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Abstract. We investigate function algebras determined by
rectangular bands. The focus is on maximal semirings within these
function algebras and invariants associated with certain mutations.

1. Preliminaries

For our purposes in this paper a rectangular band is any semigroup
isomorphic to the Cartesian product L × R of arbitrary sets L and R
with the binary operation, (ℓ1, r1)(ℓ2, r2) = (ℓ1, r2), ℓ1, ℓ2 ∈ L, r1, r2 ∈ R.
For additional characterizations we state the following result which can
be found in Howie’s book ([5], p. 96).

Theorem 1.1. If S is a semigroup the following are equivalent:

A) S is a rectangular band;

B) ∀a, b ∈ S, ab = ba implies a = b;

C) ∀a, b ∈ S, aba = a;

D) ∀a ∈ S, a2 = a, and ∀a, b, c ∈ S, abc = ac.

Rectangular bands are the building blocks for bands since every band
is a semilattice of rectangular bands, ([5], Theorem 3.1). Better yet, a
normal band is a Clifford Semilattice (called strong semilattice by several
authors) of rectangular bands, ([5], Theorem 5.14). See also Theorem 3.16
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of Howie ([5]) for a result of Petrich giving a general structure theorem
for bands.

We recall that a semigroup S is a medial semigroup if it satisfies
the identity x(ab)y = x(ba)y, for each x, y, a, b in S. We note that a
rectangular band is a medial semigroup. In fact every normal band is
medial ([11], p. 75) and, since the medial identity implies the normal
identity we see that medial bands are precisely the normal bands. Our
interest in medial semigroups stems from the fact that for such a semigroup
(S,+), the collection of semigroup endomorphisms, End(S), is a semiring
under pointwise addition and function composition. That is (End(S),+)
is a semigroup, (End(S), ◦) is a monoid with identity idS ≡ 1S and
f ◦ (g + h) = f ◦ g + f ◦ h, (g + h) ◦ f = g ◦ f + h ◦ f , ∀f, g, h ∈ End(S).
Thus End(S) is a semiring in the near-semiring (M(S),+, ◦) of self maps
on S. We remark that the medial property does not characterize those
semigroups (S,+) for which End(S) is a semiring, ([4]).

We say that a medial semigroup, S, has the max-end property when
End(S) is a maximal semiring in M(S). It was shown in [9] that torsion
abelian groups A have the max-end property in that End(A) is a maximal
ring in M(A). In [6] several classes of commutative semigroups were
shown to have the max-end property.

One of the tools used to show the max-end property was to show
that the structure is endomorphism locally cyclic. A medial semigroup is
endomorphism locally cyclic, denoted by E-lc, if ∀a, b ∈ S, ∃α, β ∈ End(S)
and ∃c ∈ S such that α(c) = a and β(c) = b. The proof of the next result
is similar to that of the corresponding result in [6].

Proposition 1.2. A medial band has the max-end property.

Proof. Let (S,+) be a medial band and let R be a semiring in M(S) such
that End(S) ⊆ R ⊆ M(S). We know R $ M(S) since M(S) is not a
semiring. Since each a ∈ S is an idempotent, the constant map ka : S → S,
ka(s) = a, ∀s ∈ S, is an endomorphism of S. Thus for a, b, c ∈ S, ka(c) = a
and kb(c) = b so S is E-lc. Thus for ρ ∈ R, ρ(a+ b) = ρ(ka(c) + kb(c)) =
ρ(ka+kb)(c) = (ρka+ρka)(c) = ρ(a) +ρ(b). Hence ρ ∈ S and S = R.

From the above proof we have

Proposition 1.3. E-lc implies max-end.

We remark that the converse of the above implication is not true.
(See [3].)

For use in the sequel we state the following known characterization of
endomorphisms of rectangular bands.
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Lemma 1.4 ([5], Proposition 3.4). If ϕ is a homomorphism from a rect-
angular band L1 ×R1 into a rectangular band L2 ×R2 there exist mappings
ϕ1 : L1 → L2, ϕ2 : R1 → R2 such that ϕ(ℓ1, r1) = (ϕ1(ℓ1), ϕ2(r1)) for
every (ℓ1, r1) ∈ L1 × R1. Conversely, for any mappings ϕ1 : L1 → L2,
ϕ2 : R1 → R2, the map ϕ : L1 × R1 → L2 × R2 given by ϕ(ℓ1, r1) =
(ϕ1(ℓ1), ϕ2(r1)) defines a homomorphism from L1 ×R1 into L2 ×R2.

Recall that a semigroup isomorphic to the direct product of a rectan-
gular band and a group is called a rectangular group. The above theorem
has a generalization to rectangular groups.

Corollary 1.5 ([10], IV.4.4). Let S1 be the rectangular group L1×R1×G1

and S2 the rectangular group L2 ×R2 ×G2. Let ϕ1 : L1 → L2, ϕ2 : R1 →
R2 be arbitrary functions and let ϕ3 : G1 → G2 be a group homomorphism.
Then the function ϕ(ℓ, r, g) = (ϕ1(ℓ), ϕ2(r), ϕ3(g)), (ℓ, r, g) ∈ S1 is a
homomorphism from S1 into S2 and, conversely, every homomorphism of
S1 into S2 arises in this manner.

We further recall ([2]) that a medial semigroup, S, is simple (no two-
sided ideals) if and only if S is isomorphic to a rectangular abelian group
(S is a rectangular group L×R×G and G is an abelian group).

Corollary 1.6. A simple medial semigroup S = L×R×A where A is a
torsion abelian group has the max-end property.

Proof. From Proposition 1.2, L×R is E-lc and from [9] A is E-lc. The
result then follows from Corollary 1.5.

2. (ϕ, ψ)(ϕ, ψ)(ϕ, ψ)-mutations of rectangular bands

We recall the definition of a (ϕ,ψ)-mutation of a medial semigroup.
To this end, let S = (S,+) be a medial semigroup, let, ϕ,ψ be commuting
endomorphisms of S and define a new operation, ⊕, on S by a⊕b = ϕ(a)+
ψ(b), a, b ∈ S. Using the medial property of (S,+) and the commuting of
ϕ and ψ, one finds that (S,⊕) satisfies the medial property. We say that
the medial property is invariant under (ϕ,ψ)-mutations.

We note however that, in general, the operation ⊕ is not associative.
If one takes ϕ and ψ to be idempotent endomorphisms as well, then (S,⊕)
is a medial semigroup. In fact, if (S,+, 0) is a monoid and ϕ,ψ are 0-
preserving commuting endomorphisms then the idempotentcy of ϕ and ψ
is both necessary and sufficient for (S,⊕) to be a medial semigroup. See [7]
and the references given there for further information on (ϕ,ψ)-mutations.
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We now take (S,+) to be a rectangular band and take ϕ = (ϕ1, ϕ2) and
(ψ1, ψ2) to be commuting, idempotent endomorphisms of S = L×R. Thus
ϕ2

1 = ϕ1, ϕ2
2 = ϕ2, ψ2

1 = ψ1, ψ2
2 = ψ2 and ϕ1ψ1 = ψ1ϕ1, ϕ2ψ2 = ψ2ϕ2.

Hence (L × R,⊕) is a medial semigroup, (ℓ1, r1) ⊕ (ℓ2r2) = ϕ(ℓ1, r1) +
ψ(ℓ2, r2) = (ϕ1(ℓ1), ϕ2(ℓ2)) + (ψ1(ℓ2), ψ2(ℓ2)) = (ϕ1(ℓ1), ψ2(r2)). In [7] we
showed that the max-end property is invariant under (ϕ,ψ)-mutations of
finite abelian groups and certain chains. We now show that the max-end
property is invariant under all (ϕ,ψ)-mutations of rectangular bands.

Lemma 2.1. Let f = (f1, f2) ∈ End(S,+), S = L × R, a rectangular
band, and let ϕ = (ϕ1, ϕ2), ψ = (ψ1, ψ2) be commuting, idempotent
endomorphisms of (S,+). Then f is an endomorphism of the (ϕ,ψ)-
mutation (S,⊕) ⇔ f1 commutes with ϕ1 and f2 commutes with ψ2.

Proof. Let x = (x1, x2) and y = (y1, y2) be arbitrary in S = L×R. Then
f ∈ End(S,⊕) ⇔ f(x⊕y) = f(x)⊕f(y) ⇔ f(ϕx+ψy) = ϕf(x)+ψf(y) ⇔
f(ϕ1(x1), ψ2(y2)) = (ϕ1f1(x1), ψ2f2(y2)) ⇔ f1ϕ1(x1) = ϕ1f1(x1) and
f2ψ2(y2) = ψ2f2(y2).

Theorem 2.2. Every (ϕ,ψ)-mutation of a rectangular band is E-lc.

Proof. Let (S,+) = (L×R,+) be a rectangular band and let ϕ = (ϕ1, ϕ2),
ψ = (ψ1, ψ2) be commuting, idempotent endomorphisms of S. Let a =
(a1, a2), b = (b1, b2) be arbitrary in S. From the above lemma, it suffices
to find f1, g1 ∈ Map(L), f2, g2 ∈ Map(R) with f1ϕ1 = ϕ1f1, g1ϕ1 = ϕ1g1,
f2ψ2 = ψ2f2, g2ψ2 = ψ2g2 and c = (c1, c2) ∈ L×R such that f1(c1) = a1,
g1(c1) = b1, f2(c2) = a2, g2(c2) = b2. We work with L, the situation for
R is similar.
Case i]: ϕ1(a1) = a1 or ϕ1(b1) = b1. We suppose ϕ1(b1) = b1. Let c1 = a1,
f1 = 1L (the identity function on L) and g1 = ca1 , the constant function
ca1(ℓ) = a1 for all ℓ ∈ L. Now f1 commutes with ϕ1 and f1(c1) = a1. Also
g1(c1) = b1 and for ℓ ∈ L, ϕ1g1(ℓ) = ϕ1(b1) = b1 = g1ϕ1(ℓ).
Case ii]: ϕ1(a1) 6= a1 and ϕ1(b1) 6= b1. In this case neither a1 nor b1 is
in Im ϕ1. For if ϕ1(z) = a1 for some z ∈ L, then a1 = ϕ1(z) = ϕ2

1(z) =
ϕ1(a1), a contradiction. We also note that for any ℓ ∈ L, the fibers
ϕ−1

1 ϕ1(ℓ) are ϕ1-invariant since y ∈ ϕ−1
1 ϕ1(ℓ) implies ϕ1(y) = ϕ1(ℓ) and

so ϕ1(ϕ1(y)) = ϕ1(ℓ), i.e., ϕ1(y) ∈ ϕ−1
1 ϕ1(ℓ).

Case ii]a: ϕ1(a1) = ϕ1(b1). Let c1 = a1 and define g1 ∈ Map(L) by

g1(x) =





b1, x = a1;

ϕ1(a1), x ∈ ϕ−1
1 ϕ1(a1), x 6= a1;

x, x /∈ ϕ−1
1 , ϕ1(a1).



C. J. Maxson 41

Then g1ϕ1(a1) = ϕ1(a1) since a1 6= ϕ1(a1) ∈ ϕ−1
1 ϕ1(a1) and ϕ1g1(a1) =

ϕ1(b1) = ϕ1(a1). Moreover, for x ∈ ϕ−1
1 ϕ1(a1), x 6= a1 we get ϕ1g1(x) =

ϕ1(a1) = g1ϕ1(x). For x /∈ ϕ−1
1 ϕ1(a1) one also finds ϕ1g1(x) = g1ϕ1(x)

so g1 commutes with ϕ1. In this case we take f1 = 1L.
Case ii]b: ϕ1(a1) 6= ϕ1(b1). Let c1 = a1 and define g1 ∈ Map(L) by

g1(x) =





b1, x = a1;

ϕ1(b1), x = ϕ1(a1);

b1, x ∈ ϕ−1
1 ϕ1(a1)\{a1, ϕ1(a1)};

x, x /∈ ϕ−1
1 ϕ1(a1).

Suppose x ∈ ϕ−1
1 ϕ1(a1)\{a1, ϕ1(a1)}. Then ϕ1g1(x) = ϕ1(b1) and

g1ϕ1(x) = g1ϕ1(a1) = ϕ1(b1) since ϕ1(x) = ϕ1(a1). In the other cases
we also find ϕ1g1 = g1ϕ1 so g1 commutes with ϕ1 and again we take
f1 = 1F . Hence we have found f1, g1 ∈ Map L, f1, g1 commuting with ϕ1,
and c1 ∈ L such that f1(c1) = a1 and g1(c1) = b1. In the same manner
we find f2, g2 ∈ Map(R), f2, g2 commuting with ψ2, and c2 ∈ R such that
f2(c2) = a2, g2(c2) = b2. This means that f = (f1, f2) and g = (g1, g2) are
endomorphisms of (L×R,⊕) and f(c1, c2) = (a1, a2), g(c1, c2) = (b1, b2),
i.e., (L×R,⊕) is E-lc.

From Proposition 1.3 we get our desired result.

Corollary 2.3. The max-end property is invariant under all (ϕ,ψ)-
mutations of a rectangular band.

In [7] it is shown that the max-end property is invariant under all
(ϕ,ψ)-mutations of a finite abelian group. We thus have the following
result.

Corollary 2.4. The max-end property is invariant under all (ϕ,ψ)-
mutations of a rectangular abelian group, L×R×A,A a finite abelian
group.

3. Maximal semirings in M(S), SM(S), SM(S), S a rectangular band

In Section 1 we found that when S is a rectangular band, End(S)
is a maximal semiring in M(S). We now investigate how to determine
other maximal semirings in M(S). To this end, we recall the Galois
correspondence for medial semigroups discussed in [8], here specialized to
rectangular bands.
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We take S = L × R and let CCC = {Cα}, α ∈ A be a cover of S by
subsemigroups, Sα, i.e., S =

⋃
α∈A

Cα. For each cover CCC = {Cα} we define

S(CCC) := {f ∈ M(S)|f|Cα ∈ End(Cα), ∀Cα ∈ CCC}. One verifies that S(CCC)
is a semiring, called the semiring determined by CCC. On the other hand,
for each semiring T in M(S) we define C(T ) := {B|B is a subsemigroup
of S and f|B ∈ End(S), ∀f ∈ T} and note that C(T ) is a cover of S. If
Γ denotes the collection of covers of S and Λ denotes the collection of
semirings in M(S), then the maps S : Γ → Λ, CCC 7→ S(CCC), and C : Λ → Γ,
T 7→ C(T ), determine a Galois correspondence between Γ and Λ. (See [8]
or [1] for further details.) For CCC ∈ Γ, CS(CCC) ⊇ CCC and SCS(CCC) = CCC. We
let CCC = CS(CCC) and call CCC the closure of CCC. Note also that S(CCC) = S(CCC).
The next result was given for medial semigroups in [8] and for groups/rings
in [1].

Theorem 3.1. Let CCC be a cover of a rectangular band S. Then S(CCC) is
a maximal semiring in M(S) ⇔ for any cover DDD of S, DDD ⊆ CCC ⇒ DDD = CCC.

We mention that every maximal semiring in M(S) arises as a semiring
determined by a cover. For if T is a maximal semiring in M(S) then
T ⊆ SC(T ) ⊆ M(S). Since M(S) is not a semiring we get T = SC(T ).

Suppose CCC = {S}. Then S(CCC) = End(S) and CCC = {B|B is an End(S)-
invariant subsemigroup of S}. For each s ∈ S the constant function cs is in
End(S) so we have S ⊆ B. Thus CCC = CCC and so, from the above theorem
End(S) is a maximal semiring in M(S). This provides an alternate proof
of Proposition 1.2 above.

We next consider the situation in which the cover CCC = {Cα}, α ∈ A,
is a partition of S, hence Cα ∩ Cβ = ∅, α, β ∈ A, α 6= β. In the next
theorem we characterize when a partition determines a maximal semiring
in M(S).

Theorem 3.2. Let CCC = {Cα}, α ∈ A, be a partition of the rectangular
band (S,+), S = L×R. The following are equivalent:

i] S(CCC) is not a maximal semiring in M(S);

ii] CCC 6= CCC, i.e., CCC is not a closed cover;

iii] ∃C1, C2 ∈ CCC such that 〈C1 ∪ C2〉 ∈ CCC where 〈C1 ∪ C2〉 is the
rectangular band in S generated by C1 ∪ C2;

iv] ∃C1, C2 ∈ CCC such that C1 ∪C2 ∈ CCC or C1, C1 +C2, C2 +C1, C2 are
singleton cells in CCC.

Proof. The equivalence of, i] and ii] is given in [8]. If 〈C1 ∪ C2〉 ∈ CCC
then CCC $ CCC. If CCC 6= CCC, ∃D1 ∈ CCC −CCC. For d1 ∈ D1 we have d1 in some
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cell, C1, of CCC. Since D1 ∈ CCC, S(CCC)d1 ⊆ D1 and since S(CCC)d1 = C1 we
get C1 ⊆ D1. But D1 ∈ CCC so ∃d2 ∈ D2\CCC1. Let C2 be the cell of CCC
containing d2 which in turn gives C1 ∪ C2 ⊆ D1. Hence 〈C1 ∪ C2〉 ⊆
D1. Since 〈C1 ∪ C2〉 = C1 ∪ (C1 + C2) ∪ (C2 + C1) ∪ C2 we note that
S(CCC)(〈C1 ∪C2〉) ⊆ 〈C1 ∪C2〉. From this and the fact that 〈C1 ∪C2〉 ⊆ D1

and D1 ∈ CCC we get S(CCC)|〈C1∪C2〉 ⊆ End(〈C1 ∪ C2〉). Thus establishes

〈C1 ∪ C2〉 ∈ CCC ⇔ CCC 6= CCC.
iii] ⇒ iv]. Let C1 = L1 × R1, C2 = L2 × R2 so we have 〈C1 ∪ C2〉 =
C1 ∪ (L1 × R2) ∪ (L2 × R1) ∪ C2 = (L1 ∪ L2) × (R1 ∪ R2). Suppose
first L1 ∩ L2 6= ∅, say ℓ1 ∈ L1 ∩ L2 and take |L1| > 1. For f ∈ S(CCC),
the action of f on L1, f1 : L1 → L1 is independent of the action of
f on C2, f

′
1 : L2 → L2, since C1 ∩ C2 = ∅. Thus on L1, one can have

f1(ℓ1) 6= ℓ1 while on L2, f ′
1(ℓ1) = ℓ1. But for this situation f does not

determine a function on L1 ∪L2 so 〈C1 ∪C2〉 /∈ CCC, a contradiction to the
hypothesis. From this we see that, when L1 ∩ L2 6= ∅, L1 = L2 = {ℓ}.
Since C1 ∩C2 = ∅, we get R1 ∩R2 = ∅ or 〈C1 ∪C2〉 = C1 ∪C2 and hence
C1 ∪ C2 ∈ CCC.

If L1 ∩ L2 = ∅ but R1 ∩ R2 6= ∅ then a similar argument gives
R1 = R2 = {r} and again C1 ∪ C2 = 〈C1 ∪ C2〉 ∈ CCC.

The remaining case is L1 ∩L2 = ∅ and R1 ∩R2 = ∅. We let L1 ×R2 =:
C12 and L2 ×R1 =: C21. We note that C12 and C21 are in CCC and using
C1 and C12 we find 〈C1 ∪C12〉 ∈ CCC and from the above, |L1| = 1. Similar
considerations give |Lα| = |R1| = |R2| = 1. Hence C1, C1 + C2, C2 + C1

and C2 are singleton cells so must be singleton cells in CCC.
iv] ⇒ iii]. If C1 ∪ C2 ∈ CCC then C1 ∪ C2 is a subsemigroup of S so
〈C1 ∪ C2〉 = C1 ∪ C2 ∈ CCC. Suppose then that C1, C1 + C2, C2 + C1, C2

are singleton cells in CCC. If L1 = L2 or R1 = R2 then we get C1 ∪ C2 ∈ CCC,
so 〈C1 ∪ C2〉 = C1 ∪ C2 ∈ CCC. Otherwise 〈C1 ∪ C2〉 = C1 ∪ (C1 + C2) ∪
(C2 + C1) ∪ C2 which is in CCC since these cells are all singletons.

We next turn to the case where there are some intersections among
the cells of our cover. As a first step we suppose that only two cells have a
non-empty intersection. Hence we take CCC = {Ci}, i ∈ I and take 1, 2 ∈ I
with C1 ∩C2 6= ∅ while Ci ∩Cj = ∅, i 6= j, i ∈ I, j ∈ I\{1, 2}. If C1 ⊆ C2

or C2 ⊆ C1 then we have a partition and we have the previous theorem.
Hence we assume C1 6⊆ C2 and C2 6⊆ C1 so CCC & CCC since C1 ∩ C2 ∈ CCC.

For io ∈ I\{1, 2}, suppose ∃ω ∈ S\Cio such that 〈Cio ∪ S(CCC)ω〉 ∈ CCC.
If we let D = {Ci}i∈I\{io} ∪ 〈Cio ∪ S(CCC)ω〉 then S(D) ' S(CCC) since

∃g ∈ S(D), g(Cio) ⊆ S(CCC)ω and g /∈ S(CCC). Suppose 〈C1 ∪ S(CCC)ω〉 ∈ CCC
for ω /∈ C1. If ω ∈ Ci, i ∈ I\{1, 2} we are in the previous case, so we take
ω ∈ C2\C1. We let D = (CCC\{C1}) ∪ 〈C1 ∪ S(CCC)ω〉 and note that C1 /∈ D
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so S(CCC) is not maximal. The case for 〈C2 ∪ S(CCC)ω〉 ∈ CCC is parallel. We
have established the next lemma.

Lemma 3.3. Let CCC = {Ci}i∈I be a cover with C1 ∩C2 6= ∅, 1, 2 ∈ I while
Ci ∩ Cj = ∅, i 6= j, i ∈ I, j ∈ I\{1, 2}. If S(CCC) is a maximal semiring in
M(S) then ∀Ci ∈ CCC, ∀ω ∈ S\Ci, 〈Ci ∪ S(CCC)ω〉 /∈ CCC.

In the case of a partition CCC = {Ci}i∈I , we note that ∀Ci ∈ CCC and
each ω ∈ Ci, S(CCC)ω = Ci. However, in the case we are now considering
where C1 ∩ C2 6= ∅, for ω ∈ C1 ∩ C2, S(CCC)ω ∈ C1 ∩ C2 so S(CCC)ω & C1.
However, we still have the existence of an S(CCC)-generator in each Ci.

Lemma 3.4. Under the conditions of Lemma 3.3, ∀Ci ∈ CCC, ∃ω ∈ Ci
such that S(CCC)ω = Ci.

Proof. If i ∈ I − {1, 2} any ω ∈ CCCi suffices. We give the proof for i = 1,
the case of i = 2 being similar. Let C1 = L1 ×R1, C2 = L2 ×R2 and let
(ℓ̄, r̄) be arbitrary in C1. If L1 ⊆ L2, then since C1 6⊆ C2, ∃r1 ∈ R1\R2.
We fix ℓo arbitrary from L1 and define

f : L1 −→ L1

f(x) =

{
ℓ̄, x = ℓo

x, otherwise

and

g : R1 −→ R1

g(y) =

{
r̄, y = r1

y, otherwise.

We use (f, g) to obtain a function h : S → S. On C1, let h = (f, g).
For Ci, define f1 = f on L1 and identity on L2 −L1 and define g1 to be the
identity on R2. We let h = (f1, g1) on C2 and let h be the identity function
on Ci, i ∈ I\{1, 2}. One notes that h ∈ S(CCC) and h(ℓo, r1) = (ℓ̄, r̄).

When L1 6⊆ L2 we take ℓ1 ∈ L1\L2 and r1 ∈ R1 − R2 if such exists,
otherwise fix some r0 ∈ R1 ⊆ R2. As above we construct a function h ∈
S(CCC) such that h(ℓ1, r0) = (ℓ̄, r̄). Thus we have ω ∈ C1, S(CCC)ω = C1.

Theorem 3.5. Let CCC = {Ci}, i ∈ I be a cover as described in Lemma 3.3.
Then S(CCC) is not a maximal semiring in M(S) ⇔ ∃Ci ∈ CCC, ω ∈ S\Ci
such that 〈Ci ∪ S(CCC)ω〉 ∈ CCC.
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Proof. (⇐). Lemma 3.3.
(⇒). We suppose S(CCC) is not a maximal semiring in M(S). From The-
orem 3.1, there exists a cover DDD, DDD ⊆ CCC and DDD 6= CCC. For ωi ∈ Ci,
i ∈ I\{1, 2}, ωi is in some Di ∈ DDD so Ci ⊆ Di. If Ci $ Di then ∃ω ∈ S\Ci
such that 〈Ci∪S(CCC)ω〉 ⊆ Di. For each f ∈ S(CCC) f(〈Ci∪S(CCC)ω〉) ⊆ 〈Ci∪
S(CCC)ω〉 and since f|Di ∈ End(Di) we get f|〈Ci∪S(CCC)ω〉 ∈ End〈Ci ∪ S(CCC)ω〉.
Thus 〈Ci ∪ S(CCC)ω〉 ∈ CCC and we are finished. We thus take Ci = Di ∈ D,
i ∈ I\{1, 2}. Using Lemma 3.4 we see there exists D1 ∈ DDD such that
C1 ⊆ D1. If C1 $ D1 we get ω /∈ C1 such that 〈C1 ∪ S(CCC)ω〉 ⊆ D1. As
above we get 〈C1 ∪ S(CCC)ω〉 ∈ CCC and we are finished. If this is not the case
then we have C2 contained in some D2 ∈ DDD and since DDD 6= CCC, C2 & D2.
Thus ∃ω ∈ S\CCC2, 〈C2 ∪ S(CCC)ω〉 ∈ CCC as desired.

Example 3.6. 1) Let S = L × R with L = R = {1, 2}. Let CCC be
the cover CCC = {C1 = {(1, 1), (1, 2)}, C2 = {(1, 1)(2, 1), and C3 =
{(2, 2)}. From Theorem 3.5, we find that S(CCC) is a maximal semiring
in M(S).

2) Let S = L × R, L = {1, 2, 3, 4} and R = {1, 2, 3} with cover CCC =
{C1 = {(1, 2), (1, 3), (2, 2), (2, 3)}, C2 = {(1, 1), (2, 1), (2, 2), (1, 2)},
C3 = {(3, 1)(4, 1)}, C4 = {(3, 2), (4, 2)}, C5 = {(3, 3), (4, 3)}. Since
〈C1 ∪ C2〉 = C1 ∪ C2 ∈ CCC, we see that S(CCC) is not a maximal
semiring in M(S).

We close this section with the following

General Problem: Characterize, in terms of the cell structure, those
covers CCC of a rectangular band S such that S(CCC) is a maximal semiring
in M(S) and extend to rectangular abelian groups L×R×A.

4. Endomorphisms of normal bands

As indicated above, every normal band is a Clifford semilattice of
rectangular bands. In this section we characterize the endomorphisms
of a normal band, thus determining the functions in the semiring of
endomorphisms of a normal band. Since a normal band has the max-end
property one might now use the characterization of the endomorphisms
to see if max-end is invariant under mutations of a normal band. We leave
this for a future investigation. We mention that a characterization of the
endomorphisms of a Clifford semilattice of groups has been obtained by
Meldrum and Samman, ([12]).

We fix some notation. Let N be a normal band with the Clifford semi-
lattice decomposition, N =

⋃
α∈Λ

Bα where Bα = Lα ×Rα is a rectangular
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band for each α ∈ Λ. For each α, β ∈ Λ with α ≥ β we let ϕα,β : Bα → Bβ
denotes a structural map of N and recall that the semigroup operation,
+, in N , for α ∈ Bα, b ∈ Bβ , is given by a+ b = ϕα,αβ(a)+ϕβ,αβ(b) where
the “+” on the right hand sign of the equality is the operation in the
rectangular band Bαβ . Using this notation, our characterization result is
as follows.

Theorem 4.1. A function ψ : N → N is an endomorphism of N ⇔

1) ψ determines a semilattice endomorphism ψ : Λ → Λ;

2) ψ acts as a homomorphism on Bα;

3) For each α, β ∈ Λ, the following diagram commutes

Bα
ψ−−−−→ Bψ(α)

ϕα,αβ

y
yϕψ(α),ψ(αβ)

Bαβ
ψ−−−−→ Bψ(αβ)

.

Proof. Suppose ψ : N → N is a function satisfying 1)–3). Let a, b ∈ N ,
a ∈ Bα, b ∈ Bβ. From ψ(a + b) = ψ(a) + ψ(b) we get ψ(ϕα,αβ(a) +
ϕβ,αβ(b)) = ϕψ(α),ψ(α)ψ(β)ψ(a)+ϕψ(β),ψ(α)ψ(β)(ψ(b)) = ϕψ(α),ψ(αβ)(ψ(a))+

ϕψ(α),ψ(αβ)(ψ(b)) since ψ is a semilattice endomorphism. But, then using

3), we get ϕψ(α),ψ(αβ)(ψ(a))+ϕψ(α),ψ(αβ)(ψ(b)) = ψϕα,αβ(a)+ψϕβ,αβ(b) =

ψ(ϕα,αβ(a) + ϕβ,αβ(b)) since ψ|Bαβ is a homomorphism. We have ψ ∈
End(N).

For the converse we let ψ : N → N be an endomorphism of N . We
first show that ψ determines a function on Λ. To this end, let x = (x1, x2),
y = (y1, y2) be elements in, sayBα. We show ψ(x) and ψ(y) are in the same
class, Bε. Let ψ(x) ∈ Bδ and ψ(y) ∈ Bε then ψ((x1, x2) + (y1, x2)) =
ψ(x1, x2). If ψ(y1, x2) ∈ Bγ then we have δγ = δ. Using ψ((y1, x2) +
(x1, x2)) = ψ(y1, x2) we get γδ = γ so δ = γ. From ψ((y1, x2)+(y1, y2)) =
ψ(y1, y2) we get γε = ε and from ψ((y1, y2) + (y1, x2)) = ψ(y1, x2) we
get εγ = γ. Thus we have ε = δ. (Note if Bα = {x1} × Rα one can use
x = (x1, x2) and y = (x1, y2).) We therefore have a map ψ : Λ → Λ. For
α, β ∈ Λ, choose a ∈ Bα, b ∈ Bβ and so ψ(a + b) = ψ(a) + ψ(b). From
this we see ψ(αβ) = ψ(α)ψ(β), hence property 1) holds.

From the fact that ψ ∈ End(N) we get ψ|Bα is a homomorphism so
property 2) holds.

For property 3) we note that for any α, β ∈ Λ, a ∈ Bα, b ∈ Bβ we
have ψ(a+ b) = ψ(a)+ψ(b) which in turn gives ψϕα,αβ(a)+ψϕβ,αβ(b) =
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ϕψ(α),ψ(αβ)(ψ(a)) + ϕψ(β),ψ(αβ)(ψ(b)) where each of the summands in

this equality are in Bψ(αβ). Representing each of these summands by an

element of Bψ(αβ) we get (c, d) + (a, b) = (g, h) + (e, f) so (c, b) = (g, f).

Using b+ a we get (a, b) + (c, d) = (e, f) + (g, h) or (a, d) = (e, h). Thus
(c, d) = (g, h) which is property 3).

We conclude by stating the problem mentioned above.

Problem. Is the max-end property invariant under all (ϕ,ψ)-mutations
of a normal band?
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