Algebra and Discrete Mathematics Volume 16 (2013). Number 1. pp. 107 – 115 © Journal "Algebra and Discrete Mathematics"

Ideals in (\mathcal{Z}^+, \leq_D) Sankar Sagi

Communicated by V. V. Kirichenko

ABSTRACT. A convolution is a mapping $\mathcal C$ of the set $\mathcal Z^+$ of positive integers into the set $\mathcal P(\mathcal Z^+)$ of all subsets of $\mathcal Z^+$ such that every member of $\mathcal C(n)$ is a divisor of n. If for any n, D(n) is the set of all positive divisors of n, then D is called the Dirichlet's convolution. It is well known that $\mathcal Z^+$ has the structure of a distributive lattice with respect to the division order. Corresponding to any general convolution $\mathcal C$, one can define a binary relation $\leq_{\mathcal C}$ on $\mathcal Z^+$ by " $m \leq_{\mathcal C} n$ if and only if $m \in \mathcal C(n)$ ". A general convolution may not induce a lattice on $\mathcal Z^+$. However most of the convolutions induce a meet semi lattice structure on $\mathcal Z^+$. In this paper we consider a general meet semi lattice and study it's ideals and extend these to $(\mathcal Z^+, \leq_D)$, where D is the Dirichlet's convolution.

Introduction

A convolution is a mapping $\mathcal{C}: \mathcal{Z}^+ \longrightarrow \mathcal{P}(\mathcal{Z}^+)$ such that $\mathcal{C}(n)$ is a set of positive divisors on $n, n \in \mathcal{C}(n)$ and $\mathcal{C}(n) = \bigcup_{m \in \mathcal{C}(n)} \mathcal{C}(m)$, for any $n \in \mathcal{Z}^+$, where \mathcal{Z}^+ is the set of all positive integers and $\mathcal{P}(\mathcal{Z}^+)$ is the set of all subsets of \mathcal{Z}^+ . Popular examples are the Dirichlet's convolution D and the Unitary convolution U defined respectively by

D(n) = The set of all positive divisors of n

and U(n)=
$$\{d \ / \ d|n \ \text{and} \ (d, \frac{n}{d}) = 1\}$$

2010 MSC: 06B10,11A99.

Key words and phrases: Partial Order, Lattice, Semi Lattice, Convolution, Ideal.

for any $n \in \mathbb{Z}^+$. If \mathcal{C} is a convolution, then the binary relation $\leq_{\mathcal{C}}$ on \mathbb{Z}^+ , defined by,

$$m \leq_{\mathcal{C}} n$$
 if and only if $m \in \mathcal{C}(n)$,

is a partial order on \mathcal{Z}^+ and is called the partial order induced by \mathcal{C} [7]. It is well known that the Dirichlet's convolution induces the division order on \mathcal{Z}^+ with respect to which \mathcal{Z}^+ becomes a distributive lattice, where, for any $a,b\in\mathcal{Z}^+$, the greatest common divisor(GCD) and the least common multiple(LCM) of a and b are respectively the greatest lower bound(glb) and the least upper bound(lub) of a and b. In fact, with respect to the division order, the lattice \mathcal{Z}^+ satisfies the infinite join distributive law given by

$$a \vee (\bigwedge_{i \in I} b_i) = \bigwedge_{i \in I} (a \vee b_i)$$

for any $a \in \mathcal{Z}^+$ and $\{b_i\}_{i \in I} \subseteq \mathcal{Z}^+$. In this paper, we discuss various aspects of ideals in $(\mathcal{Z}^+, \leq_{\mathcal{C}})$. Actually a general convolution may not induce a lattice structure on \mathcal{Z}^+ . However, most of the convolutions we are considering induce a meet semi lattice structure on \mathcal{Z}^+ . For this reason, we first consider a general semi lattice and study it's ideals and later extend these to $(\mathcal{Z}^+, \leq_{\mathcal{D}})$.

1. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation \leq on X which is reflexive $(a \leq a)$, transitive $(a \leq b, b \leq c \Longrightarrow a \leq c)$ and antisymmetric $(a \leq b, b \leq a \Longrightarrow a = b)$ and that a pair (X, \leq) is called a partially ordered set(poset) if X is a non-empty set and \leq is a partial order on X. For any $A \subseteq X$ and $x \in X$, x is called a lower(upper) bound of A if $x \leq a$ (respectively $a \leq x$) for all $a \in A$. We have the usual notations of the greatest lower bound(glb) and least upper bound(lub) of A in X. If A is a finite subset $\{a_1, a_2, \dots, a_n\}$, the glb of A(lub of A) is denoted by $a_1 \wedge a_2 \wedge \dots \wedge a_n$ or $\bigwedge_{i=1}^n a_i$ (respectively

by $a_1 \vee a_2 \vee \cdots \vee a_n$ or $\bigvee_{i=1}^n a_i$). A partially ordered set (X, \leq) is called a meet semi lattice if $a \wedge b$ (=glb $\{a,b\}$) exists for all a and $b \in X$. (X, \leq) is called a join semi lattice if $a \vee b$ (=lub $\{a,b\}$) exists for all a and $b \in X$. A poset (X, \leq) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also be defined as an algebraic system

S. SAGI 109

 (X, \wedge, \vee) , where \wedge and \vee are binary operations which are associative, commutative and idempotent and satisfying the absorption laws, namely $a \wedge (a \vee b) = a = a \vee (a \wedge b)$ for all $a, b \in X$; in this case the partial order \leq on X is such that $a \wedge b$ and $a \vee b$ are respectively the glb and lub of $\{a,b\}$. The algebraic operations \wedge and \vee and the partial order \leq are related by

$$a = a \wedge b \iff a \leq b \iff a \vee b = b.$$

Throughout the paper, \mathcal{Z}^+ and \mathcal{N} denote the set of positive integers and the set of non-negative integers respectively.

Definition 1. A mapping $C: \mathbb{Z}^+ \longrightarrow \mathcal{P}(\mathbb{Z}^+)$ is called a convolution if the following are satisfied for any $n \in \mathbb{Z}^+$.

- (1) C(n) is a set of positive divisors of n
- (2) $n \in \mathcal{C}(n)$
- (3) $C(n) = \bigcup_{m \in C(n)} C(m)$.

Definition 2. For any convolution \mathcal{C} and m and $n \in \mathcal{Z}^+$, we define

$$m \le n$$
 if and only if $m \in \mathcal{C}(n)$

Then $\leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ and is called the partial order induced by \mathcal{C} on \mathcal{Z}^+ . In fact, for any mapping $\mathcal{C}: \mathcal{Z}^+ \longrightarrow \mathcal{P}(\mathcal{Z}^+)$ such that each member of $\mathcal{C}(n)$ is a divisor of $n, \leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ if and only if \mathcal{C} is a convolution, as defined above [6],[8].

Definition 3. Let \mathcal{C} be a convolution and p a prime number. Define a relation $\leq_{\mathcal{C}}^p$ on the set \mathcal{N} of non-negative integers by

$$a \leq_{\mathcal{C}}^{p} b$$
 if and only if $p^{a} \in \mathcal{C}(p^{b})$

for any a and $b \in \mathcal{N}$.

It can be easily verified that $\leq_{\mathcal{C}}^p$ is a partial order on \mathcal{N} , for each prime p. The following is a direct verification.

Theorem 1. Let C be a convolution.

- (1) If $(\mathcal{Z}^+, \leq_{\mathcal{C}})$ is a meet(join) semilattice, then so is $(\mathcal{N}, \leq_{\mathcal{C}}^p)$ for each prime p.
- (2) If $(\mathcal{Z}^+, \leq_{\mathcal{C}})$ is a lattice, then so is $(\mathcal{N}, \leq_{\mathcal{C}}^p)$ for each prime p.

Now, we have the following examples from [9] in which the convolutions induce meet semi lattice structures.

Example 1. Let D be the Dirichlet's convolution defined by

$$D(n)$$
 = The set of all positive divisors of n .

Then \leq_D is precisely the division order on \mathcal{Z}^+ and, for each prime p, \leq_D^p is the usual order on \mathcal{N} . (\mathcal{Z}^+, \leq_D) is known to be distributive lattice.

Example 2. Let U(n) be the Unitary convolution defined by

$$U(n) \ = \ \{d \in D(n) \ \mid \ d \ \text{ and } \ \tfrac{n}{d} \ \text{ are relatively prime}\}.$$

Then (\mathcal{Z}^+, \leq_U) is a meet semilattice, but not a join semilattice. Note that

$$U(p^a) = \{1, p^a\}$$
 for any $0 < a \in \mathcal{N}$.

Example 3. Let F_2 be the square-free convolution defined by

$$F_2(n) = \{n\} \cup \{d \in D(n) \mid p^2 \text{ does not divide } n \text{ for any prime } p\}.$$

Then $(\mathcal{Z}^+, \leq_{F_2})$ is a meet semilattice but not a join semilattice. Note that, for any prime p and $a \in \mathcal{N}$,

$$F_2(p^a) = \begin{cases} \{1\} & \text{if } a = 0\\ \{1, p\} & \text{if } a = 1\\ \{1, p, p^a\} & \text{if } a > 1 \end{cases}$$

Example 4. For any $k \in \mathbb{Z}^+$, a positive integer d is said to be k-free if p^k does not divide d for any prime p. Let $F_k(n)$ be the set of all k-free divisors of n together with n. Then $(\mathbb{Z}^+, \leq_{F_k})$ is a meet semilattice but not a join semi lattice.

2. Ideals in Semi lattices

Recall that most of the convolutions like Dirichlet's convolution, Unitary convolution and k-free convolution induce meet semi lattice structure on $\mathcal{Z}^+[9]$. For this reason we consider a general meet semi lattice and study it's ideals. Throughout this section, unless otherwise stated, by a semi lattice we mean a meet semi lattice only.

S. Sagi 111

Definition 4. Let (S, \wedge) be a semi lattice. A non-empty subset I of S is called an ideal of S if the following are satisfied

- (1) $x \in S$ and $x \le a \in I \implies x \in I$
- (2) For any a and $b \in I$, there exists $c \in I$ such that $a \leq c$ and $b \leq c$

Theorem 2. Let a and b be elements of a meet semi lattice (S, \wedge) . Then the following are equivalent to each other.

- (1) There exists smallest ideal of S containing a and b.
- (2) The intersection of all ideals of S containing a and b is again an ideal of S.
 - (3) a and b have least upper bound in S.

Proof. $(1) \iff (2)$ is trivial.

 $(1) \Longrightarrow (3)$: Let I be the smallest ideal of S containing a and b. Then, there exists $x \in I$ such that

$$a \le x$$
 and $b \le x$

Therefore x is an upper bound of a and b. If y is any other upper bound of a and b, then (y] is an ideal of S containing a and b and hence $I \subseteq (y]$. Since $x \in I$, we get that $x \in (y]$ and therefore $x \leq y$. Thus x is the least upper bound of a and b.

 $(3) \Longrightarrow (1)$: Let $a \vee b$ be the least upper bound of a and b. Then $a \leq a \vee b$ and $b \leq a \vee b$ and hence $(a \vee b]$ is an ideal containing a and b. If I is any ideal containing a and b, then there exists $x \in I$ such that

$$a \le x$$
 and $b \le x$ and hence $a \lor b \le x$

so that $a \lor b \in I$ and $(a \lor b] \subseteq I$. Thus $(a \lor b]$ is the smallest ideal of S containing a and b.

Although the intersection of an arbitrary class of ideals need not be an ideal, a finite intersection is always an ideal.

Theorem 3. Let (S, \wedge) be a semi lattice and $\mathcal{I}(S)$ the set of all ideals of S. Then $(\mathcal{I}(S), \cap)$ is a semilattice and $a \mapsto (a]$ is an embedding of (S, \wedge) onto $(\mathcal{I}(S), \cap)$.

Proof. By the above theorem, it follows that $(\mathcal{I}(S), \cap)$ is a semi lattice. Also, for any a and b in S, we have

$$(a] \cap (b] = (a \wedge b]$$

and
$$(a] \subseteq (b] \iff a \in (b] \iff a \le b$$

Therefore $a \mapsto (a]$ is an embedding of S into $\mathcal{I}(S)$.

Theorem 4. A semi lattice (S, \wedge) is a lattice if and only if $\mathcal{I}(S)$ is a lattice and, in this case, $a \mapsto (a]$ is an embedding of the lattice S into the lattice $\mathcal{I}(S)$.

Proof. It is well known that the set $\mathcal{I}(S)$ of ideals of a lattice (S, \wedge, \vee) is again a lattice in which,

$$I \wedge J \ = \ I \cap J$$
 and $I \vee J \ = \ \{ \ x \in S \ \mid \ x \le a \wedge b, \ \text{for some} \ a \in I \ \text{and} \ b \in J \ \}$

for any ideals I and J, in this case,

$$(a] \lor (b] = (a \lor b]$$

for any a and b in S, so that $a \mapsto (a)$ is an embedding of lattices.

Conversely, suppose that $\mathcal{I}(S)$ is a lattice. Let a and $b \in S$ and I be the least upper bound of (a] and (b] in $\mathcal{I}(S)$. Then I is the smallest ideal containing a and b and hence by Theorem 3.3, $a \vee b$ exists in S. Therefore S is a lattice.

For a lattice (L, \wedge, \vee) , any ideal of the semi lattice (L, \wedge) turns out to be the usual ideal of the lattice (L, \wedge, \vee) .

3. Ideals in (\mathcal{Z}^+, \leq_D)

Now we shall turn our attention to the particular case of the lattice structure on \mathcal{Z}^+ induced by the division ordering / and study the ideals of \mathcal{Z}^+ . The division ordering is precisely the partial ordering \leq_D induced by the Dirichlet's convolution D.

First we observe that $\theta:(\mathcal{Z}^+,/)\longrightarrow (\sum\limits_P\mathcal{N},\leq)$ is an order isomorphism where θ is defined by

 $\theta(a)(p)$ =The largest n in \mathcal{N} such that p^n divides a, for any $a \in \mathcal{Z}^+$ and $p \in \mathcal{P}$ and $\sum_{P} \mathcal{N} = \{ f : \mathcal{P} \longrightarrow \mathcal{N} \mid f(p) = 0 \text{ for all but finite } p \text{ 's } \}$. Here \mathcal{P} stands for the set of primes and \mathcal{N} stands for the set of non-negative integers.

Definition 5. Adjoin an external element ∞ to \mathcal{N} and extend the usual ordering \leq on \mathcal{N} to $\mathcal{N} \cup \{\infty\}$ by defining $a < \infty$ for all $a \in \mathcal{N}$. We shall denote $\mathcal{N} \cup \{\infty\}$ together with this extended usual order by \mathcal{N}^{∞} .

S. Sagi 113

Theorem 5. Let $\alpha: \mathcal{P} \longrightarrow \mathcal{N}^{\infty}$ be a mapping and define

$$I_{\alpha} = \{ n \in \mathcal{Z}^+ \mid \theta(n)(p) \leq \alpha(p) \text{ for all } p \in \mathcal{P} \}$$

Then I_{α} is an ideal of $(\mathcal{Z}^+,/)$ and every ideal of $(\mathcal{Z}^+,/)$ is of the form I_{α} for some mapping $\alpha: \mathcal{P} \longrightarrow \mathcal{N}^{\infty}$

Proof. Since no prime divides the integer 1, we get that $\theta(1)(p) = 0 \le \alpha(p)$ for all $p \in \mathcal{P}$ and hence $1 \in I_{\alpha}$. Therefore I_{α} is a non-empty subset of \mathcal{Z}^+ .

$$m \text{ and } n \in I_{\alpha} \implies \theta(m)(p) \leq \alpha(p) \text{ and } \theta(n)(p) \leq \alpha(p) \text{ for all } p \in \mathcal{P}$$

 $\implies \theta(m \vee n)(p) = \text{Max } \{ \theta(m)(p), \theta(n)(p) \} \leq \alpha(p) \text{ for all } p \in \mathcal{P}$

$$\implies m \lor n \in I_{\alpha}$$

and

$$m \leq_D n \in I_{\alpha} \implies \theta(m)(p) \leq \theta(n)(p) \leq \alpha(p) \text{ for all } p \in \mathcal{P}$$

 $\implies \theta(m)(p) \leq \alpha(p) \text{ for all } p \in \mathcal{P}$
 $\implies m \in I_{\alpha}.$

Thus I_{α} is an ideal of $(\mathcal{Z}^+,/)$.

Conversely suppose that I is any ideal of $(\mathcal{Z}^+,/)$. Define $\alpha:\mathcal{P}\longrightarrow\mathcal{N}^{\infty}$ by

$$\alpha(p) = \sup\{ \theta(n)(p) \mid n \in I \} \text{ for any } p \in \mathcal{P}$$

Note that $\alpha(p)$ is either a non-negative integer or ∞ , for any $p \in \mathcal{P}$. Therefore α is a mapping of \mathcal{P} into \mathcal{N}^{∞} .

$$n \in I \implies \theta(n)(p) \le \alpha(p) \text{ for all } p \in \mathcal{P}$$

 $\implies n \in I_{\alpha}$

Therefore $I \subseteq I_{\alpha}$.

On the other hand, suppose $n \in I_{\alpha}$. Then $\theta(n)(p) \leq \alpha(p)$ for all $p \in \mathcal{P}$. Since $\theta(n) \in \sum_{p} \mathcal{N}$, $|\theta(n)|$ is finite. If $|\theta(n)| = \phi$, then $n = 1 \in I$.

Suppose $|\theta(n)|$ is non-empty. Let $|\theta(n)| = \{p_1, p_2 \cdots, p_r\}$. Then $\theta(n)(p) = 0$ for all $p \neq p_i$, $1 \leq i \leq r$ and $\theta(n)(p_i) \in \mathcal{N}$. Now, for each $1 \leq i \leq r$, $\theta(n)(p_i) \leq \alpha(p_i) = \sup\{\theta(m)(p_i) \mid m \in I\}$ and hence there exists $m_i \in I$ such that $\theta(n)(p_i) \leq \theta(m)(p_i)$. Now, put $m = m_1 \vee m_2 \vee \cdots \vee m_r$, then $m \in I$ and

 $\theta(n)(p_i) \leq \text{Max.}\{ \theta(m_1)(p_i), \dots, \theta(m_i)(p_i) \} = \theta(m)(p_i) \text{ for all } 1 \leq i \leq r.$ Also, since $\theta(n)(p) = 0$ for all $p \neq p_i$, we get that $\theta(n)(p) \leq \theta(m)(p)$ for all $p \in \mathcal{P}$ so that $n \leq_D m \in I$ and therefore $n \in I$. Therefore $I_{\alpha} \subseteq I$. Thus $I = I_{\alpha}$.

Note that, if α is the constant map $\overline{0}$ defined by $\alpha(p) = 0$ for all $p \in \mathcal{P}$, then $I_{\alpha} = \{1\}$ and that, if α is the constant map $\overline{\infty}$, then $I_{\alpha} = \mathcal{Z}^{+}$.

Definition 6. For any mappings α and β from $\mathcal P$ into $\mathcal N^\infty$, define

$$\alpha \leq \beta$$
 if and only if $\alpha(p) \leq \beta(p)$ for all $p \in \mathcal{P}$.

Thus \leq is a partial order on $(\mathcal{N}^{\infty})^{\mathcal{P}}$.

Theorem 6. The map $\alpha \mapsto I_{\alpha}$ is an order isomorphism of the poset $((\mathcal{N}^{\infty})^{\mathcal{P}}, \leq)$, onto the poset $(\mathcal{I}(\mathcal{Z}^+), \subseteq)$ of all ideals of $(\mathcal{Z}^+, /)$.

Proof.

Let α and $\beta: \mathcal{P} \mapsto \mathcal{N}^{\infty}$ be any mappings. Clearly, $\alpha \leq \beta \Rightarrow I_{\alpha} \subseteq I_{\beta}$.

On the other hand, suppose that $I_{\alpha} \subseteq I_{\beta}$. We shall prove that $\alpha(p) \leq \beta(p)$ for all $p \in \mathcal{P}$ so that $\alpha \leq \beta$. To prove this, let us fix $p \in \mathcal{P}$. If $\beta(p) = \infty$ or $\alpha(p) = 0$, trivially $\alpha(p) \leq \beta(p)$. Therefore, we can assume that $\beta(p) < \infty$ and $\alpha(p) > 0$.

Consider $n = p^{\beta(p)+1}$. Then

$$\theta(n)(p) = \beta(p) + 1 \nleq \beta(p).$$

and hence $n \notin I_{\beta}$. Since $I_{\alpha} \subseteq I_{\beta}$, $n \notin I_{\alpha}$ and therefore $\theta(n)(q) \nleq \alpha(q)$ for some $q \in \mathcal{P}$. But $\theta(n)(q) = 0$ for all $q \neq p$. Thus

$$\beta(p) + 1 = \theta(n)(p) \nleq \alpha(p)$$

$$\alpha(p) < \beta(p) + 1.$$

Therefore $\alpha(p) \leq \beta(p)$. This is true for all $p \in \mathcal{P}$. Thus $\alpha \leq \beta$. Also $\alpha \mapsto I_{\alpha}$ is a surjection. Thus $\alpha \mapsto I_{\alpha}$ is an order isomorphism of $((\mathcal{N}^{\infty})^{\mathcal{P}}, \leq)$, onto $(\mathcal{I}(\mathcal{Z}^+), \subseteq)$.

Corollary 1. For any α and $\beta: \mathcal{P} \to \mathcal{N}^{\infty}$,

$$I_{\alpha} \cap I_{\beta} = I_{\alpha \wedge \beta}.$$

and
$$I_{\alpha} \cup I_{\beta} = I_{\alpha \vee \beta}$$
.

where $\alpha \wedge \beta$ and $\alpha \vee \beta$ are point-wise g.l.b and l.u.b of α and β .

S. SAGI 115

References

- [1] G. Birkhoff, Lattice Theory, American Mathematical Society, 1967.
- [2] E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math.Z.,74,66-80.1960.
- [3] B.A. Davey and H.A. Priestly, *Introduction to lattices and order*, Cambridge University Press, 2002.
- [4] G.A Gratzer, General Lattice Theory, Birkhauser, 1971.
- [5] W. Narkiewicz, On a class of arithmetical convolutions, Colloq. Math., 10,81-94.1963.
- [6] Sagi Sankar , Lattice Theory of Convolutions, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India, 2010.
- [7] U.M. Swamy, G.C. Rao, and V. Sita Ramaiah, On a conjecture in a ring of arithmetic functions, Indian J.pure appl.Math., 14(12),1519-1530.1983.
- [8] U.M. Swamy and Sagi Sankar, *Partial Orders induced by Convolutions*, International Journal of Mathematics and Soft Computing, 2(1), 2011.
- [9] U.M. Swamy and Sagi Sankar, Lattice Structures on Z⁺ induced by convolutions, Eur. J. Pure Appl. Math., 4(4), 424-434. 2011.

CONTACT INFORMATION

Sankar Sagi

Assistant Professor of Mathematics, College of Applied Sciences, Sohar, Sultanate of Oman *E-Mail:* sagi_sankar@yahoo.co.in

Received by the editors: 17.12.2011 and in final form 27.03.2013.