Function algebras on rectangular bands

C. J. Maxson

Communicated by R. I. Grigorchuk

Abstract. We investigate function algebras determined by rectangular bands. The focus is on maximal semirings within these function algebras and invariants associated with certain mutations.

1. Preliminaries

For our purposes in this paper a rectangular band is any semigroup isomorphic to the Cartesian product $L \times R$ of arbitrary sets L and R with the binary operation, $\left(\ell_{1}, r_{1}\right)\left(\ell_{2}, r_{2}\right)=\left(\ell_{1}, r_{2}\right), \ell_{1}, \ell_{2} \in L, r_{1}, r_{2} \in R$. For additional characterizations we state the following result which can be found in Howie's book ([5], p. 96).

Theorem 1.1. If S is a semigroup the following are equivalent:
A) S is a rectangular band;
B) $\forall a, b \in S, a b=b a$ implies $a=b$;
C) $\forall a, b \in S, a b a=a$;
D) $\forall a \in S, a^{2}=a$, and $\forall a, b, c \in S, a b c=a c$.

Rectangular bands are the building blocks for bands since every band is a semilattice of rectangular bands, ([5], Theorem 3.1). Better yet, a normal band is a Clifford Semilattice (called strong semilattice by several authors) of rectangular bands, ([5], Theorem 5.14). See also Theorem 3.16

Key words and phrases: Semirings of endomorphisms, semigroup mutations.
of Howie ([5]) for a result of Petrich giving a general structure theorem for bands.

We recall that a semigroup S is a medial semigroup if it satisfies the identity $x(a b) y=x(b a) y$, for each x, y, a, b in S. We note that a rectangular band is a medial semigroup. In fact every normal band is medial ([11], p. 75) and, since the medial identity implies the normal identity we see that medial bands are precisely the normal bands. Our interest in medial semigroups stems from the fact that for such a semigroup $(S,+)$, the collection of semigroup endomorphisms, $\operatorname{End}(S)$, is a semiring under pointwise addition and function composition. That is $(\operatorname{End}(S),+)$ is a semigroup, $(\operatorname{End}(S), \circ)$ is a monoid with identity $i d_{S} \equiv 1_{S}$ and $f \circ(g+h)=f \circ g+f \circ h,(g+h) \circ f=g \circ f+h \circ f, \forall f, g, h \in \operatorname{End}(S)$. Thus $\operatorname{End}(S)$ is a semiring in the near-semiring $(M(S),+, \circ)$ of self maps on S. We remark that the medial property does not characterize those semigroups $(S,+)$ for which $\operatorname{End}(S)$ is a semiring, ([4]).

We say that a medial semigroup, S, has the max-end property when $\operatorname{End}(S)$ is a maximal semiring in $M(S)$. It was shown in [9] that torsion abelian groups A have the max-end property in that $\operatorname{End}(A)$ is a maximal ring in $M(A)$. In [6] several classes of commutative semigroups were shown to have the max-end property.

One of the tools used to show the max-end property was to show that the structure is endomorphism locally cyclic. A medial semigroup is endomorphism locally cyclic, denoted by E-lc, if $\forall a, b \in S, \exists \alpha, \beta \in \operatorname{End}(S)$ and $\exists c \in S$ such that $\alpha(c)=a$ and $\beta(c)=b$. The proof of the next result is similar to that of the corresponding result in [6].

Proposition 1.2. A medial band has the max-end property.
Proof. Let $(S,+)$ be a medial band and let R be a semiring in $M(S)$ such that $\operatorname{End}(S) \subseteq R \subseteq M(S)$. We know $R \varsubsetneqq M(S)$ since $M(S)$ is not a semiring. Since each $a \in S$ is an idempotent, the constant map $k_{a}: S \rightarrow S$, $k_{a}(s)=a, \forall s \in S$, is an endomorphism of S. Thus for $a, b, c \in S, k_{a}(c)=a$ and $k_{b}(c)=b$ so S is E-lc. Thus for $\rho \in R, \rho(a+b)=\rho\left(k_{a}(c)+k_{b}(c)\right)=$ $\rho\left(k_{a}+k_{b}\right)(c)=\left(\rho k_{a}+\rho k_{a}\right)(c)=\rho(a)+\rho(b)$. Hence $\rho \in S$ and $S=R$.

From the above proof we have

Proposition 1.3. E-lc implies max-end.

We remark that the converse of the above implication is not true. (See [3].)

For use in the sequel we state the following known characterization of endomorphisms of rectangular bands.

Lemma 1.4 ([5], Proposition 3.4). If φ is a homomorphism from a rectangular band $L_{1} \times R_{1}$ into a rectangular band $L_{2} \times R_{2}$ there exist mappings $\varphi_{1}: L_{1} \rightarrow L_{2}, \varphi_{2}: \quad R_{1} \rightarrow R_{2}$ such that $\varphi\left(\ell_{1}, r_{1}\right)=\left(\varphi_{1}\left(\ell_{1}\right), \varphi_{2}\left(r_{1}\right)\right)$ for every $\left(\ell_{1}, r_{1}\right) \in L_{1} \times R_{1}$. Conversely, for any mappings $\varphi_{1}: L_{1} \rightarrow L_{2}$, $\varphi_{2}: \quad R_{1} \rightarrow R_{2}$, the map $\varphi: L_{1} \times R_{1} \rightarrow L_{2} \times R_{2}$ given by $\varphi\left(\ell_{1}, r_{1}\right)=$ $\left(\varphi_{1}\left(\ell_{1}\right), \varphi_{2}\left(r_{1}\right)\right)$ defines a homomorphism from $L_{1} \times R_{1}$ into $L_{2} \times R_{2}$.

Recall that a semigroup isomorphic to the direct product of a rectangular band and a group is called a rectangular group. The above theorem has a generalization to rectangular groups.

Corollary 1.5 ([10], IV.4.4). Let S_{1} be the rectangular group $L_{1} \times R_{1} \times G_{1}$ and S_{2} the rectangular group $L_{2} \times R_{2} \times G_{2}$. Let $\varphi_{1}: L_{1} \rightarrow L_{2}, \varphi_{2}: R_{1} \rightarrow$ R_{2} be arbitrary functions and let $\varphi_{3}: G_{1} \rightarrow G_{2}$ be a group homomorphism. Then the function $\varphi(\ell, r, g)=\left(\varphi_{1}(\ell), \varphi_{2}(r), \varphi_{3}(g)\right),(\ell, r, g) \in S_{1}$ is a homomorphism from S_{1} into S_{2} and, conversely, every homomorphism of S_{1} into S_{2} arises in this manner.

We further recall ([2]) that a medial semigroup, S, is simple (no twosided ideals) if and only if S is isomorphic to a rectangular abelian group (S is a rectangular group $L \times R \times G$ and G is an abelian group).

Corollary 1.6. A simple medial semigroup $S=L \times R \times A$ where A is a torsion abelian group has the max-end property.

Proof. From Proposition $1.2, L \times R$ is E-lc and from [9] A is E-lc. The result then follows from Corollary 1.5.

2. (φ, ψ)-mutations of rectangular bands

We recall the definition of a (φ, ψ)-mutation of a medial semigroup. To this end, let $S=(S,+)$ be a medial semigroup, let, φ, ψ be commuting endomorphisms of S and define a new operation, \oplus, on S by $a \oplus b=\varphi(a)+$ $\psi(b), a, b \in S$. Using the medial property of $(S,+)$ and the commuting of φ and ψ, one finds that (S, \oplus) satisfies the medial property. We say that the medial property is invariant under (φ, ψ)-mutations.

We note however that, in general, the operation \oplus is not associative. If one takes φ and ψ to be idempotent endomorphisms as well, then (S, \oplus) is a medial semigroup. In fact, if $(S,+, 0)$ is a monoid and φ, ψ are 0 preserving commuting endomorphisms then the idempotentcy of φ and ψ is both necessary and sufficient for (S, \oplus) to be a medial semigroup. See [7] and the references given there for further information on (φ, ψ)-mutations.

We now take $(S,+)$ to be a rectangular band and take $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ and $\left(\psi_{1}, \psi_{2}\right)$ to be commuting, idempotent endomorphisms of $S=L \times R$. Thus $\varphi_{1}^{2}=\varphi_{1}, \varphi_{2}^{2}=\varphi_{2}, \psi_{1}^{2}=\psi_{1}, \psi_{2}^{2}=\psi_{2}$ and $\varphi_{1} \psi_{1}=\psi_{1} \varphi_{1}, \varphi_{2} \psi_{2}=\psi_{2} \varphi_{2}$. Hence $(L \times R, \oplus)$ is a medial semigroup, $\left(\ell_{1}, r_{1}\right) \oplus\left(\ell_{2} r_{2}\right)=\varphi\left(\ell_{1}, r_{1}\right)+$ $\psi\left(\ell_{2}, r_{2}\right)=\left(\varphi_{1}\left(\ell_{1}\right), \varphi_{2}\left(\ell_{2}\right)\right)+\left(\psi_{1}\left(\ell_{2}\right), \psi_{2}\left(\ell_{2}\right)\right)=\left(\varphi_{1}\left(\ell_{1}\right), \psi_{2}\left(r_{2}\right)\right)$. In [7] we showed that the max-end property is invariant under (φ, ψ)-mutations of finite abelian groups and certain chains. We now show that the max-end property is invariant under all (φ, ψ)-mutations of rectangular bands.

Lemma 2.1. Let $f=\left(f_{1}, f_{2}\right) \in \operatorname{End}(S,+), S=L \times R$, a rectangular band, and let $\varphi=\left(\varphi_{1}, \varphi_{2}\right), \psi=\left(\psi_{1}, \psi_{2}\right)$ be commuting, idempotent endomorphisms of $(S,+)$. Then f is an endomorphism of the (φ, ψ) mutation $(S, \oplus) \Leftrightarrow f_{1}$ commutes with φ_{1} and f_{2} commutes with ψ_{2}.

Proof. Let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ be arbitrary in $S=L \times R$. Then $f \in \operatorname{End}(S, \oplus) \Leftrightarrow f(x \oplus y)=f(x) \oplus f(y) \Leftrightarrow f(\varphi x+\psi y)=\varphi f(x)+\psi f(y) \Leftrightarrow$ $f\left(\varphi_{1}\left(x_{1}\right), \psi_{2}\left(y_{2}\right)\right)=\left(\varphi_{1} f_{1}\left(x_{1}\right), \psi_{2} f_{2}\left(y_{2}\right)\right) \Leftrightarrow f_{1} \varphi_{1}\left(x_{1}\right)=\varphi_{1} f_{1}\left(x_{1}\right)$ and $f_{2} \psi_{2}\left(y_{2}\right)=\psi_{2} f_{2}\left(y_{2}\right)$.

Theorem 2.2. Every (φ, ψ)-mutation of a rectangular band is E-lc.
Proof. Let $(S,+)=(L \times R,+)$ be a rectangular band and let $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$, $\psi=\left(\psi_{1}, \psi_{2}\right)$ be commuting, idempotent endomorphisms of S. Let $a=$ $\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$ be arbitrary in S. From the above lemma, it suffices to find $f_{1}, g_{1} \in \operatorname{Map}(L), f_{2}, g_{2} \in \operatorname{Map}(R)$ with $f_{1} \varphi_{1}=\varphi_{1} f_{1}, g_{1} \varphi_{1}=\varphi_{1} g_{1}$, $f_{2} \psi_{2}=\psi_{2} f_{2}, g_{2} \psi_{2}=\psi_{2} g_{2}$ and $c=\left(c_{1}, c_{2}\right) \in L \times R$ such that $f_{1}\left(c_{1}\right)=a_{1}$, $g_{1}\left(c_{1}\right)=b_{1}, f_{2}\left(c_{2}\right)=a_{2}, g_{2}\left(c_{2}\right)=b_{2}$. We work with L, the situation for R is similar.
Case i]: $\varphi_{1}\left(a_{1}\right)=a_{1}$ or $\varphi_{1}\left(b_{1}\right)=b_{1}$. We suppose $\varphi_{1}\left(b_{1}\right)=b_{1}$. Let $c_{1}=a_{1}$, $f_{1}=1_{L}$ (the identity function on L) and $g_{1}=c_{a_{1}}$, the constant function $c_{a_{1}}(\ell)=a_{1}$ for all $\ell \in L$. Now f_{1} commutes with φ_{1} and $f_{1}\left(c_{1}\right)=a_{1}$. Also $g_{1}\left(c_{1}\right)=b_{1}$ and for $\ell \in L, \varphi_{1} g_{1}(\ell)=\varphi_{1}\left(b_{1}\right)=b_{1}=g_{1} \varphi_{1}(\ell)$.
Case ii]: $\varphi_{1}\left(a_{1}\right) \neq a_{1}$ and $\varphi_{1}\left(b_{1}\right) \neq b_{1}$. In this case neither a_{1} nor b_{1} is in $\operatorname{Im} \varphi_{1}$. For if $\varphi_{1}(z)=a_{1}$ for some $z \in L$, then $a_{1}=\varphi_{1}(z)=\varphi_{1}^{2}(z)=$ $\varphi_{1}\left(a_{1}\right)$, a contradiction. We also note that for any $\ell \in L$, the fibers $\varphi_{1}^{-1} \varphi_{1}(\ell)$ are φ_{1}-invariant since $y \in \varphi_{1}^{-1} \varphi_{1}(\ell)$ implies $\varphi_{1}(y)=\varphi_{1}(\ell)$ and so $\varphi_{1}\left(\varphi_{1}(y)\right)=\varphi_{1}(\ell)$, i.e., $\varphi_{1}(y) \in \varphi_{1}^{-1} \varphi_{1}(\ell)$.
Case ii]a: $\varphi_{1}\left(a_{1}\right)=\varphi_{1}\left(b_{1}\right)$. Let $c_{1}=a_{1}$ and define $g_{1} \in \operatorname{Map}(L)$ by

$$
g_{1}(x)= \begin{cases}b_{1}, & x=a_{1} \\ \varphi_{1}\left(a_{1}\right), & x \in \varphi_{1}^{-1} \varphi_{1}\left(a_{1}\right), x \neq a_{1} \\ x, & x \notin \varphi_{1}^{-1}, \varphi_{1}\left(a_{1}\right)\end{cases}
$$

Then $g_{1} \varphi_{1}\left(a_{1}\right)=\varphi_{1}\left(a_{1}\right)$ since $a_{1} \neq \varphi_{1}\left(a_{1}\right) \in \varphi_{1}^{-1} \varphi_{1}\left(a_{1}\right)$ and $\varphi_{1} g_{1}\left(a_{1}\right)=$ $\varphi_{1}\left(b_{1}\right)=\varphi_{1}\left(a_{1}\right)$. Moreover, for $x \in \varphi_{1}^{-1} \varphi_{1}\left(a_{1}\right), x \neq a_{1}$ we get $\varphi_{1} g_{1}(x)=$ $\varphi_{1}\left(a_{1}\right)=g_{1} \varphi_{1}(x)$. For $x \notin \varphi_{1}^{-1} \varphi_{1}\left(a_{1}\right)$ one also finds $\varphi_{1} g_{1}(x)=g_{1} \varphi_{1}(x)$ so g_{1} commutes with φ_{1}. In this case we take $f_{1}=1_{L}$.
Case ii]b: $\varphi_{1}\left(a_{1}\right) \neq \varphi_{1}\left(b_{1}\right)$. Let $c_{1}=a_{1}$ and define $g_{1} \in \operatorname{Map}(L)$ by

$$
g_{1}(x)= \begin{cases}b_{1}, & x=a_{1} \\ \varphi_{1}\left(b_{1}\right), & x=\varphi_{1}\left(a_{1}\right) \\ b_{1}, & x \in \varphi_{1}^{-1} \varphi_{1}\left(a_{1}\right) \backslash\left\{a_{1}, \varphi_{1}\left(a_{1}\right)\right\} \\ x, & x \notin \varphi_{1}^{-1} \varphi_{1}\left(a_{1}\right)\end{cases}
$$

Suppose $x \in \varphi_{1}^{-1} \varphi_{1}\left(a_{1}\right) \backslash\left\{a_{1}, \varphi_{1}\left(a_{1}\right)\right\}$. Then $\varphi_{1} g_{1}(x)=\varphi_{1}\left(b_{1}\right)$ and $g_{1} \varphi_{1}(x)=g_{1} \varphi_{1}\left(a_{1}\right)=\varphi_{1}\left(b_{1}\right)$ since $\varphi_{1}(x)=\varphi_{1}\left(a_{1}\right)$. In the other cases we also find $\varphi_{1} g_{1}=g_{1} \varphi_{1}$ so g_{1} commutes with φ_{1} and again we take $f_{1}=1_{F}$. Hence we have found $f_{1}, g_{1} \in \operatorname{Map} L, f_{1}, g_{1}$ commuting with φ_{1}, and $c_{1} \in L$ such that $f_{1}\left(c_{1}\right)=a_{1}$ and $g_{1}\left(c_{1}\right)=b_{1}$. In the same manner we find $f_{2}, g_{2} \in \operatorname{Map}(R), f_{2}, g_{2}$ commuting with ψ_{2}, and $c_{2} \in R$ such that $f_{2}\left(c_{2}\right)=a_{2}, g_{2}\left(c_{2}\right)=b_{2}$. This means that $f=\left(f_{1}, f_{2}\right)$ and $g=\left(g_{1}, g_{2}\right)$ are endomorphisms of $(L \times R, \oplus)$ and $f\left(c_{1}, c_{2}\right)=\left(a_{1}, a_{2}\right), g\left(c_{1}, c_{2}\right)=\left(b_{1}, b_{2}\right)$, i.e., $(L \times R, \oplus)$ is E-lc.

From Proposition 1.3 we get our desired result.
Corollary 2.3. The max-end property is invariant under all (φ, ψ) mutations of a rectangular band.

In [7] it is shown that the max-end property is invariant under all (φ, ψ)-mutations of a finite abelian group. We thus have the following result.

Corollary 2.4. The max-end property is invariant under all (φ, ψ) mutations of a rectangular abelian group, $L \times R \times A$, A a finite abelian group.

3. Maximal semirings in $M(S), S$ a rectangular band

In Section 1 we found that when S is a rectangular band, $\operatorname{End}(S)$ is a maximal semiring in $M(S)$. We now investigate how to determine other maximal semirings in $M(S)$. To this end, we recall the Galois correspondence for medial semigroups discussed in [8], here specialized to rectangular bands.

We take $S=L \times R$ and let $\boldsymbol{C}=\left\{C_{\alpha}\right\}, \alpha \in \mathcal{A}$ be a cover of S by subsemigroups, S_{α}, i.e., $S=\bigcup_{\alpha \in \mathcal{A}} C_{\alpha}$. For each cover $\boldsymbol{C}=\left\{C_{\alpha}\right\}$ we define $\mathcal{S}(\boldsymbol{C}):=\left\{f \in M(S) \mid f_{\mid C_{\alpha}} \in \operatorname{End}\left(C_{\alpha}\right), \forall C_{\alpha} \in \boldsymbol{C}\right\}$. One verifies that $\mathcal{S}(\boldsymbol{C})$ is a semiring, called the semiring determined by \boldsymbol{C}. On the other hand, for each semiring T in $M(S)$ we define $\mathcal{C}(T):=\{B \mid B$ is a subsemigroup of S and $\left.f_{\left.\right|_{B}} \in \operatorname{End}(S), \forall f \in T\right\}$ and note that $\mathcal{C}(T)$ is a cover of S. If Γ denotes the collection of covers of S and Λ denotes the collection of semirings in $M(S)$, then the maps $\mathcal{S}: \Gamma \rightarrow \Lambda, \boldsymbol{C} \mapsto \mathcal{S}(\boldsymbol{C})$, and $\mathcal{C}: \Lambda \rightarrow \Gamma$, $T \mapsto \mathcal{C}(T)$, determine a Galois correspondence between Γ and Λ. (See [8] or [1] for further details.) For $\boldsymbol{C} \in \Gamma, \mathcal{C S}(\boldsymbol{C}) \supseteq \boldsymbol{C}$ and $\mathcal{S C S}(\boldsymbol{C})=\boldsymbol{C}$. We let $\overline{\boldsymbol{C}}=\mathcal{C} \mathcal{S}(\boldsymbol{C})$ and call $\overline{\boldsymbol{C}}$ the closure of \boldsymbol{C}. Note also that $\mathcal{S}(\boldsymbol{C})=\mathcal{S}(\overline{\boldsymbol{C}})$. The next result was given for medial semigroups in [8] and for groups/rings in [1].

Theorem 3.1. Let \boldsymbol{C} be a cover of a rectangular band S. Then $\mathcal{S}(\boldsymbol{C})$ is a maximal semiring in $M(S) \Leftrightarrow$ for any cover \boldsymbol{D} of $S, \boldsymbol{D} \subseteq \overline{\boldsymbol{C}} \Rightarrow \overline{\boldsymbol{D}}=\overline{\boldsymbol{C}}$.

We mention that every maximal semiring in $M(S)$ arises as a semiring determined by a cover. For if T is a maximal semiring in $M(S)$ then $T \subseteq \mathcal{S C}(T) \subseteq M(S)$. Since $M(S)$ is not a semiring we get $T=\mathcal{S C}(T)$.

Suppose $\boldsymbol{C}=\{S\}$. Then $\mathcal{S}(\boldsymbol{C})=\operatorname{End}(S)$ and $\overline{\boldsymbol{C}}=\{B \mid B$ is an $\operatorname{End}(S)$ invariant subsemigroup of $S\}$. For each $s \in S$ the constant function c_{s} is in $\operatorname{End}(S)$ so we have $S \subseteq B$. Thus $\overline{\boldsymbol{C}}=\boldsymbol{C}$ and so, from the above theorem $\operatorname{End}(S)$ is a maximal semiring in $M(S)$. This provides an alternate proof of Proposition 1.2 above.

We next consider the situation in which the cover $\boldsymbol{C}=\left\{C_{\alpha}\right\}, \alpha \in \mathcal{A}$, is a partition of S, hence $C_{\alpha} \cap C_{\beta}=\emptyset, \alpha, \beta \in \mathcal{A}, \alpha \neq \beta$. In the next theorem we characterize when a partition determines a maximal semiring in $M(S)$.

Theorem 3.2. Let $\boldsymbol{C}=\left\{C_{\alpha}\right\}, \alpha \in \mathcal{A}$, be a partition of the rectangular band $(S,+), S=L \times R$. The following are equivalent:
i] $\mathcal{S}(\boldsymbol{C})$ is not a maximal semiring in $M(S)$;
ii] $\boldsymbol{C} \neq \overline{\boldsymbol{C}}$, i.e., \boldsymbol{C} is not a closed cover;
iii] $\exists C_{1}, C_{2} \in \boldsymbol{C}$ such that $\left\langle C_{1} \cup C_{2}\right\rangle \in \bar{C}$ where $\left\langle C_{1} \cup C_{2}\right\rangle$ is the rectangular band in S generated by $C_{1} \cup C_{2}$;
iv] $\exists C_{1}, C_{2} \in \boldsymbol{C}$ such that $C_{1} \cup C_{2} \in \overline{\boldsymbol{C}}$ or $C_{1}, C_{1}+C_{2}, C_{2}+C_{1}, C_{2}$ are singleton cells in \boldsymbol{C}.

Proof. The equivalence of, i] and ii] is given in [8]. If $\left\langle C_{1} \cup C_{2}\right\rangle \in \bar{C}$ then $\boldsymbol{C} \varsubsetneqq \overline{\boldsymbol{C}}$. If $\boldsymbol{C} \neq \overline{\boldsymbol{C}}, \exists D_{1} \in \overline{\boldsymbol{C}}-\boldsymbol{C}$. For $d_{1} \in D_{1}$ we have d_{1} in some
cell, C_{1}, of \boldsymbol{C}. Since $D_{1} \in \overline{\boldsymbol{C}}, \mathcal{S}(\boldsymbol{C}) d_{1} \subseteq D_{1}$ and since $\mathcal{S}(\boldsymbol{C}) d_{1}=C_{1}$ we get $C_{1} \subseteq D_{1}$. But $D_{1} \in C$ so $\exists d_{2} \in D_{2} \backslash C_{1}$. Let C_{2} be the cell of C containing d_{2} which in turn gives $C_{1} \cup C_{2} \subseteq D_{1}$. Hence $\left\langle C_{1} \cup C_{2}\right\rangle \subseteq$ D_{1}. Since $\left\langle C_{1} \cup C_{2}\right\rangle=C_{1} \cup\left(C_{1}+C_{2}\right) \cup\left(C_{2}+C_{1}\right) \cup C_{2}$ we note that $\mathcal{S}(\boldsymbol{C})\left(\left\langle C_{1} \cup C_{2}\right\rangle\right) \subseteq\left\langle C_{1} \cup C_{2}\right\rangle$. From this and the fact that $\left\langle C_{1} \cup C_{2}\right\rangle \subseteq D_{1}$ and $D_{1} \in \boldsymbol{C}$ we get $\left.\mathcal{S}(\boldsymbol{C})\right|_{\left\langle C_{1} \cup C_{2}\right\rangle} \subseteq \operatorname{End}\left(\left\langle C_{1} \cup C_{2}\right\rangle\right)$. Thus establishes $\left\langle C_{1} \cup C_{2}\right\rangle \in \overline{\boldsymbol{C}} \Leftrightarrow \boldsymbol{C} \neq \overline{\boldsymbol{C}}$.
iii] \Rightarrow iv]. Let $C_{1}=L_{1} \times R_{1}, C_{2}=L_{2} \times R_{2}$ so we have $\left\langle C_{1} \cup C_{2}\right\rangle=$ $C_{1} \cup\left(L_{1} \times R_{2}\right) \cup\left(L_{2} \times R_{1}\right) \cup C_{2}=\left(L_{1} \cup L_{2}\right) \times\left(R_{1} \cup R_{2}\right)$. Suppose first $L_{1} \cap L_{2} \neq \emptyset$, say $\ell_{1} \in L_{1} \cap L_{2}$ and take $\left|L_{1}\right|>1$. For $f \in \mathcal{S}(\boldsymbol{C})$, the action of f on $L_{1}, f_{1}: L_{1} \rightarrow L_{1}$ is independent of the action of f on $C_{2}, f_{1}^{\prime}: L_{2} \rightarrow L_{2}$, since $C_{1} \cap C_{2}=\emptyset$. Thus on L_{1}, one can have $f_{1}\left(\ell_{1}\right) \neq \ell_{1}$ while on $L_{2}, f_{1}^{\prime}\left(\ell_{1}\right)=\ell_{1}$. But for this situation f does not determine a function on $L_{1} \cup L_{2}$ so $\left\langle C_{1} \cup C_{2}\right\rangle \notin \overline{\boldsymbol{C}}$, a contradiction to the hypothesis. From this we see that, when $L_{1} \cap L_{2} \neq \emptyset, L_{1}=L_{2}=\{\ell\}$. Since $C_{1} \cap C_{2}=\emptyset$, we get $R_{1} \cap R_{2}=\emptyset$ or $\left\langle C_{1} \cup C_{2}\right\rangle=C_{1} \cup C_{2}$ and hence $C_{1} \cup C_{2} \in \bar{C}$.

If $L_{1} \cap L_{2}=\emptyset$ but $R_{1} \cap R_{2} \neq \emptyset$ then a similar argument gives $R_{1}=R_{2}=\{r\}$ and again $C_{1} \cup C_{2}=\left\langle C_{1} \cup C_{2}\right\rangle \in \bar{C}$.

The remaining case is $L_{1} \cap L_{2}=\emptyset$ and $R_{1} \cap R_{2}=\emptyset$. We let $L_{1} \times R_{2}=$: C_{12} and $L_{2} \times R_{1}=: C_{21}$. We note that C_{12} and C_{21} are in \bar{C} and using C_{1} and C_{12} we find $\left\langle C_{1} \cup C_{12}\right\rangle \in \bar{C}$ and from the above, $\left|L_{1}\right|=1$. Similar considerations give $\left|L_{\alpha}\right|=\left|R_{1}\right|=\left|R_{2}\right|=1$. Hence $C_{1}, C_{1}+C_{2}, C_{2}+C_{1}$ and C_{2} are singleton cells so must be singleton cells in C.
iv] \Rightarrow iii]. If $C_{1} \cup C_{2} \in \bar{C}$ then $C_{1} \cup C_{2}$ is a subsemigroup of S so $\left\langle C_{1} \cup C_{2}\right\rangle=C_{1} \cup C_{2} \in \overline{\boldsymbol{C}}$. Suppose then that $C_{1}, C_{1}+C_{2}, C_{2}+C_{1}, C_{2}$ are singleton cells in \boldsymbol{C}. If $L_{1}=L_{2}$ or $R_{1}=R_{2}$ then we get $C_{1} \cup C_{2} \in \overline{\boldsymbol{C}}$, so $\left\langle C_{1} \cup C_{2}\right\rangle=C_{1} \cup C_{2} \in \bar{C}$. Otherwise $\left\langle C_{1} \cup C_{2}\right\rangle=C_{1} \cup\left(C_{1}+C_{2}\right) \cup$ $\left(C_{2}+C_{1}\right) \cup C_{2}$ which is in \bar{C} since these cells are all singletons.

We next turn to the case where there are some intersections among the cells of our cover. As a first step we suppose that only two cells have a non-empty intersection. Hence we take $C=\left\{C_{i}\right\}, i \in I$ and take $1,2 \in I$ with $C_{1} \cap C_{2} \neq \emptyset$ while $C_{i} \cap C_{j}=\emptyset, i \neq j, i \in I, j \in I \backslash\{1,2\}$. If $C_{1} \subseteq C_{2}$ or $C_{2} \subseteq C_{1}$ then we have a partition and we have the previous theorem. Hence we assume $C_{1} \nsubseteq C_{2}$ and $C_{2} \nsubseteq C_{1}$ so $C \nsubseteq \bar{C}$ since $C_{1} \cap C_{2} \in \bar{C}$.

For $i_{o} \in I \backslash\{1,2\}$, suppose $\exists \omega \in S \backslash C_{i_{o}}$ such that $\left\langle C_{i_{o}} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \in \overline{\boldsymbol{C}}$. If we let $D=\left\{C_{i}\right\}_{i \in I \backslash\left\{i_{o}\right\}} \cup\left\langle C_{i_{o}} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle$ then $\mathcal{S}(D) \supsetneqq \mathcal{S}(\boldsymbol{C})$ since $\exists g \in \mathcal{S}(D), g\left(C_{i_{o}}\right) \subseteq \mathcal{S}(\boldsymbol{C}) \omega$ and $g \notin \mathcal{S}(\boldsymbol{C})$. Suppose $\left\langle C_{1} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \in \bar{C}$ for $\omega \notin C_{1}$. If $\omega \in C_{i}, i \in I \backslash\{1,2\}$ we are in the previous case, so we take $\omega \in C_{2} \backslash C_{1}$. We let $D=\left(\boldsymbol{C} \backslash\left\{C_{1}\right\}\right) \cup\left\langle C_{1} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle$ and note that $C_{1} \notin \bar{D}$
so $\mathcal{S}(\boldsymbol{C})$ is not maximal. The case for $\left\langle C_{2} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \in \overline{\boldsymbol{C}}$ is parallel. We have established the next lemma.

Lemma 3.3. Let $\boldsymbol{C}=\left\{C_{i}\right\}_{i \in I}$ be a cover with $C_{1} \cap C_{2} \neq \emptyset, 1,2 \in I$ while $C_{i} \cap C_{j}=\emptyset, i \neq j, i \in I, j \in I \backslash\{1,2\}$. If $\mathcal{S}(\boldsymbol{C})$ is a maximal semiring in $M(S)$ then $\forall C_{i} \in \boldsymbol{C}, \forall \omega \in S \backslash C_{i},\left\langle C_{i} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \notin \overline{\boldsymbol{C}}$.

In the case of a partition $\boldsymbol{C}=\left\{C_{i}\right\}_{i \in I}$, we note that $\forall C_{i} \in C$ and each $\omega \in C_{i}, \mathcal{S}(\boldsymbol{C}) \omega=C_{i}$. However, in the case we are now considering where $C_{1} \cap C_{2} \neq \emptyset$, for $\omega \in C_{1} \cap C_{2}, \mathcal{S}(\boldsymbol{C}) \omega \in C_{1} \cap C_{2}$ so $\mathcal{S}(\boldsymbol{C}) \omega \varsubsetneqq C_{1}$. However, we still have the existence of an $\mathcal{S}(\boldsymbol{C})$-generator in each C_{i}.

Lemma 3.4. Under the conditions of Lemma 3.3, $\forall C_{i} \in C, \exists \omega \in C_{i}$ such that $\mathcal{S}(\boldsymbol{C}) \omega=C_{i}$.

Proof. If $i \in I-\{1,2\}$ any $\omega \in \boldsymbol{C}_{i}$ suffices. We give the proof for $i=1$, the case of $i=2$ being similar. Let $C_{1}=L_{1} \times R_{1}, C_{2}=L_{2} \times R_{2}$ and let ($\bar{\ell}, \bar{r}$) be arbitrary in C_{1}. If $L_{1} \subseteq L_{2}$, then since $C_{1} \nsubseteq C_{2}, \exists r_{1} \in R_{1} \backslash R_{2}$. We fix ℓ_{o} arbitrary from L_{1} and define

$$
\begin{aligned}
& f: L_{1} \longrightarrow L_{1} \\
& f(x)= \begin{cases}\bar{\ell}, & x=\ell_{o} \\
x, & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& g: R_{1} \longrightarrow R_{1} \\
& g(y)= \begin{cases}\bar{r}, & y=r_{1} \\
y, & \text { otherwise } .\end{cases}
\end{aligned}
$$

We use (f, g) to obtain a function $h: S \rightarrow S$. On C_{1}, let $h=(f, g)$. For C_{i}, define $f_{1}=f$ on L_{1} and identity on $L_{2}-L_{1}$ and define g_{1} to be the identity on R_{2}. We let $h=\left(f_{1}, g_{1}\right)$ on C_{2} and let h be the identity function on $C_{i}, i \in I \backslash\{1,2\}$. One notes that $h \in \mathcal{S}(\boldsymbol{C})$ and $h\left(\ell_{o}, r_{1}\right)=(\bar{\ell}, \bar{r})$.

When $L_{1} \nsubseteq L_{2}$ we take $\ell_{1} \in L_{1} \backslash L_{2}$ and $r_{1} \in R_{1}-R_{2}$ if such exists, otherwise fix some $r_{0} \in R_{1} \subseteq R_{2}$. As above we construct a function $h \in$ $\mathcal{S}(\boldsymbol{C})$ such that $h\left(\ell_{1}, r_{0}\right)=(\bar{\ell}, \bar{r})$. Thus we have $\omega \in C_{1}, \mathcal{S}(\boldsymbol{C}) \omega=C_{1}$.

Theorem 3.5. Let $\boldsymbol{C}=\left\{C_{i}\right\}, i \in I$ be a cover as described in Lemma 3.3. Then $\mathcal{S}(\boldsymbol{C})$ is not a maximal semiring in $M(S) \Leftrightarrow \exists C_{i} \in C, \omega \in S \backslash C_{i}$ such that $\left\langle C_{i} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \in \overline{\boldsymbol{C}}$.

Proof. (\Leftarrow). Lemma 3.3.
(\Rightarrow). We suppose $\mathcal{S}(\boldsymbol{C})$ is not a maximal semiring in $M(S)$. From Theorem 3.1, there exists a cover $\boldsymbol{D}, \boldsymbol{D} \subseteq \overline{\boldsymbol{C}}$ and $\overline{\boldsymbol{D}} \neq \overline{\boldsymbol{C}}$. For $\omega_{i} \in C_{i}$, $i \in I \backslash\{1,2\}, \omega_{i}$ is in some $D_{i} \in D$ so $C_{i} \subseteq D_{i}$. If $C_{i} \varsubsetneqq D_{i}$ then $\exists \omega \in S \backslash C_{i}$ such that $\left\langle C_{i} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \subseteq D_{i}$. For each $f \in \mathcal{S}(\boldsymbol{C}) f\left(\left\langle C_{i} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle\right) \subseteq\left\langle C_{i} \cup\right.$ $\mathcal{S}(\boldsymbol{C}) \omega\rangle$ and since $f_{\mid D_{i}} \in \operatorname{End}\left(D_{i}\right)$ we get $f_{\mid\left\langle C_{i} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle} \in \operatorname{End}\left\langle C_{i} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle$. Thus $\left\langle C_{i} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \in \overline{\boldsymbol{C}}$ and we are finished. We thus take $C_{i}=D_{i} \in D$, $i \in I \backslash\{1,2\}$. Using Lemma 3.4 we see there exists $D_{1} \in D$ such that $C_{1} \subseteq D_{1}$. If $C_{1} \varsubsetneqq D_{1}$ we get $\omega \notin C_{1}$ such that $\left\langle C_{1} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \subseteq D_{1}$. As above we get $\left\langle C_{1} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \in \overline{\boldsymbol{C}}$ and we are finished. If this is not the case then we have C_{2} contained in some $D_{2} \in \boldsymbol{D}$ and since $\overline{\boldsymbol{D}} \neq \overline{\boldsymbol{C}}, C_{2} \varsubsetneqq D_{2}$. Thus $\exists \omega \in S \backslash \boldsymbol{C}_{2},\left\langle C_{2} \cup \mathcal{S}(\boldsymbol{C}) \omega\right\rangle \in \overline{\boldsymbol{C}}$ as desired.

Example 3.6. 1) Let $S=L \times R$ with $L=R=\{1,2\}$. Let \boldsymbol{C} be the cover $\boldsymbol{C}=\left\{C_{1}=\{(1,1),(1,2)\}, C_{2}=\left\{(1,1)(2,1)\right.\right.$, and $C_{3}=$ $\{(2,2)\}$. From Theorem 3.5, we find that $\mathcal{S}(\boldsymbol{C})$ is a maximal semiring in $M(S)$.
2) Let $S=L \times R, L=\{1,2,3,4\}$ and $R=\{1,2,3\}$ with cover $C=$ $\left\{C_{1}=\{(1,2),(1,3),(2,2),(2,3)\}, C_{2}=\{(1,1),(2,1),(2,2),(1,2)\}\right.$, $C_{3}=\{(3,1)(4,1)\}, C_{4}=\{(3,2),(4,2)\}, C_{5}=\{(3,3),(4,3)\}$. Since $\left\langle C_{1} \cup C_{2}\right\rangle=C_{1} \cup C_{2} \in \bar{C}$, we see that $\mathcal{S}(\boldsymbol{C})$ is not a maximal semiring in $M(S)$.

We close this section with the following
General Problem: Characterize, in terms of the cell structure, those covers \boldsymbol{C} of a rectangular band S such that $\mathcal{S}(\boldsymbol{C})$ is a maximal semiring in $M(S)$ and extend to rectangular abelian groups $L \times R \times A$.

4. Endomorphisms of normal bands

As indicated above, every normal band is a Clifford semilattice of rectangular bands. In this section we characterize the endomorphisms of a normal band, thus determining the functions in the semiring of endomorphisms of a normal band. Since a normal band has the max-end property one might now use the characterization of the endomorphisms to see if max-end is invariant under mutations of a normal band. We leave this for a future investigation. We mention that a characterization of the endomorphisms of a Clifford semilattice of groups has been obtained by Meldrum and Samman, ([12]).

We fix some notation. Let N be a normal band with the Clifford semilattice decomposition, $N=\bigcup_{\alpha \in \Lambda} B_{\alpha}$ where $B_{\alpha}=L_{\alpha} \times R_{\alpha}$ is a rectangular
band for each $\alpha \in \Lambda$. For each $\alpha, \beta \in \Lambda$ with $\alpha \geq \beta$ we let $\varphi_{\alpha, \beta}: B_{\alpha} \rightarrow B_{\beta}$ denotes a structural map of N and recall that the semigroup operation, + , in N, for $\alpha \in B_{\alpha}, b \in B_{\beta}$, is given by $a+b=\varphi_{\alpha, \alpha \beta}(a)+\varphi_{\beta, \alpha \beta}(b)$ where the "+" on the right hand sign of the equality is the operation in the rectangular band $B_{\alpha \beta}$. Using this notation, our characterization result is as follows.

Theorem 4.1. A function $\psi: N \rightarrow N$ is an endomorphism of $N \Leftrightarrow$

1) ψ determines a semilattice endomorphism $\bar{\psi}: \Lambda \rightarrow \Lambda$;
2) ψ acts as a homomorphism on B_{α};
3) For each $\alpha, \beta \in \Lambda$, the following diagram commutes

$$
\begin{array}{rll}
B_{\alpha} & \stackrel{\psi}{\longrightarrow} & B \bar{\psi}(\alpha) \\
\varphi_{\alpha, \alpha \beta} \mid & & \downarrow_{\bar{\psi}(\alpha), \bar{\psi}(\alpha \beta)} \\
B_{\alpha \beta} & \xrightarrow{\psi} B \bar{\psi}(\alpha \beta)
\end{array}
$$

Proof. Suppose $\psi: N \rightarrow N$ is a function satisfying 1)-3). Let $a, b \in N$, $a \in B_{\alpha}, b \in B_{\beta}$. From $\psi(a+b)=\psi(a)+\psi(b)$ we get $\psi\left(\varphi_{\alpha, \alpha \beta}(a)+\right.$ $\left.\varphi_{\beta, \alpha \beta}(b)\right)=\varphi_{\bar{\psi}(\alpha), \bar{\psi}(\alpha) \bar{\psi}(\beta)} \psi(a)+\varphi_{\bar{\psi}(\beta), \bar{\psi}(\alpha) \bar{\psi}(\beta)}(\psi(b))=\varphi_{\bar{\psi}(\alpha), \bar{\psi}(\alpha \beta)}(\psi(a))+$ $\varphi_{\bar{\psi}(\alpha), \bar{\psi}(\alpha \beta)}(\psi(b))$ since $\bar{\psi}$ is a semilattice endomorphism. But, then using 3), we get $\varphi_{\bar{\psi}(\alpha), \bar{\psi}(\alpha \beta)}(\psi(a))+\varphi_{\bar{\psi}(\alpha), \bar{\psi}(\alpha \beta)}(\psi(b))=\psi \varphi_{\alpha, \alpha \beta}(a)+\psi \varphi_{\beta, \alpha \beta}(b)=$ $\psi\left(\varphi_{\alpha, \alpha \beta}(a)+\varphi_{\beta, \alpha \beta}(b)\right)$ since $\psi_{\mid B_{\alpha \beta}}$ is a homomorphism. We have $\psi \in$ $\operatorname{End}(N)$.

For the converse we let $\psi: N \rightarrow N$ be an endomorphism of N. We first show that ψ determines a function on Λ. To this end, let $x=\left(x_{1}, x_{2}\right)$, $y=\left(y_{1}, y_{2}\right)$ be elements in, say B_{α}. We show $\psi(x)$ and $\psi(y)$ are in the same class, B_{ε}. Let $\psi(x) \in B_{\delta}$ and $\psi(y) \in B_{\varepsilon}$ then $\psi\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, x_{2}\right)\right)=$ $\psi\left(x_{1}, x_{2}\right)$. If $\psi\left(y_{1}, x_{2}\right) \in B_{\gamma}$ then we have $\delta \gamma=\delta$. Using $\psi\left(\left(y_{1}, x_{2}\right)+\right.$ $\left.\left(x_{1}, x_{2}\right)\right)=\psi\left(y_{1}, x_{2}\right)$ we get $\gamma \delta=\gamma$ so $\delta=\gamma$. From $\psi\left(\left(y_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)=$ $\psi\left(y_{1}, y_{2}\right)$ we get $\gamma \varepsilon=\varepsilon$ and from $\psi\left(\left(y_{1}, y_{2}\right)+\left(y_{1}, x_{2}\right)\right)=\psi\left(y_{1}, x_{2}\right)$ we get $\varepsilon \gamma=\gamma$. Thus we have $\varepsilon=\delta$. (Note if $B_{\alpha}=\left\{x_{1}\right\} \times R_{\alpha}$ one can use $x=\left(x_{1}, x_{2}\right)$ and $y=\left(x_{1}, y_{2}\right)$.) We therefore have a map $\bar{\psi}: \Lambda \rightarrow \Lambda$. For $\alpha, \beta \in \Lambda$, choose $a \in B_{\alpha}, \underline{b} \in B_{\beta}$ and so $\psi(a+b)=\psi(a)+\psi(b)$. From this we see $\bar{\psi}(\alpha \beta)=\bar{\psi}(\alpha) \bar{\psi}(\beta)$, hence property 1) holds.

From the fact that $\psi \in \operatorname{End}(N)$ we get $\psi_{\mid B_{\alpha}}$ is a homomorphism so property 2) holds.

For property 3) we note that for any $\alpha, \beta \in \Lambda, a \in B_{\alpha}, b \in B_{\beta}$ we have $\psi(a+b)=\psi(a)+\psi(b)$ which in turn gives $\psi \varphi_{\alpha, \alpha \beta}(a)+\psi \varphi_{\beta, \alpha \beta}(b)=$
$\varphi_{\bar{\psi}(\alpha), \bar{\psi}(\alpha \beta)}(\psi(a))+\varphi_{\bar{\psi}(\beta), \bar{\psi}(\alpha \beta)}(\psi(b))$ where each of the summands in this equality are in $B_{\bar{\psi}(\alpha \beta)}$. Representing each of these summands by an element of $B_{\bar{\psi}(\alpha \beta)}$ we get $(c, d)+(a, b)=(g, h)+(e, f)$ so $(c, b)=(g, f)$. Using $b+a$ we get $(a, b)+(c, d)=(e, f)+(g, h)$ or $(a, d)=(e, h)$. Thus $(c, d)=(g, h)$ which is property 3$)$.

We conclude by stating the problem mentioned above.
Problem. Is the max-end property invariant under all (φ, ψ)-mutations of a normal band?

Acknowledgment. Portions of this paper were written while the author was visiting Johannes Kepler University-Linz. He wishes to express his appreciation for the hospitality and financial assistance in support of this visit.

References

[1] G.A. Cannon, C.J. Maxson, and K.M. Neuerburg, "Rings and covered groups", J. Algebra 320 (2008), 1586-1598.
[2] J.L. Chrislock, "On medial semigroups", J. Algebra 12 (1969), 1-9.
[3] M. Dugas and C.J. Maxson, "Quasi-E-locally cyclic torsion-free abelian groups", Proc. Amer. Math. Soc. 133 (2005), 3447-3453.
[4] M.P. Grillet, "Examples of semirings of endomorphisms of semigroups", J. Austral. Math. Soc. 11 (1970), 345-349.
[5] J.M. Howie, An Introduction to Semigroups, Academic Press, London, 1976.
[6] K.T. Howell and C.J. Maxson, "Commutative Clifford semigroups with maximal endomorphism semigroups", Period. Math. Hungar. 63 (2011), 65-69.
[7] K.T. Howell and C.J. Maxson, " (φ, ψ)-mutations of commutative monoids with maximal endomorphism semirings", Quaestiones Math. (to appear).
[8] K.T. Howell and C.J. Maxson, "Covers of semigroups and function semirings", (submitted).
[9] A. Kreuzer and C.J. Maxson, "E-locally cyclic abelian groups and maximal near-rings of mappings", Forum. Math. 18 (2006), 107-114.
[10] M. Petrich, Introduction to Semigroups, Merrill Books, Columbus, Ohio, 1973.
[11] M. Petrich, Lectures in Semigroups, Akademie-Verlag, Berlin, 1977.
[12] M. Samman and J.D.P. Meldrum, "On endomorphisms of semilattices of groups", Algebra Colloq. 12 (2005), 93-100.

Contact information

C. J. Maxson Department of Mathematics
 Texas A\&M University
 College Station, TX 77843-3368, USA
 E-Mail: cjmaxson@math.tamu.edu

Received by the editors: 20.08.2012
and in final form 28.11.2012.

