Lie and Jordan structures of differentially semiprime rings

Orest D. Artemovych and Maria P. Lukashenko

Communicated by A. P. Petravchuk

Abstract. Properties of Lie and Jordan rings (denoted respectively by R^L and R^J) associated with an associative ring *R* are discussed. Results on connections between the differentially simplicity (respectively primeness, semiprimeness) of R , R^L and R^J are obtained.

1. Introduction

Throughout here, *R* is an associative ring (with respect to the addition "+" and the multiplication " \cdot ") with an identity, Der *R* is the set of all derivations in *R*. On the set *R* we consider two operations: the Lie multiplication "[−*,* −]" and the Jordan multiplication "(−*,* −)" defined by the rules

$$
[a, b] = a \cdot b - b \cdot a
$$

and

$$
(a, b) = a \cdot b + b \cdot a
$$

for any $a, b \in R$. Then

$$
R^L = (R, +, [-, -])
$$

is a Lie ring and

$$
R^{J} = (R, +, (-, -))
$$

²⁰¹⁰ MSC: Primary 16W25, 16N60; Secondary 17B60, 17C50.

Key words and phrases: Derivation, semiprime ring, Lie ring.

is a Jordan ring (see [13] and [14]) associated with the associative ring *R*. Recall that an additive subgroup *A* of *R* is called:

• *a Lie ideal* of *R* if

 $[a, r] \in A$,

• *a Jordan ideal* of *R* if

$$
(a,r)\in A
$$

for all $a \in A$ and $r \in R$. Obviously, A is a Lie (respectively Jordan) ideal of *R* if and only if A^L (respectively A^J) is an ideal of R^L (respectively R^J).

In all that follows Δ will be any subset of Der *R* (in particular, $\Delta = \{0\}$) and $\delta \in \text{Der } R$. A subset K of R is called Δ -*stable* if $d(a) \in K$ for all $d \in \Delta$ and $a \in K$. An ideal *I* of a (Lie, Jordan or associative) ring *A* is said to be a Δ -*ideal* if *I* is Δ -stable. A (Lie, Jordan or associative) ring *A* is said to be:

- *simple* (respectively ∆*-simple*) if there no two-sided ideals (respectively Δ -ideals) other 0 or A ,
- *prime* (respectively ∆*-prime*) if, for all two-sided ideals (respectively Δ -ideals) *K, S* of *A*, the condition $KS = 0$ implies that $K = 0$ or $S = 0$ (if $\Delta = {\delta}$ and *A* is Δ -prime, then we say that *A* is δ -prime),
- *semiprime* (respectively ∆*-semiprime*) if, for any two-sided ideal (respectively Δ -ideal) *K* of *A*, the condition $K^2 = 0$ implies that $K = 0$,
- *primary* if, for any two-sided ideals K, S of A , the condition $KS = 0$ implies that $K = 0$ or *S* is nilpotent.

Every non-commutative Δ -simple ring is Δ -prime and every Δ -prime ring is Δ -semiprime. We say that *R* is Z-torsion-free if, for any $r \in R$ and integers *n*, the condition $nr = 0$ holds if and only if $r = 0$. If the implication

$$
2r=0 \Rightarrow r=0
$$

is true for any $r \in R$, then R is said to be 2*-torsion-free*. Let

$$
F_p(R) = \{a \in R \mid a \text{ has an additive order } p^k \text{ for some non-negative } k = k(a)\}
$$

be the *p*-part of *R*, where *p* is a prime. Then $F_p(R)$ is a Δ -ideal of *R*. If *R* is Δ -semiprime, then

$$
pF_p(R) = 0.
$$

In particular, in a Δ -prime ring *R* it holds $F_p(R) = 0$ (and so the characteristic char $R = 0$) or $F_p(R) = R$ (and therefore char $R = p$). Obviously that the additive group R^+ of a Δ -prime ring R is torsion-free if and only if char $R = 0$. Recall that a ring R is said to be *of bounded index m*, if *m* is the least positive integer such that $x^m = 0$ for all nilpotent elements $x \in R$. We say that a ring R satisfies *the condition* (X) if one of the following holds:

- (1) *R* or $R/\mathbb{P}(R)$ is Z-torsion-free, where $\mathbb{P}(R)$ is the prime radical of *R*,
- (2) *R* is of bounded index *m* such that an additive order of every nonzero torsion element of *R*, if any, is strictly larger than *m*.

As noted in [16, p.283], a \mathbb{Z} -torsion-free δ -prime ring is semiprime. In this way we prove the following

Proposition 1. *For a ring R the following hold:*

- (1) *if* R *is a* Δ *-semiprime ring with the condition* (X) *, then it is semiprime,*
- (2) *if* R *is both semiprime (respectively satisfies the condition* (X) *) and* ∆*-prime, then R is prime.*

Relations between properties of an associative ring *R*, a Lie ring *R^L* and a Jordan ring R^J was studied by I.N. Herstein and his students (see [7, 8, 11] and bibliography in [9] and [5]); he has obtained, for a ring *R* of characteristic different from 2, that the simplicity of *R* implies the simplicity of a Jordan ring R^J [7, Theorem 1], and also that every Lie ideal of a simple Lie ring *R* is contained in the center $Z(R)$ [7, Theorem 3]. K. McCrimmon [20, Theorem 4] has proved that *R* is a simple algebra if and only if R^J is a simple Jordan algebra. Our result is the following

Theorem 1. *For a* 2*-torsion-free ring R the following statements are true:*

- (1) *R is a* Δ -*simple ring if and only if* R^J *is a* Δ -*simple Jordan ring*,
- (2) *R is a* Δ *-prime ring if and only if* R^J *is a* Δ *-prime Jordan ring,*
- (3) *R is a* Δ -semiprime ring if and only if R^J is a Δ -semiprime Jordan *ring.*

Let us $d \in \Delta$. Since $C(R)$ and ann $C(R)$ are Δ -ideals, the rule

 $\overline{d}: R/\text{ann } C(R) \ni r + \text{ann } C(R) \mapsto d(r) + \text{ann } C(R) \in R/\text{ann } C(R)$

determines a derivation \overline{d} of the quotient ring $R/\text{ann } C(R)$. Then

$$
\overline{\Delta} = \{ \overline{d} \mid d \in \Delta \} \subseteq \text{Der}(R / \operatorname{ann} C(R)).
$$

Inasmuch $d(Z(R)) \subseteq Z(R)$, the rule

$$
\hat{d}: R^L/Z(R) \ni r + Z(R) \mapsto d(r) + Z(R) \in R^L/Z(R)
$$

determines a derivation \hat{d} of the Lie ring $R^L/Z(R)$. Then

$$
\widehat{\Delta} = \{ \widehat{d} \mid d \in \Delta \} \subseteq \text{Der}(R^L/Z(R)).
$$

Since the center $Z(R)$ is a nonzero Lie ideal of an associative ring R with an identity, a Lie ring R^L is not Δ -simple. Our next result is the following

Theorem 2. *Let R be a* 2*-torsion-free ring. Then the following are true:*

- (1) *if the quotient ring* $R^L/Z(R)$ *is a* Δ *-simple Lie ring, then R is non-commutative and* $R/\text{ann } C(R)$ *is a* $\overline{\Delta}$ *-simple ring,*
- (2) *if R is a* Δ *-simple ring, then* $R^L/Z(R)$ *is a* $\widehat{\Delta}$ *-simple Lie ring or R is commutative,*
- (3) *if* $R^L/Z(R)$ *is a* $\widehat{\Delta}$ -semiprime Lie ring, then R *is non-commutative and the quotient ring* $R/\text{ann } C(R)$ *is a* ∆*-semiprime ring*,
- (4) *if R is a* Δ *-semiprime ring, then* $R^L/Z(R)$ *is a* $\widehat{\Delta}$ *-semiprime Lie ring or R is commutative,*
- (5) *if* $R^L/Z(R)$ *is a* $\widehat{\Delta}$ -prime Lie ring, then R is non-commutative and $R/\text{ann } C(R)$ *is a* $\overline{\Delta}$ *-prime ring.*
- (6) *if R is a* Δ *-prime ring, then* $R^L/Z(R)$ *is a* $\widehat{\Delta}$ *-prime Lie ring or R is commutative.*

Throughout, let *Z*(*R*) denote the center of *R*, [*A, B*] (respectively (A, B)) an additive subgroup of *R* generated by all commutators [a, b] (respectively (a, b)), where $a \in A$ and $b \in B$, $C(R)$ the commutator ideal of *R*, *N*(*R*) the set of nilpotent elements in *R*, char *R* the characteristic of *R*, ann_{*l*} *I* = { $a \in R | aI = 0$ } the left annihilator of *I* in *R*, ann_{*r*} *I* = { $a \in R$ } $R \mid I_a = 0$ the right annihilator of *I* in *R*, ann $I = (\text{ann}_r I) \cap (\text{ann}_l I)$, $C_R(I) = \{a \in R \mid ai = ia \text{ for all } i \in I\}$ the centralizer of *I* in *R* and $\partial_a(x) = [a, x]$ for $a, x \in R$.

All other definitions and facts are standard and it can be found in [10], [17] and [19].

2. Differentially prime right Goldie rings

Let agree that

$$
d^0 = \mathrm{id}_R
$$

is the identity endomorphism for $d \in \Delta$.

Lemma 1. *The following conditions are equivalent:*

- (1) *R is a* Δ *-semiprime ring,*
- (2) *for any* ∆*-ideals A, B of R the implication*

$$
AB = 0 \Rightarrow A \cap B = 0
$$

is true,

 (3) *if* $a \in R$ *is such that*

$$
aR\delta_1^{m_1}\dots\delta_k^{m_k}(a)=0
$$

for any integers $k \geq 1, m_i \geq 0$ *and derivations* $\delta_i \in \Delta$ $(i = 1, \ldots, k)$ *, then* $a = 0$ *.*

Proof. A simple modification of Proposition 2 from [17, §3.2]. \Box

Lemma 2. *The following conditions are equivalent:*

- (1) *R is a* ∆*-prime ring,*
- (2) *a left annihilator* ann_l I *of a left* Δ -ideal I *of* R *is zero,*
- (3) *a right annihilator* ann_{*r*} I *of a right* Δ -*ideal* I *of* R *is zero,*
- (4) *if* $a, b \in R$ *are such that*

$$
aR\delta_1^{m_1}\dots\delta_k^{m_k}(b)=0
$$

for any integers $k \geq 1, m_j \geq 0$ *and derivations* $\delta_j \in \Delta$ $(j = 1, \ldots, k)$ *, then* $a = 0$ *or* $b = 0$ *.*

Proof. A simple consequence of Lemma 2.1.1 from [10].

 \Box

If *I* is an ideal of a ring *R*, then

 $C_R(I) = \{x \in R \mid x + I \text{ is regular in the quotient ring } R/I\}$

(see [19, Chapter 2, §1]). The next lemma extends Proposition 1 of [15].

Lemma 3. Let *R* be a right Goldie ring and $\delta \in \text{Der } R$. If *R* is δ -prime, *then:*

- (*a*) the set $N = N(R)$ of nilpotent elements of R is its prime radical,
- (*b*) $\bigcap_{i=1}^{k} \delta^{-1}(N) = 0$ *for some integer k,*
- (c) $C_R(0) = C_R(N)$.

Proof. From Theorem 2.2 of [16] (see the part $(ii) \Rightarrow (iii)$ of its proof), we obtain (*a*) and (*b*). By Proposition 4.1.3 of [19], $C_R(0) \subseteq C_R(N)$. By the same argument as in [16, p.284], we can obtain that $C_R(0) = C_R(N)$. \Box

Corollary 1. *If* R *is a commutative* δ -prime *Goldie ring and* $\delta \in \text{Der } R$ *, then* $N(R)$ *contains all zero-divisors of* R *.*

By Corollary 1.4 of [6], if *I* is a *δ*-prime ideal of a right Noetherian ring *R* and *R/I* has characteristic 0, then *I* is prime. The following lemma is an extension of Lemma 2.5 from [6].

Lemma 4. Let R be a 2-torsion-free commutative Goldie ring and $\delta \in$ Der *R. If R is δ-prime, then it is an integral domain.*

Proof. Assume that $a \in \text{ann } N(R)$, $b \in N(R)$ and $r \in R$. Then

$$
0 = \delta^2(arb) = \delta(\delta(a)rb + a\delta(r)b + ar\delta(b))
$$

= $\delta^2(a)rb + 2\delta(a)\delta(r)b + 2\delta(a)r\delta(b) + a\delta^2(r)b + 2a\delta(r)\delta(b) + ar\delta^2(b)$

and so

$$
2\delta(a)R\delta(b) \subseteq N(R).
$$

This means that $\delta(a) \in N(R)$ or $\delta(b) \in N(R)$. Hence $N(R)$ is δ -stable. By Lemma 3, $N(R)$ is a ideal and therefore $N(R) = 0$. By Lemma 1.2 of [4], *R* is prime and consequently it is an integral domain. \Box

Proof of Proposition 1.

(1) By Proposition 1.3 of [6] and Theorem 1 of [1], the prime radical $\mathbb{P}(R)$ is a Δ -ideal and so $\mathbb{P}(R) = 0$ is zero.

(2) Since $\mathbb{P}(R) = 0$, R is prime by Lemma 1.2 from [4]. \Box

By Theorem 4 of [22], a Δ -simple ring R of characteristic 0 is prime. Since every non-commutative Δ -simple ring is Δ -prime, in view of Proposition 1 we obtain the following

Corollary 2. *Let R be a semiprime ring (respectively a ring R satisfy the condition* (X) *).* If R *is* Δ *-simple, then it is prime.*

3. Differential analogues of Herstein's results

For the proof of Theorem 2 we need the next results. In the proofs below we use the same consideration, as in [12, Chapter 1, §1], and present them here in order to have the paper more self-contained. Let agree that everywhere in this section $k \geq 1$ and $m_i \geq 0$ are integers $(i = 1, \ldots, k)$.

Lemma 5. *Let* R *be a* Δ *-semiprime ring,* A *and* B *its* Δ *-ideals. Then the following statements hold:*

- (*i*) *if* $AB = 0$ *, then* $BA = 0$ *.*
- (iii) ann_{*l*} $A = \text{ann}_r A$.
- (iii) $A \cap \text{ann}_r A = 0.$

Proof. (*i*) Indeed, *BA* is a Δ -ideal and $(BA)^2 = 0$ and so $BA = 0$.

(*ii*) We denote $(\text{ann}_r A)A$ by *X*. Since *X* is a Δ -ideal and $X^2 = 0$, we deduce that $X = 0$. This means that

$$
\operatorname{ann}_r A \subseteq \operatorname{ann}_l A.
$$

The inverse inclusion we can prove similarly.

 (iii) Since $A \cap \text{ann}_r A$ is a nilpotent Δ -ideal, the assertion holds. \Box

Henceforth

$$
X_a = \{ [\delta_1^{m_1} \dots \delta_k^{m_k}(a), x] \mid x \in R, \ \delta_i \in \Delta, \ m_i \geq 0
$$

and $k \geq 1$ are integers $(i = 1, \dots, k)$.

It is clear that $[a, x] \in X_a$.

Lemma 6. *Let R be a* ∆*-semiprime ring and a* ∈ *R. Then the following statements hold:*

(*i*) *if*

$$
a[\delta_1^{m_1} \dots \delta_k^{m_k}(a), R] = 0
$$

for any integers $k \geq 1$ *,* $m_i \geq 0$ *and derivations* $\delta_i \in \Delta$ ($i = 1, \ldots, k$)*, then* $a \in Z(R)$ *,*

- (*ii*) *if I is a right* ∆*-ideal of R, then Z*(*I*) ⊆ *Z*(*R*)*,*
- (*iii*) *if I is a commutative right* ∆*-ideal of R and I is nonzero, then I* ⊆ *Z*(*R*)*. If, moreover, R is* Δ -*prime, then it is commutative.*

Proof. (*i*) Let $x, y \in R$ and $d, \delta \in \Delta$. Since

$$
[b, xy] = [b, x]y + x[b, y]
$$
\n(3.1)

for any $b \in X_a$ and $a[b, xy] = 0$, we conclude that $ax[b, y] = 0$. This gives that $ayx[b, y] = 0$ and $yax[b, y] = 0$ and consequently

$$
(R[a, y]R)^2 = 0.
$$
\n(3.2)

In addition,

$$
0 = d(a[b, x]) = d(a)[b, x].
$$

Multiplying (3.1) by $d(a)$ on left we get $d(a)x[b, y] = 0$. Moreover,

$$
0 = \delta(ax[d(b), y]) = \delta(a)x[d(b), y]
$$

and, by the similar argument, we obtain that

$$
\delta_1^{m_1} \dots \delta_k^{m_k}(a) x [\delta_1^{m_1} \dots \delta_k^{m_k}(a), y] = 0
$$

for any integers $k \geq 1$, $m_i \geq 0$ and derivations $\delta_i \in \Delta$ $(i = 1, \ldots, k)$. As in the proof of the condition (3.2), we deduce that

$$
(R[\delta_1^{m_1} \dots \delta_k^{m_k}(a), y]R)^2 = 0.
$$

Then

$$
I = \sum_{k=1}^{\infty} \sum_{\substack{\delta_1 \dots \delta_k \in \Delta \\ y \in R}} R[\delta_1^{m_1} \dots \delta_k^{m_k}(a), y] R
$$

is a sum of nilpotent ideals and therefore it is a nil ideal. Since *I* is a Δ -ideal, we conclude that $I = 0$ and, as a consequence, $a \in Z(R)$.

(*ii*) Let $a \in Z(I)$ and $y \in R$. Then, for $\delta_1, \ldots, \delta_k \in \Delta$, we have

$$
\delta_1^{m_1} \dots \delta_k^{m_k}(a) \in Z(I)
$$

and $ay \in I$. This gives that

$$
a(\delta_1^{m_1}\dots\delta_k^{m_k}(a)y)=\delta_1^{m_1}\dots\delta_k^{m_k}(a)(ay)=a(y\delta_1^{m_1}\dots\delta_k^{m_k}(a)),
$$

and thus

$$
a[\delta_1^{m_1} \dots \delta_k^{m_k}(a), y] = 0.
$$

By (i) , $a \in Z(R)$ is central.

(*iii*) By (*ii*), $I \subseteq Z(R)$. Assume that R is Δ -prime, $u, v \in R$ and $a \in I$. Then $au \in I$ and so $au \in Z(R)$. Since

$$
a(uv) = (au)v = v(au) = (va)u = a(vu),
$$

we see that

$$
[u, v] \in \operatorname{ann}_r I.
$$

By Lemma 2(3), $[u, v] = 0$ and hence R is commutative.

Lemma 7. *Let R be a* ∆*-prime ring and* $a \in R$ *. If* $a \in C_R(I)$ *for some nonzero right* Δ *-ideal* I *of* R *, then* $a \in Z(R)$ *.*

Proof. Let us $y \in R$ and $b \in I$. Then $by \in I$ and so $bay = a(by) = bya$. This yields that

$$
I[a, y] = 0 = [a, y]I.
$$

By Lemma 2(3), $[a, y] = 0$. Hence $a \in Z(R)$.

Lemma 8. *The left annihilator* ann_{*l*}(X_a) *is a left* Δ *-ideal of* R *.*

Proof. Immediate from the definition.

Lemma 9. *If R is a* Δ *-semiprime ring, then* $C_R([R, R]) \subseteq Z(R)$ *.*

Proof. Let us $a \in C_R([R, R]), d, \delta \in \Delta$ and $x, y \in R$. Putting *x* for *a* and $xd(a)$ for xy in (3.1) we obtain

$$
[x, xd(a)] = [x, x]d(a) + x[x, d(a)]
$$

and, as a consequence, $[a, x[x, d(a)]] = 0$ and $[a, x][x, d(a)] = 0$. Then, by the same reasons as in the proof of Lemma 6(i), we obtain that $[a, x] \in \text{ann}_l(X_a)$ and $A = \text{ann}_l(X_a)$ is a Δ -ideal. Then

$$
[\delta(a), x][d(a), x] = \delta([a, x][d(a), x]) = 0.
$$

Since $A \cap \text{ann}_l A = 0$, we deduce that is a nilpotent Δ -ideal and so $a \in Z(R)$. \Box

Lemma 10. *Let R be a* 2*-torsion-free* Δ *-semiprime ring. If* $a \in R$ *commutes with all elements of* X_a *, then* $a \in Z(R)$ *.*

 \Box

 \Box

Proof. Let $r, x, y \in R$ and $d \in \Delta$. It is clear that $\partial_a^2(x) = 0$. From $\partial_a^2(xy) = 0$ it follows that

$$
2\partial_a(x)\partial_a(y)=0
$$

and so $\partial_a(x)\partial_a(y) = 0$. Since

$$
0 = \partial_a(x)\partial_a(rx) = \partial_a(x)\partial_a(r)x + \partial_a(x)r\partial_a(x) = \partial_a(x)r\partial_a(x),
$$

we deduce that $\partial_a(x)R\partial_a(x) = 0$ and $(\partial_a(x)R)^2 = 0$. Moreover, $a[b, x] =$ $[b, x]$ *a* for any $[b, x] \in X_a$ and therefore

$$
d(a)[b,x] + a[d(b),x] + a[b,d(x)] = [b,x]d(a) + [d(b),x]a + [b,d(x)]a.
$$

From this it holds that

$$
d(a)[b, x] = [b, x]d(a).
$$

This means that $C_R(X_a)$ is Δ -stable and $(\partial_{d(a)}(x)R)^2 = 0$. As a consequence,

$$
I = \sum_{k=1}^{\infty} \sum_{\substack{x \in R \\ m_k \ge 0 \\ \delta_1, \dots, \delta_k \in \Delta}} \partial_{\delta_1^{m_1} \dots \delta_k^{m_k}(a)}(x) R
$$

is a sum of nilpotent ideals and so *I* is a nil ideal. Since *I* is a Δ -ideal, we deduce that $I = 0$. Hence $a \in Z(R)$. \Box

The next lemma is an extension of Lemma 1 from [11] in the differential case.

Lemma 11. *Let* R *be a* 2*-torsion-free* Δ *-semiprime ring,* T *its Lie* Δ *ideal.* If $[T, T] \subseteq Z(R)$ *, then* $T \subseteq Z(R)$ *.*

Proof. Let $x \in R$ and $t \in T$.

1) If $[T, T] = 0$, then $[t, x] \in T$ and so $[t, [t, x]] = 0$. By Lemma 10, $T \subseteq Z(R)$.

2) Now assume that $0 \neq [a, b] \in [T, T]$ for some $a, b \in T$. Then

 $\partial_a(b) \in Z(R)$ and $\partial_a^2(R) \subseteq Z(R)$ *.*

Moreover, we have that

$$
Z(R) \ni \partial_a^2(bx) = \partial_a(\partial_a(b)x + b\partial_a(x))
$$

= $\partial_a^2(b)x + 2\partial_a(b)\partial_a(x) + b\partial_a^2(x)$
= $2\partial_a(b)\partial_a(x) + b\partial_a^2(x)$

and hence

$$
[2\partial_a(b)\partial_a(x) + b\partial_a^2(x), b] = 0.
$$

Then

$$
0 = 2\partial_b(\partial_a(b))\partial_a(x) + 2\partial_a(b)\partial_b(\partial_a(x)) + \partial_b(b)\partial_a^2(x) + b\partial_b(\partial_a^2(x))
$$

= $2\partial_a(b)\partial_b(\partial_a(x))$ (3.3)

and

$$
\partial_a(ba) = \partial_a(b)a + b\partial_a(a) = \partial_a(b)a.
$$

Replacing *ba* for *x* in (3.3) we have

$$
0 = 2\partial_a(b)\partial_b(\partial_a(b)a) = 2\partial_a(b)(\partial_b(\partial_a(b)) + \partial_a(b)\partial_b(a)) = -2\partial_a(b)^3
$$

and thus $\partial_a(b)^3 = 0$. Then $R\partial_a(b)$ is a nilpotent ideal in R and, as a consequence,

$$
\sum_{a,b\in T}R\partial_a(b)
$$

is a nonzero nil ∆-ideal, a contradiction.

Lemma 12. *If U is a Lie* Δ *-ideal of a ring R* and $I(U) = \{u \in R \mid$ $uR \subseteq U$, then $I(U)$ is the largest Δ -ideal of R *such that* $I(U) \subseteq U$.

Proof. Let $u, v \in I(U)$, $x, y \in R$ and $\delta \in \Delta$. Clearly that $I(U)$ is an additive subgroup of $R, I(U) \subseteq U$ and $(ux)y = u(xy) \in (ux)R = u(xR) \subseteq$ $uR \subseteq U$ that is $ux \in I(U)$. From

$$
u(xy) - (yu)x = (ux)y - y(ux) = [ux, y] \in U
$$

(and so $(yu)x \in U$) it holds that $yu \in I(U)$. Hence *U* is a two-sided ideal of *R*. Moreover,

$$
\delta(u)x + u\delta(x) = \delta(ux) \in \delta(U) \subseteq U
$$

and $u\delta(x) \in uR \subseteq U$. Therefore $\delta(u)x \in U$. This means that $I(U)$ is a Δ ideal of *R*. If *A* is a Δ -ideal of *R* that is contained in *U*, then $AR \subseteq A \subseteq U$ \Box and hence $A \subseteq I(U)$.

Lemma 13. *Let* U *be a Lie* Δ *-ideal of* R *. If* U *is an associative subring of* R *, then* $[U, U] = 0$ *or* U *contains a nonzero* Δ *-ideal of* R *.*

Proof. Assume that $x \in R$ and $[U, U] \neq 0$. Then $[u, v] \neq 0$ for some $u, v \in U$ and

$$
[u, vx] = u(vx) - (vx)u = (uv - vu)x + v(ux - xu).
$$

Since $[u, x]$, $[u, vx] \in U$ and $v[u, x] \in U$, we deduce that $[u, v]x \in U$. This means that $[u, v] \in I(U)$. In view of Lemma 12, $I(U)$ is a nonzero Δ -ideal \Box of *R* that is contained in *U*.

Proposition 2. *If U is a Lie* Δ *-ideal of R, then* $|U, U| = 0$ *or there exists a nonzero* Δ -*ideal* I_U *of* R *such that* $[I_U, R] \subseteq U$ *.*

Proof. By Lemma 3 of [7],

$$
T(U) = \{ t \in R \mid [t, R] \subseteq U \}
$$

is both a Lie ideal and an associative subring of *R* and $U \subseteq T(U)$. Moreover, for $\delta \in \Delta$, we have

$$
[\delta(t), R] + [t, \delta(R)] = \delta([t, R]) \subseteq \delta(U) \subseteq U
$$

and so $[\delta(t), R] \subseteq U$. Hence $T(U)$ is Δ -stable. If $[U, U] \neq 0$, then, by Lemmas 12 and 13,

$$
I_U = I(T(U)) \subseteq T(U)
$$

is a nonzero Δ -ideal of *R* such that $[I_U, R] \subseteq U$.

Lemma 14. Let U be a Lie Δ -ideal of a ring R. If $|U, U| = 0$, then the *centralizer* $C_R(U)$ *is a Lie* Δ *-ideal and an associative subring of* R *.*

Proof. Is immediately.

We extend Theorem 1.3 of [9] in the following

Proposition 3. Let R be a Δ -simple ring of characteristic 2. If U is a *Lie* ∆*-ideal of R, then one of the following holds:*

- (1) $[R, R] \subseteq U$,
- (2) $U \subseteq Z(R)$,
- (3) *R contains a subfield P such that* $U \subseteq P$ *and* $[P, R] \subseteq P$ *.*

 \Box

Proof. If $[U, U] \neq 0$, then $[R, R] \subseteq U$ by Proposition 2. Therefore we assume that $[U, U] = 0$. By Lemma 14, $C_R(U)$ is a Lie Δ -ideal and an associative subring of *R* such that $U \subseteq C_R(U)$.

a) If $C_R(U)$ is non-commutative, then $C_R(U) = R$ by Lemma 13. Hence $U \subseteq Z(R)$.

b) Now assume that the centralizer $C_R(U)$ is commutative. If $c \in$ $C_R(U)$ and $x \in R$, then

$$
c^2 \in C_R(U)
$$
 and $[c^2, x] = [[c, x], x] = 2c[c, x] = 0.$

This gives that $c^2 \in Z(R)$. By Theorem 2 of [22], $Z(R)$ is a field. As a consequence, c^2 (and so *c*) is invertible in $C_R(U)$. Hence $C_R(U)$ is a field. \Box

Corollary 3. Let R be a Δ -simple ring. If U is a Lie Δ -ideal of R *, then one of the following holds:*

- (1) $[R, R] \subseteq U$,
- (2) $U \subseteq Z(R)$,
- (3) char $R = 2$ and R contains a subfield P such that $U \subseteq P$ and $[P, R] \subseteq P$ *.*

4. Jordan properties

Lemma 15. *Let R be a* Δ *-simple ring of characteristic* \neq 2*, U its proper Jordan* Δ -*ideal and* $a \in U$ *. If* $[a, R] \subseteq U$ *, then* $a = 0$ *.*

Proof. Let us $x, y \in R$. Since $[a, x] \in U$ and $(a, x) \in U$, we obtain that $2ax \in U$ and, as a consequence, $ax \in U$ and $(ax, y) \in U$. Moreover, from $axy \in U$ it follows that $yax \in U$. This means that $RaR \subseteq U$. Since *d*(*a*) ∈ *U* for any *d* ∈ Δ , in view of [21, Lemma 1.1] we obtain that

$$
\sum_{k=1}^{\infty} \sum_{\substack{\delta_1,\dots,\delta_k \in \Delta \\ (m_1,\dots,m_k) \in \mathbb{N}^k}} R\delta_1^{m_1} \dots \delta_k^{m_k}(a)R
$$

is a proper Δ -ideal of *R* that is contained in *U*. Hence $a = 0$.

 \Box

Remark 1. Let *R* be a 2-torsion-free ring, *U* its Jordan Δ -ideal. If Δ contains all inner derivations of *R*, then *U* is an ideal of *R*.

In fact, we have

$$
2xa = [a, x] + (a, x) \in U
$$

for any $a, b, x \in U$ and so $xa \in U$. By the same argument, we can conclude that $ax \in U$.

Proof of Theorem 1.

(1) (\Leftarrow) If *A* is a nonzero proper Δ -ideal of a ring *R*, then A^J is a nonzero proper Δ -ideal of R^J , a contradiction.

(⇒) Let *U* be a proper Jordan Δ -ideal of *R*, $a, b \in U$ and $x \in R$. By Lemma 1 of [7], $[(a, b), x] \in U$, and, by Lemma 15, we see that

$$
(a,b) = 0.\t\t(4.4)
$$

In particular, $2a^2 = 0$ and, as a consequence, $a^2 = 0$ and $2axa =$ $(a, (a, x)) = 0$. It follows that $axa = 0$. Since

$$
0 = (a+b)x(a+b) = axb + bxa
$$

and

$$
0 = (b, (a, x)) = b(ax + xa) + (ax + xa)b = bax + bxa + axb + xba,
$$

we deduce that $bax + xab = 0$. But $ab = -ba$ and so $bax - xba = 0$. This means that $ba \in Z(R)$. Then $(RabR)^2 = 0$. Since

$$
I = \sum_{k=1}^{\infty} \sum_{\substack{a,b \in U, \ \delta_1,\dots,\delta_k \in \Delta \\ (m_1,\dots,m_k) \in \mathbb{N}^k}} Ra \delta_1^{m_1} \dots \delta_k^{m_k}(b) R
$$

is a Δ -ideal of *R* that is a sum of nilpotent ideals, we obtain that $I = 0$. Therefore

$$
0 = (b, x)a = (bx + xb)a = bxa + xba = 2bxa.
$$

We conclude that $URU = 0$. From $(RUR)^2 = 0$ and $\delta(RUR) \subseteq RUR$ for any $\delta \in \Delta$ it holds that $U = 0$.

(2) (\Leftarrow) If *A, B* are ∆-ideals of *R* such that *AB* = 0, then $(BA)^2 = 0$ and so *BA* is a Jordan ideal of *R* satisfying the condition

$$
(BA, BA) = 0.
$$

Thus the condition (4.4) is true for $U = BA$. As in the proof of the part (1), we obtain that $BA = 0$. Then A^J , B^J are Δ -ideals of a Jordan ring R^J such that

$$
(A^J, B^J) = 0.
$$

Hence $A = 0$ or $B = 0$.

(⇒) Let $a_1, a_2 \in A$ and $x, y \in R$. Suppose that R^J is not Δ -prime and therefore there exist nonzero Jordan Δ -ideals A, B of R such that

$$
(A,B)=0.
$$

By the same reasons as above, we conclude that $A \cap B = 0$. Then, by Lemma 1 of [7], we have $[(a_1, a_2), x] \in A$ and hence

$$
[(a_1, a_2), x] \pm ((a_1, a_2), x) \in A.
$$

Therefore $x(a_1, a_2)y \in A$. Thus *R* contains Δ -ideals $R(A, A)R \subseteq A$ and $R(B, B)R \subseteq B$ such that

$$
R(A, A)R(B, B)R \subseteq A \cap B = 0.
$$

Hence $(A, A) = 0$ or $(B, B) = 0$ and this leads to a contradiction.

(3) (\Leftarrow) If *A* is a nonzero Δ -ideal of *R* such that $A^2 = 0$, then A^J is a nonzero Δ -ideal of the Jordan ring R^J such that

$$
(A^J, A^J) = 0,
$$

a contradiction.

(⇒) Suppose that *R* has a nonzero Jordan ∆-ideal *U* such that

$$
(U,U)=0.
$$

Then the condition (4.4) is true for any $a, b \in U$. As in the proof of the part (1), we obtain that $U=0$. \Box

If *R* is a ring, then on the set *R* we can to define a left Jordan multiplication " $\langle -,-\rangle$ " by the rule

$$
\langle a, b \rangle = 2ab
$$

for any $a, b \in R$. Then the equalities

$$
\langle \langle \langle a, a \rangle, b \rangle, a \rangle = \langle \langle a, a \rangle, \langle b, a \rangle \rangle \text{ and } \langle \langle a, b \rangle, a \rangle = \langle a, \langle b, a \rangle \rangle
$$

are true and hence

$$
R^{lJ} = (R, +, \langle -, - \rangle)
$$

is a non-commutative Jordan ring (which is called *a left Jordan ring associated with an associative ring R*). It is clear that, for commutative ring *R*, we have

$$
R^J = R^{IJ}.
$$

If *A* is an additive subgroup of *R* that $\langle a, r \rangle, \langle r, a \rangle \in A$ for any $a \in A$ and *r* ∈ *R*, then *A* is called *an ideal* of R^{lJ} . If $\delta \in \Delta$ and $a, b \in R$, then

$$
\delta(\langle a,b\rangle) = \delta(2ab) = 2\delta(a)b + 2a\delta(b) = \langle \delta(a),b\rangle + \langle a,\delta(b)\rangle
$$

and therefore $\delta \in \text{Der}(R^{lJ})$. By the other hand, if $\delta \in \text{Der}(R^{lJ})$, then

$$
2\delta(ab) = \delta(\langle a, b \rangle) = \langle \delta(a), b \rangle + \langle a, \delta(b) \rangle = 2(\delta(a)b + a\delta(b)).
$$

If *R* is a 2-torsion-free ring, then $\delta \in \text{Der } R$. Similarly, as in Theorem 1, we can prove the following

Proposition 4. *For a* 2*-torsion-free ring R the following conditions are true:*

- (1) *R is a* Δ *-simple ring if and only if* R^{IJ} *is a* Δ *-simple Jordan ring,*
- (2) *R is a* Δ *-prime ring if and only if* R^{IJ} *is a* Δ *-prime Jordan ring,*
- (3) *R is a* ∆*-semiprime ring if and only if RlJ is a* ∆*-semiprime Jordan ring.*

5. Proofs

The next lemma in the prime case is contained in [18, Lemma 7].

Lemma 16 ([2, Lemma 1.7]). Let R be a ring. If $[[R, R], [R, R]] = 0$, *then the commutator ideal* $C(R)$ *is nil.*

Corollary 4. *If* R *is a non-commutative* Δ -semiprime ring, then $[R, R]$ *is non-commutative.*

Proof of Theorem 2.

(1) It is clear that a ring *R* is non-commutative. If *A* is a nonzero proper Δ -ideal of *R*, then A^L is a nonzero proper Δ -ideal of R^L . Therefore $A \subseteq Z(R)$ and, as a consequence, $A \cdot C(R) = 0$.

(2) Suppose that a ∆-simple ring *R* is non-commutative and *U* is its nonzero proper Lie Δ -ideal. By Proposition 2, $[U, U] = 0$. Then, by Lemma 11, $U \subseteq Z(R)$. Hence the quotient ring $R^L/Z(R)$ is Δ -simple.

(3) Let *A* be a nonzero Δ -ideal of *R* such that $A^2 = 0$. Then A^L is a nonzero Δ -ideal of a Lie ring R^L and, moreover,

$$
[A^L, A^L] = 0.
$$

By Lemma 11, $A \subseteq Z(R)$ and hence $A \cdot C(R) = 0$.

(4) Suppose that *R* is non-commutative. Let *A* be a nonzero Lie Δ -ideal of *R* such that [*A, A*] = 0. Then, by Lemma 11, *A* ⊆ *Z*(*R*) and, as a consequence, the Lie ring $R^L/Z(R)$ is $\widehat{\Delta}$ -semiprime.

(5) Let *A*, *B* be nonzero Δ -ideals of *R* such that $AB = 0$. Obviously, $[A, B] \subseteq Z(R)$. Then $A \subseteq Z(R)$ or $B \subseteq Z(R)$.

(6) Assume that *R* is non-commutative and *A, B* are nonzero Lie ∆-ideals of *R* such that

 $[A, B] = 0.$

Then $A \cap B \subseteq Z(R)$. Since $A \cap B \subseteq \text{ann } C(R)$ in a Δ -prime ring R, we have that the intersection $A \cap B = 0$ is zero. If $T(A) = R$ (see proof of Proposition 2), then $[R, R] \subseteq A$ and $B \subseteq C_R([R, R])$. By Lemma 9, $B \subseteq Z(R)$. So we assume that $T(A) \neq R$. If $[T(A), T(A)] = 0$, then $[A, A] = 0$ and, by Lemma 11, $A \subseteq Z(R)$. Suppose that $[T(A), T(A)] \neq 0$. By Lemma 13, $T(A)$ contains a nonzero Δ -ideal *I* of *R*. Since

$$
[I, B] \subseteq A \cap B = 0,
$$

we conclude that $B \subseteq Z(R)$ by Lemma 7.

The map

$$
\partial_a: R \ni x \mapsto [a, x] \in R
$$

is called *an inner derivation* of a ring *R* induced by $a \in R$. The set IDer *R* of all inner derivations of *R* is a Lie ring. Every prime Lie ring is primary Lie.

Lemma 17. *There is the Lie ring isomorphism*

$$
\text{IDer } R \ni \partial_a \mapsto a + Z(R) \in R^L/Z(R).
$$

Proof. Evident.

Corollary 5. *Let R be a ring. Then the following statements hold:*

 \Box

- (1) IDer *R* is a simple Lie ring if and only if $R^L/Z(R)$ is a simple Lie *ring,*
- (2) IDer *R* is a prime Lie ring if and only if $R^L/Z(R)$ is a prime Lie *ring,*
- (3) IDer *R* is a semiprime Lie ring if and only if $R^L/Z(R)$ is a semipri*me Lie ring,*
- (4) IDer *R is a primary Lie ring if and only if RL/Z*(*R*) *is a primary Lie ring.*

References

- [1] K. I. Beidar, A. V. Mikhal´'ev, *Ortogonal completeness and minimal prime ideals* (in Russian), Trudy Sem. Petrovski, **10**, 1984, pp.227-234.
- [2] H. E. Bell, A. A. Klein, *Combinatorial commutativity and finiteness conditions for rings*, Comm. Algebra, **29**, 2001, pp.2935-2943.
- [3] J. Bergen, I. N. Herstein, E. W. Kerr, *Lie ideals and derivations of prime rings*, J. Algebra, **71**, 1981, pp.259-267.
- [4] J. Bergen, S. Montgomery, D. S. Passmann, *Radicals of crossed products of enveloping algebras*, Israel J. Math., **59**, 1987, pp.167-184.
- [5] M. Brešar, M. A. Chebotar and W.S. Martindale, 3rd , *Functional identities*, Birkh´' auser Verlag, Basel Boston Berlin, 2000.
- [6] K. R. Goodearl, R. B. Warfield, Jr., *Primitivity in differential operator rings*, Math. Z., **180**, 1982, pp.503-523.
- [7] I. N. Herstein, *On the Lie and Jordan rings of a simple associative ring*, Amer. J. Math., **77**, 1955, pp.279-285.
- [8] I. N. Herstein, *The Lie ring of a simple associative ring*, Duke Math. J., **22**, 1955, pp.471-476.
- [9] I. N. Herstein, *Topics in Ring Theory*, The University of Chicago Press, Chicago London, 1965.
- [10] I. N. Herstein, *Noncommutative rings*, The Mathematical Association of America, J. Wiley and Sons, 1968.
- [11] I. N. Herstein, *On the Lie structure of an associative ring*, J. Algebra, **14**, 1970, pp.561-571.
- [12] I. N. Herstein, *Rings with involution*, The University of Chicago Press, Chicago London 1976.
- [13] N. Jacobson, *Lie algebras*, Interscience, New York, 1962.
- [14] N. Jacobson, *Structure and representations of Jordan algebras*, Amer. Math. Soc. Colloq. Publ., V. 39, Providence, R.I., 1968.
- [15] C. R. Jordan, D. A. Jordan, *The Lie structure of a commutative ring with derivation*, J. London Math. Soc.(2), **18**, 1978, pp.39-49.
- [16] D. A. Jordan, *Noetherian Ore extensions and Jacobson rings*, J. London Math. Soc. (2), **10**, 1975, pp.281-291.
- [17] J. Lambek, *Lectures on rings and modules*, Blaisdell Publ. Co. A division of Ginn and Co. Waltham Mass. Toronto London, 1966.
- [18] W. S. Martindale, 3rd , *Lie isomorphisms of prime rings*, Trans. Amer. Math. Soc., **142**, 1969, pp.437-455.
- [19] J. C. McConnell, J. C. Robson, *Noncommutative Noetherian rings*. With the cooperation of L. W. Small. Revised edition. Grad. Stud. in Math., 30. Amer. Math. Soc., Providence, RI, 2001.
- [20] K. McCrimmon, *On Herstein's theorem relating Jordan and associative algebras*, J. Algebra, **13**, 1969, pp.382-392.
- [21] A. Nowicki, *The Lie structure of a commutative ring with a derivation*, Arch. Math., **45**, 1985, pp.328-335.
- [22] E. C. Posner, *Differentiably simple rings*, Proc. Amer. Math. Soc., **11**, 1960, pp.337-343.
- [23] I. I. Zuev, *Lie ideals of associative rings* (in Russian), Uspehi Mat. Nauk, **18**, 1963, pp.155–158.

CONTACT INFORMATION

Received by the editors: 22.01.2015 and in final form 22.03.2015.