/K is *torsion-free abelian. If the cocentralizers of G in A is not a noetherian* **R***-module, then H/K is finitely generated.*

Proof. By corollary [6](#page-3-1) H/K has finite 0-rank. Let B/K be a free abelian subgroup of H/K such that H/B is periodic. Since $r_0(H/K)$ is finite then B/K is finitely generated. Suppose that H/K is not finitely generated. Since G/H is finite, $C/K = (B/K)^{G/K}$ is finitely generated. By lemma [5](#page-5-0) $|\pi(G/C)| \leq 2$. Choose the distinct primes *r*, *s* such that $r, s \notin \pi(G/C)$. Put $D/K = (C/K)^{rs}$. Then G/D is abelian-by-finite, periodic and not finitely generated. Moreover $|\pi(G/D)| \geq 3$. This contradicts lemma [5.](#page-5-0)
Therefore H/K is finitely generated. Therefore H/K is finitely generated.

Lemma 7. *Let A be an* **R***G-module, G be an* AFN*-group. Suppose that G* has two normal subgroups $K \leq H$ such that G/H is finite and H/K *is abelian and not finitely generated. If the cocentralizer of G in A is not a noetherian* **R***-module, then H/K is Chernikov.*

Proof. By corollary 6 H/K has finite 0-rank. Let T/K be the periodic part of H/K . By lemma 6 H/T is finitely generated. Then H/K has a finitely generated subgroup B/K such that H/B is periodic. Since G/H is finite, $C/K = (B/K)^{G/K}$ is finitely generated. By lemma [5](#page-5-0) G/C is a Chernikov group. It follows that T/K is Chernikov too. Let D/K be the divisible part of T/K . Then G/D is finitely generated and abelian-by-finite. It is suffices to apply lemma [4.](#page-4-0)

Lemma 8. *Let A be an* **R***G-module, G be a soluble* AFN*-group. If G is not a Prüfer p*-group for some prime *p* then $G/ND(G)$ *is a polycyclic quotient group.*

Proof. Put $D = ND(G)$. If the cocentralizer of *G* in *A* is a noetherian **R**-module, then $G = ND(G)$. Therefore we suppose that $G \neq ND(G)$. All
 α ON 1.003.11.18 801.011.8 APN-GROUPS

Let $D = D_0 \le C_0$, α , $D_0 = C_0$ be a series of submernal

subgroups of G whose factors are abelian. Consider the incomp D_0/D_1 ,
 $j < \alpha$. If this factor is not finitely g Let $D = D_0 \leq D_1 \leq \cdots \leq D_n = G$ be a series of subnormal subgroups of *G* whose factors are abelian. Consider the factor D_j/D_{j-1} , $j < n$. If this factor is not finitely generated, then the subgroup D_j cannot be finitely generated and the cocentralizer of D_j in A is a noetherian **R**-module. In particular, $D_j \leq ND(G)$. It follows that D_j/D_{j-1} is finitely generated for every $j = 1, \dots, n-1$. Put $K = D_{n-1}$. If G/K is finitely generated, then *G/D* is polycyclic, and all is done. Suppose that *G/K* is not finitely generated. By lemma $7 \frac{G}{K}$ is a Chernikov group. Let P/K be the divisible part of G/K . If $P/K \neq G/K$, then *P* is not finitely generated proper subgroup of *G*. Thus the cocentralizer of *P* in *A* is a noetherian **R**-module. Therefore $P \leq ND(G)$. But in this case $G/ND(G)$ is finite. Contradiction. Hence $G/K = P/K$. Clearly in this case G/K is a Prüfer *p*-group for some prime *p*. Let $g \in G\backslash K$. Since $g \notin ND(G)$, $\langle g, K \rangle$ is finitely generated. The finiteness of $\langle g \rangle K/K$ implies that *K* is finitely generated (theorem 1.41 [8]). Since G is not a Prüfer *p*-group for some prime p, then $K \neq 1$. It follows that K has a proper G-invariant subgroup L of finite index such that G/L is Chernikov and not divisible. As above, in this case *G/ND*(*G*) is finite.

Lemma 9. *Let A be an* **R***G-module, G be a locally soluble* AFN*-group. If the cocentralizer of G in A is a noetherian* **R***-module, then G contains a normal hyperabelian subgroup N such that G/N is soluble.*

Proof. Since the cocentralizer of *G* in *A* is a noetherian **R**-module, then $A/C_A(G)$ is a finitely generated **R**-module. Put $C = C_A(G)$. *A* has the finite series of **R***G*-submodules

$$
\langle 0 \rangle = C_0 \le C_1 = C \le C_2 = A,
$$

such that C_2/C_1 is a finitely generated **R**-module.

By theorem 13.5 [10] the quotient group $\overline{G} = G/C_G(C₂/C₁)$ contains a normal hyperabelian, locally nilpotent subgroup $\overline{N} = N/C_G(C_2/C_1)$ such that $\overline{G}/\overline{N}$ is imbedded in the Cartesian product $\overline{\Pi}_{\alpha \in A} G_{\alpha}$ of finite dimensional linear groups G_{α} of degree $f \leq n$ where *n* depends on the number of generating elements of **R**-module C_2/C_1 only. Since *G* is a locally soluble group then \overline{G} is locally soluble too. It follows that the projection H_{α} of $\overline{G}/\overline{N}$ on each subgroup G_{α} is a locally soluble finite dimensional linear group of degree at most *n*. By corollary 3.8 [\[10\]](#page-11-10) *H^α* is a soluble group for each $\alpha \in \mathcal{A}$. By theorem 3.6 [\[10\]](#page-11-10) each group H_{α} contains a normal subgroup K_{α} such that $|H_{\alpha}: K_{\alpha}| \leq \mu(n)$, K_{α} is a triangularizable group, K_{α} has a nilpotent subgroup M_{α} of step at most

O . Vii. Dasaucova
 $n = 1, M_d$ is a normal subgroup of H_0 and K_0/M_d is abelian. Therefore
 $H = \prod_{a \in A} H_a$ contains a normal nillpolent subgroup $M = \prod_{a \in A} M_d$ of
 $K = \prod_{a \in A} K_a$ and $(H/M_f)/ (K/M)$ is a bornal nillealm sub *n* − 1, M_{α} is a normal subgroup of H_{α} and K_{α}/M_{α} is abelian. Therefore $H = \Pi_{\alpha \in A} H_{\alpha}$ contains a normal nilpotent subgroup $M = \Pi_{\alpha \in A} M_{\alpha}$ of step at most $n-1$, H/M has a normal abelian subgroup K/M where $K = \prod_{\alpha \in A} K_{\alpha}$ and $(H/M)/(K/M)$ is a locally finite group of the finite period at most $\mu(n)$!. It follows that *H* is a soluble group of the derived length at most $n-1+1+\mu(n)! = n+\mu(n)!$. Therefore $\overline{G}/\overline{N}$ is a soluble group of the derived length at most $n + \mu(n)$!. It follows that *G* has the series of normal subgroups $C_G(C_2/C_1) \leq N \leq G$. As $G/N \simeq \overline{G}/\overline{N}$ then G/N is a soluble group of the derived length at most $n + \mu(n)!$. Since $C_G(A/C_A(G))$ is abelian and $N/C_G(C_2/C_1)$ is hyperabelian then *N* is hyperabelian too.

Theorem 1. *Let A be an* **R***G-module, G be a locally soluble* AFN*-group. Then G has an ascending series of normal subgroups*

 $\langle 1 \rangle = L_0 \leq L_1 \leq L_2 \leq \cdots \leq L_\gamma \leq \cdots \leq L_\delta = G$

such that each factor $L_{\gamma+1}/L_{\gamma}, \gamma < \delta$ *, is hyperabelian.*

Proof. If the cocentralizer of *G* in *A* is a noetherian **R**-module then we apply lemma [9.](#page-7-0) Later on we consider the case where the cocentralizer of *G* in *A* is not a noetherian **R**-module. If *G* is a soluble group then the theorem is valid. Let *G* be non soluble. By corollary 5.27 [\[8\]](#page-11-8) *G* cannot be simple. Therefore *G* has a proper normal subgroup H_1 . If H_1 is finitely genetated, then it is soluble. It follows that H_1 has the series of *G*-admissible subgroups

$$
\langle 1 \rangle = B_0 \leq B_1 \leq B_2 \leq \cdots \leq B_k = H_1
$$

such that the factors B_t/B_{t-1} , $t = 1, \dots, k$, are abelian. If H_1 is not finitely generated, then the cocentralizer of H_1 in A is a noetherian **R**module. By lemma [9](#page-7-0) *H*¹ contains a normal hyperabelian subgroup *N*¹ such that H_1/N_1 is soluble. Then H_1 has the series of *G*-admissible subgroups

$$
\langle 1 \rangle = R_0 \leq R_1 \leq R_2 \leq \cdots \leq R_m = H_1
$$

such that the factors R_t/R_{t-1} , $t=2,\dots,m$, are abelian, R_1 is a hyperabelian subgroup. If G/H_1 is a soluble group, then G has the series of normal subgroups

$$
H_1 = G_0 \leq G_1 \leq G_2 \leq \cdots \leq G_r = G
$$

such that the factors $G_t/G_{t-1}, t = 1, \cdots, r$, are abelian. Therefore G has an ascending series of normal subgroups

$$
\langle 1 \rangle = L_0 \leq L_1 \leq L_2 \leq \cdots \leq L_n = G,
$$

such that each factor L_t/L_{t-1} , $t = 1, \dots, n$, is hyperabelian. If G/H_1 is not a soluble group, then G/H_1 has a proper normal subgroup H_2/H_1 . As above H_2/H_1 has the series of *G*-admissible subgroups

$$
H_1 = D_0 \leq D_1 \leq D_2 \leq \cdots \leq D_j = H_2
$$

such that each factor D_t/D_{t-1} , $t = 1, \dots, j$, is hyperabelian.

We proceed in this way. At step with the ordinal α we have that G/H_{α} is a soluble quotient group. It follows that *G* has an ascending series of normal subgroups

$$
\langle 1 \rangle = L_0 \leq L_1 \leq L_2 \leq \cdots \leq L_{\gamma} \leq \cdots \leq L_{\delta} = G
$$

such that each factor $L_{\gamma+1}/L_{\gamma}, \gamma < \delta$, is hyperabelian.

Lemma 10. *Let A be an* **R***G-module, G be a finitely generated soluble* AFN*-group. Then the cocentralizer of ND*(*G*) *in A is a noetherian* **R***module.*

Proof. Put $D = ND(G)$ and let

$$
\langle 1 \rangle = D_0 \leq D_1 \leq \cdots \leq D_n = D
$$

46 ON to call at solution and equilibration of the factors G_1/G_{1-1} , $t = 1, ..., t$, are abelian. Therefore G has an ascendin[g](#page-1-0) series of G_1/G_{1-1} , $t = 1, ..., t$, is hyperaloginal. If G/H_1 is not a solution group, then $G/H_$ be the derived series of *D*. If each factor D_{j+1}/D_j , $j = 0, 1, \dots, n-1$, is finitely generated, then *D* is polycyclic, and, in particular, *D* is finitely generated. By lemma 1 the cocentralizer of *D* in *A* is a noetherian **R**-module. Therefore, we suppose that some of the factors D_{j+1}/D_j , $j = 0, 1, \dots, n-1$, is not finitely generated. Let *t* be a number such that D_t/D_{t-1} is not finitely generated but D_{j+1}/D_j is finitely generated for every $j \geq t$. It follows that D/D_t is polycyclic. Since *G* is a finitely generated group then *D^t* is a proper non finitely generated subgroup of *G*. Therefore the cocentralizer of D_t in A is a noetherian **R**-module. Since D/D_t is polycyclic, $D = KD_t$ for some finitely generated subgroup *K*. As $K \leq ND(G)$, we have that the cocentralizer of K in A is a noetherian **R**-module. By lemma [1](#page-1-0) the cocentralizer of $ND(G)$ in *A* is a noetherian **R**-module.

Theorem 2. *Let A be an* **R***G-module, G be a finitely generated soluble* AFN*-group. If the cocentralizer of G in A is not a noetherian* **R***-module, then the following conditions holds:*

(1) the cocentralizer of ND(*G*) *in A is a noetherian* **R***-module;*

(2) G has the series of normal subgroups $B \leq R \leq W \leq G$ such that *B is abelian, R/B is locally nilpotent, W/R is nilpotent and G/W is a polycyclic group.*

Proof. By lemma [10](#page-9-1) the cocentralizer of $ND(G)$ in *A* is noetherian **R**module. Let $C = C_A(ND(G))$. Since A/C is a noetherian **R**-module, then *A* has the finite series of **R***G*-submodules $\langle 0 \rangle = C_0 \le C_1 = C \le C_2 = A$, such that A/C is a finite generated **R**-module.

O. Yii. Dasaucova

Theorem 2. Let A ie an RG-matheig of the a finitely generated solution

Alf N-group, If the cocontraliser of G in A is not a motherian R-module.

then the plotoning conditions bolak:

Let Branchi and th By theorem 13.5 [\[10\]](#page-11-10) the quotient group $S = G/C_G(C₂/C₁)$ contains the normal locally nilpotent subgroup $D = N/C_G(C₂/C₁)$ such that the quotient group S/D is embedded in the Cartesian product $\Pi_{\alpha \in A} G_{\alpha}$ of finite dimensional linear groups G_α of degree $f \leq n$ where *n* depends on the number of generating elements of an **R**-module C_2/C_1 only. Since the group *G* is soluble then the quotient group *S* is soluble too. Therefore the projection H_{α} of *S* on each subgroup G_{α} is a soluble finite dimensional linear group of degree at most *n*. By theorem 3.6 [10] each group H_{α} contains the normal subgroup K_{α} such that $|H_{\alpha}: K_{\alpha}| \leq \mu(n)$, the subgroup K_{α} is triangularizable, K_{α} contains the nilpotent subgroup M_{α} of step at most *n* − 1 such that M_{α} is a normal subgroup of G_{α} and the quotient group K_{α}/M_{α} is abelian. Therefore $H = \overline{\Pi}_{\alpha \in A} H_{\alpha}$ contains the normal nilpotent subgroup $M = \Pi_{\alpha \in A} M_{\alpha}$ of step at most $n-1$, the quotient group H/M has the normal abelian subgroup K/M where $K = \overline{\Pi}_{\alpha \in A} K_{\alpha}$ and the quotient group $(H/M)/(K/M)$ is a locally finite group of the period at most $\mu(n)!$. Since S/D is embedded in the Cartesian product $H = \overline{\mathbf{\Pi}}_{\alpha \in \mathcal{A}} H_{\alpha}$ then *S* has the series of normal subgroups $D \leq L \leq F \leq S$ such that *D* is locally nilpotent, L/D is nilpotent, F/L is abelian and S/F is a locally finite group of the finite period. Since *G* is a finitely generated group then *S* is finitely generated too. Therefore the quotient group *S/F* is finite. It follows that *S/L* is an almost abelian group. Since *S/L* is finitely generated then *S/L* is a polycyclic group. Therefore *S* has the series of normal subgroups $D \leq L \leq S$ such that *D* is locally nilpotent, L/D is nilpotent, S/L is a polycyclic group.

Let $B = C_G(C_1) \cap C_G(C_2/C_1)$. Each element of *B* acts trivially in each factor C_{i+1}/C_i , $j = 0, 1$. It follows that *B* is abelian. By Remak's theorem

$$
G/B \leq G/C_G(C_1) \times G/C_G(C_2/C_1).
$$

AS $D(x) = (D(x) + 1)(x + 2)$

As $ND(G) \subseteq C_G(G_1)$ then the quotient group $G/G_G(x)$ is polycyclic

by lemma 8. Since $S = C/C_G(G_1)$ then the motient group $G/G_G(x)$ is polycyclic

Discrete Math. D is bureally millendent, L/D is ullposit As $ND(G) \leq C_G(C_1)$ then the quotient group $G/C_G(C_1)$ is polycyclic by lemma [8.](#page-6-2) Since $S = G/C_G(C₂/C₁)$ has the series of normal subgroups $D \leq L \leq S$ such that *D* is locally nilpotent, L/D is nilpotent, S/L is a polycyclic group then *G* has the series of normal subgroups

 $B \leq R \leq W \leq G$

such that *B* is abelian, R/B is locally nilpotent, W/R is nilpotent and *G/W* is a polycyclic group.

References

- [1] R.E. Phillips, *The structure of groups of finitary transformations*, J. Algebra, **119**, N.**2**, 1988, pp.400–448.
- [2] R.E. Phillips, *Finitary linear groups: a survey. "Finite and locally finite groups"*, NATO ASI ser. C Math. Phys. Sci., Kluver Acad. Publ., Dordreht, **471**, 1995, pp.111–146.
- [3] L.A. Kurdachenko, J.M. Muñoz-Escolano, J. Otal, *Antifinitary linear groups*, Forum Math., **20**, N.**1**, 2008, pp.7–44.
- [4] B.A.F. Wehrfritz, *Artinian-finitary groups over commutative rings*, Illinois J. Math., **47**, N.**1–2**, 2003, pp.551–565.
- [5] B.A.F. Wehrfritz, *Artinian-finitary groups over commutative rings and noncommutative rings*, J. Lond. Math. Soc. (2), **70**, N.**2**, 2004, pp.325–340.
- [6] B.A.F. Wehrfritz, *Artinian-finitary groups are locally normal-finitary*, J. Algebra, **287**, N.**2**, 2005, pp.417–431.
- [7] L.A. Kurdachenko, *On groups with minimax classes of conjugate elements*, "Infinite groups and adjoining algebraic structures". Academy of Sciences of the Ukraine. Institute of Mathematics, Kyev, 1993, pp.160–177.
- [8] D.J.S. Robinson, *Finiteness conditions and generalized soluble groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, Heidelberg, New York, 1972. – Vols. 1,2.
- [9] L.A. Kurdachenko, *Nonperiodic FC-groups and related classes of locally normal groups and abelian groups without torsion*, Sib. Math. J., **287**, N.**2**, 1986, pp.227–236.
- [10] B.A.F. Wehrfritz, *Infinite linear groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York, Heidelberg, Berlin, 1973.

CONTACT INFORMATION

O. Yu. Dashkova 49055, Ukraine, Dnepropetrovsk, prospekt Kirova, 102-D, kv.35. *E-Mail:* odashkova@yandex.ru

Received by the editors: 21.04.2012 and in final form 02.10.2012.