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Lie and Jordan structures of differentially
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Abstract. Properties of Lie and Jordan rings (denoted
respectively by RL and RJ) associated with an associative ring
R are discussed. Results on connections between the differentially
simplicity (respectively primeness, semiprimeness) of R, RL and RJ

are obtained.

1. Introduction

Throughout here, R is an associative ring (with respect to the addition
“+” and the multiplication “ · ”) with an identity, Der R is the set of all
derivations in R. On the set R we consider two operations: the Lie
multiplication “[−, −]” and the Jordan multiplication “(−, −)” defined
by the rules

[a, b] = a · b − b · a

and
(a, b) = a · b + b · a

for any a, b ∈ R. Then

RL = (R, +, [−, −])

is a Lie ring and
RJ = (R, +, (−, −))
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is a Jordan ring (see [13] and [14]) associated with the associative ring R.
Recall that an additive subgroup A of R is called:

• a Lie ideal of R if
[a, r] ∈ A,

• a Jordan ideal of R if
(a, r) ∈ A

for all a ∈ A and r ∈ R. Obviously, A is a Lie (respectively Jordan) ideal
of R if and only if AL (respectively AJ) is an ideal of RL (respectively
RJ).

In all that follows ∆ will be any subset of Der R (in particular, ∆ = {0})
and δ ∈ Der R. A subset K of R is called ∆-stable if d(a) ∈ K for all
d ∈ ∆ and a ∈ K. An ideal I of a (Lie, Jordan or associative) ring A is
said to be a ∆-ideal if I is ∆-stable. A (Lie, Jordan or associative) ring
A is said to be:

• simple (respectively ∆-simple) if there no two-sided ideals (respec-
tively ∆-ideals) other 0 or A,

• prime (respectively ∆-prime) if, for all two-sided ideals (respectively
∆-ideals) K, S of A, the condition KS = 0 implies that K = 0 or
S = 0 (if ∆ = {δ} and A is ∆-prime, then we say that A is δ-prime),

• semiprime (respectively ∆-semiprime) if, for any two-sided ideal
(respectively ∆-ideal) K of A, the condition K2 = 0 implies that
K = 0,

• primary if, for any two-sided ideals K, S of A, the condition KS = 0
implies that K = 0 or S is nilpotent.

Every non-commutative ∆-simple ring is ∆-prime and every ∆-prime
ring is ∆-semiprime. We say that R is Z-torsion-free if, for any r ∈ R
and integers n, the condition nr = 0 holds if and only if r = 0. If the
implication

2r = 0 ⇒ r = 0

is true for any r ∈ R, then R is said to be 2-torsion-free. Let

Fp(R) = {a ∈ R | a has an additive order pk

for some non-negativek = k(a)}

be the p-part of R, where p is a prime. Then Fp(R) is a ∆-ideal of R. If
R is ∆-semiprime, then

pFp(R) = 0.
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In particular, in a ∆-prime ring R it holds Fp(R) = 0 (and so the
characteristic char R = 0) or Fp(R) = R (and therefore char R = p).
Obviously that the additive group R+ of a ∆-prime ring R is torsion-free
if and only if char R = 0. Recall that a ring R is said to be of bounded
index m, if m is the least positive integer such that xm = 0 for all nilpotent
elements x ∈ R. We say that a ring R satisfies the condition (X) if one of
the following holds:

(1) R or R/P(R) is Z-torsion-free, where P(R) is the prime radical of
R,

(2) R is of bounded index m such that an additive order of every nonzero
torsion element of R, if any, is strictly larger than m.

As noted in [16, p.283], a Z-torsion-free δ-prime ring is semiprime. In
this way we prove the following

Proposition 1. For a ring R the following hold:

(1) if R is a ∆-semiprime ring with the condition (X), then it is
semiprime,

(2) if R is both semiprime (respectively satisfies the condition (X)) and
∆-prime, then R is prime.

Relations between properties of an associative ring R, a Lie ring RL

and a Jordan ring RJ was studied by I.N. Herstein and his students (see
[7, 8, 11] and bibliography in [9] and [5]); he has obtained, for a ring R
of characteristic different from 2, that the simplicity of R implies the
simplicity of a Jordan ring RJ [7, Theorem 1], and also that every Lie
ideal of a simple Lie ring R is contained in the center Z(R) [7, Theorem
3]. K. McCrimmon [20, Theorem 4] has proved that R is a simple algebra
if and only if RJ is a simple Jordan algebra. Our result is the following

Theorem 1. For a 2-torsion-free ring R the following statements are
true:

(1) R is a ∆-simple ring if and only if RJ is a ∆-simple Jordan ring,

(2) R is a ∆-prime ring if and only if RJ is a ∆-prime Jordan ring,

(3) R is a ∆-semiprime ring if and only if RJ is a ∆-semiprime Jordan
ring.
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Let us d ∈ ∆. Since C(R) and ann C(R) are ∆-ideals, the rule

d : R/ ann C(R) ∋ r + ann C(R) 7→ d(r) + ann C(R) ∈ R/ ann C(R)

determines a derivation d of the quotient ring R/ ann C(R). Then

∆ = {d | d ∈ ∆} ⊆ Der(R/ ann C(R)).

Inasmuch d(Z(R)) ⊆ Z(R), the rule

d̂ : RL/Z(R) ∋ r + Z(R) 7→ d(r) + Z(R) ∈ RL/Z(R)

determines a derivation d̂ of the Lie ring RL/Z(R). Then

∆̂ = {d̂ | d ∈ ∆} ⊆ Der(RL/Z(R)).

Since the center Z(R) is a nonzero Lie ideal of an associative ring R with
an identity, a Lie ring RL is not ∆-simple. Our next result is the following

Theorem 2. Let R be a 2-torsion-free ring. Then the following are true:

(1) if the quotient ring RL/Z(R) is a ∆̂-simple Lie ring, then R is
non-commutative and R/ ann C(R) is a ∆-simple ring,

(2) if R is a ∆-simple ring, then RL/Z(R) is a ∆̂-simple Lie ring or
R is commutative,

(3) if RL/Z(R) is a ∆̂-semiprime Lie ring, then R is non-commutative
and the quotient ring R/ ann C(R) is a ∆-semiprime ring,

(4) if R is a ∆-semiprime ring, then RL/Z(R) is a ∆̂-semiprime Lie
ring or R is commutative,

(5) if RL/Z(R) is a ∆̂-prime Lie ring, then R is non-commutative and
R/ ann C(R) is a ∆-prime ring,

(6) if R is a ∆-prime ring, then RL/Z(R) is a ∆̂-prime Lie ring or R
is commutative.

Throughout, let Z(R) denote the center of R, [A, B] (respectively
(A, B)) an additive subgroup of R generated by all commutators [a, b]
(respectively (a, b)), where a ∈ A and b ∈ B, C(R) the commutator ideal
of R, N(R) the set of nilpotent elements in R, char R the characteristic of
R, annl I = {a ∈ R | aI = 0} the left annihilator of I in R, annr I = {a ∈
R | Ia = 0} the right annihilator of I in R, ann I = (annr I) ∩ (annl I),
CR(I) = {a ∈ R | ai = ia for all i ∈ I} the centralizer of I in R and
∂a(x) = [a, x] for a, x ∈ R.

All other definitions and facts are standard and it can be found in
[10], [17] and [19].
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2. Differentially prime right Goldie rings

Let agree that
d0 = idR

is the identity endomorphism for d ∈ ∆.

Lemma 1. The following conditions are equivalent:

(1) R is a ∆-semiprime ring,

(2) for any ∆-ideals A, B of R the implication

AB = 0 ⇒ A ∩ B = 0

is true,

(3) if a ∈ R is such that

aRδm1

1 . . . δmk

k (a) = 0

for any integers k > 1, mi > 0 and derivations δi ∈ ∆ (i = 1, . . . , k),
then a = 0.

Proof. A simple modification of Proposition 2 from [17, §3.2].

Lemma 2. The following conditions are equivalent:

(1) R is a ∆-prime ring,

(2) a left annihilator annl I of a left ∆-ideal I of R is zero,

(3) a right annihilator annr I of a right ∆-ideal I of R is zero,

(4) if a, b ∈ R are such that

aRδm1

1 . . . δmk

k (b) = 0

for any integers k > 1, mj > 0 and derivations δj ∈ ∆ (j = 1, . . . , k),
then a = 0 or b = 0.

Proof. A simple consequence of Lemma 2.1.1 from [10].

If I is an ideal of a ring R, then

CR(I) = {x ∈ R | x + I is regular in the quotient ring R/I}

(see [19, Chapter 2, §1]). The next lemma extends Proposition 1 of [15].
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Lemma 3. Let R be a right Goldie ring and δ ∈ Der R. If R is δ-prime,
then:

(a) the set N = N(R) of nilpotent elements of R is its prime radical,

(b)
⋂k

i=1 δ−1(N) = 0 for some integer k,

(c) CR(0) = CR(N).

Proof. From Theorem 2.2 of [16] (see the part (ii) ⇒ (iii) of its proof), we
obtain (a) and (b). By Proposition 4.1.3 of [19], CR(0) ⊆ CR(N). By the
same argument as in [16, p.284], we can obtain that CR(0) = CR(N).

Corollary 1. If R is a commutative δ-prime Goldie ring and δ ∈ Der R,
then N(R) contains all zero-divisors of R.

By Corollary 1.4 of [6], if I is a δ-prime ideal of a right Noetherian
ring R and R/I has characteristic 0, then I is prime. The following lemma
is an extension of Lemma 2.5 from [6].

Lemma 4. Let R be a 2-torsion-free commutative Goldie ring and δ ∈
Der R. If R is δ-prime, then it is an integral domain.

Proof. Assume that a ∈ ann N(R), b ∈ N(R) and r ∈ R. Then

0 = δ2(arb) = δ(δ(a)rb + aδ(r)b + arδ(b))

= δ2(a)rb + 2δ(a)δ(r)b + 2δ(a)rδ(b) + aδ2(r)b + 2aδ(r)δ(b) + arδ2(b)

and so
2δ(a)Rδ(b) ⊆ N(R).

This means that δ(a) ∈ N(R) or δ(b) ∈ N(R). Hence N(R) is δ-stable.
By Lemma 3, N(R) is a ideal and therefore N(R) = 0. By Lemma 1.2 of
[4], R is prime and consequently it is an integral domain.

Proof of Proposition 1.

(1) By Proposition 1.3 of [6] and Theorem 1 of [1], the prime radical
P(R) is a ∆-ideal and so P(R) = 0 is zero.

(2) Since P(R) = 0, R is prime by Lemma 1.2 from [4].

By Theorem 4 of [22], a ∆-simple ring R of characteristic 0 is prime.
Since every non-commutative ∆-simple ring is ∆-prime, in view of Propo-
sition 1 we obtain the following

Corollary 2. Let R be a semiprime ring (respectively a ring R satisfy
the condition (X)). If R is ∆-simple, then it is prime.
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3. Differential analogues of Herstein’s results

For the proof of Theorem 2 we need the next results. In the proofs
below we use the same consideration, as in [12, Chapter 1, §1], and present
them here in order to have the paper more self-contained. Let agree that
everywhere in this section k > 1 and mi > 0 are integers (i = 1, . . . , k).

Lemma 5. Let R be a ∆-semiprime ring, A and B its ∆-ideals. Then
the following statements hold:

(i) if AB = 0, then BA = 0.

(ii) annl A = annr A.

(iii) A ∩ annr A = 0.

Proof. (i) Indeed, BA is a ∆-ideal and (BA)2 = 0 and so BA = 0.

(ii) We denote (annr A)A by X. Since X is a ∆-ideal and X2 = 0, we
deduce that X = 0. This means that

annr A ⊆ annl A.

The inverse inclusion we can prove similarly.

(iii) Since A ∩ annr A is a nilpotent ∆-ideal, the assertion holds.

Henceforth

Xa = {[δm1

1 . . . δmk

k (a), x] | x ∈ R, δi ∈ ∆, mi > 0
and k > 1 are integers (i = 1, . . . , k)}.

It is clear that [a, x] ∈ Xa.

Lemma 6. Let R be a ∆-semiprime ring and a ∈ R. Then the following
statements hold:

(i) if

a[δm1

1 . . . δmk

k (a), R] = 0

for any integers k > 1, mi > 0 and derivations δi ∈ ∆ (i = 1, . . . , k),
then a ∈ Z(R),

(ii) if I is a right ∆-ideal of R, then Z(I) ⊆ Z(R),

(iii) if I is a commutative right ∆-ideal of R and I is nonzero, then
I ⊆ Z(R). If, moreover, R is ∆-prime, then it is commutative.
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Proof. (i) Let x, y ∈ R and d, δ ∈ ∆. Since

[b, xy] = [b, x]y + x[b, y] (3.1)

for any b ∈ Xa and a[b, xy] = 0, we conclude that ax[b, y] = 0. This gives
that ayx[b, y] = 0 and yax[b, y] = 0 and consequently

(R[a, y]R)2 = 0. (3.2)

In addition,

0 = d(a[b, x]) = d(a)[b, x].

Multiplying (3.1) by d(a) on left we get d(a)x[b, y] = 0. Moreover,

0 = δ(ax[d(b), y]) = δ(a)x[d(b), y]

and, by the similar argument, we obtain that

δm1

1 . . . δmk

k (a)x[δm1

1 . . . δmk

k (a), y] = 0

for any integers k > 1, mi > 0 and derivations δi ∈ ∆ (i = 1, . . . , k). As
in the proof of the condition (3.2), we deduce that

(R[δm1

1 . . . δmk

k (a), y]R)2 = 0.

Then

I =
∞∑

k=1

∑

δ1...δk∈∆
y∈R

R[δm1

1 . . . δmk

k (a), y]R

is a sum of nilpotent ideals and therefore it is a nil ideal. Since I is a
∆-ideal, we conclude that I = 0 and, as a consequence, a ∈ Z(R).

(ii) Let a ∈ Z(I) and y ∈ R. Then, for δ1, . . . , δk ∈ ∆, we have

δm1

1 . . . δmk

k (a) ∈ Z(I)

and ay ∈ I. This gives that

a(δm1

1 . . . δmk

k (a)y) = δm1

1 . . . δmk

k (a)(ay) = a(yδm1

1 . . . δmk

k (a)),

and thus

a[δm1

1 . . . δmk

k (a), y] = 0.

By (i), a ∈ Z(R) is central.
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(iii) By (ii), I ⊆ Z(R). Assume that R is ∆-prime, u, v ∈ R and
a ∈ I. Then au ∈ I and so au ∈ Z(R). Since

a(uv) = (au)v = v(au) = (va)u = a(vu),

we see that

[u, v] ∈ annr I.

By Lemma 2(3), [u, v] = 0 and hence R is commutative.

Lemma 7. Let R be a ∆-prime ring and a ∈ R. If a ∈ CR(I) for some
nonzero right ∆-ideal I of R, then a ∈ Z(R).

Proof. Let us y ∈ R and b ∈ I. Then by ∈ I and so bay = a(by) = bya.
This yields that

I[a, y] = 0 = [a, y]I.

By Lemma 2(3), [a, y] = 0. Hence a ∈ Z(R).

Lemma 8. The left annihilator annl(Xa) is a left ∆-ideal of R.

Proof. Immediate from the definition.

Lemma 9. If R is a ∆-semiprime ring, then CR([R, R]) ⊆ Z(R).

Proof. Let us a ∈ CR([R, R]), d, δ ∈ ∆ and x, y ∈ R. Putting x for a and
xd(a) for xy in (3.1) we obtain

[x, xd(a)] = [x, x]d(a) + x[x, d(a)]

and, as a consequence, [a, x[x, d(a)]] = 0 and [a, x][x, d(a)] = 0. Then,
by the same reasons as in the proof of Lemma 6(i), we obtain that
[a, x] ∈ annl(Xa) and A = annl(Xa) is a ∆-ideal. Then

[δ(a), x][d(a), x] = δ([a, x][d(a), x]) = 0.

Since A ∩ annl A = 0, we deduce that is a nilpotent ∆-ideal and so
a ∈ Z(R).

Lemma 10. Let R be a 2-torsion-free ∆-semiprime ring. If a ∈ R
commutes with all elements of Xa, then a ∈ Z(R).
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Proof. Let r, x, y ∈ R and d ∈ ∆. It is clear that ∂2
a(x) = 0. From

∂2
a(xy) = 0 it follows that

2∂a(x)∂a(y) = 0

and so ∂a(x)∂a(y) = 0. Since

0 = ∂a(x)∂a(rx) = ∂a(x)∂a(r)x + ∂a(x)r∂a(x) = ∂a(x)r∂a(x),

we deduce that ∂a(x)R∂a(x) = 0 and (∂a(x)R)2 = 0. Moreover, a[b, x] =
[b, x]a for any [b, x] ∈ Xa and therefore

d(a)[b, x] + a[d(b), x] + a[b, d(x)] = [b, x]d(a) + [d(b), x]a + [b, d(x)]a.

From this it holds that

d(a)[b, x] = [b, x]d(a).

This means that CR(Xa) is ∆-stable and (∂d(a)(x)R)2 = 0. As a conse-
quence,

I =
∞∑

k=1

∑

x∈R
mk>0

δ1,...,δk∈∆

∂δ
m1

1
...δ

mk

k
(a)(x)R

is a sum of nilpotent ideals and so I is a nil ideal. Since I is a ∆-ideal,
we deduce that I = 0. Hence a ∈ Z(R).

The next lemma is an extension of Lemma 1 from [11] in the differential
case.

Lemma 11. Let R be a 2-torsion-free ∆-semiprime ring, T its Lie ∆-
ideal. If [T, T ] ⊆ Z(R), then T ⊆ Z(R).

Proof. Let x ∈ R and t ∈ T .
1) If [T, T ] = 0, then [t, x] ∈ T and so [t, [t, x]] = 0. By Lemma 10,

T ⊆ Z(R).
2) Now assume that 0 6= [a, b] ∈ [T, T ] for some a, b ∈ T . Then

∂a(b) ∈ Z(R) and ∂2
a(R) ⊆ Z(R).

Moreover, we have that

Z(R) ∋ ∂2
a(bx) = ∂a(∂a(b)x + b∂a(x))

= ∂2
a(b)x + 2∂a(b)∂a(x) + b∂2

a(x)

= 2∂a(b)∂a(x) + b∂2
a(x)
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and hence

[2∂a(b)∂a(x) + b∂2
a(x), b] = 0.

Then

0 = 2∂b(∂a(b))∂a(x) + 2∂a(b)∂b(∂a(x)) + ∂b(b)∂2
a(x) + b∂b(∂

2
a(x))

= 2∂a(b)∂b(∂a(x))
(3.3)

and

∂a(ba) = ∂a(b)a + b∂a(a) = ∂a(b)a.

Replacing ba for x in (3.3) we have

0 = 2∂a(b)∂b(∂a(b)a) = 2∂a(b)(∂b(∂a(b)) + ∂a(b)∂b(a)) = −2∂a(b)3

and thus ∂a(b)3 = 0. Then R∂a(b) is a nilpotent ideal in R and, as a
consequence, ∑

a,b∈T

R∂a(b)

is a nonzero nil ∆-ideal, a contradiction.

Lemma 12. If U is a Lie ∆-ideal of a ring R and I(U) = {u ∈ R |
uR ⊆ U}, then I(U) is the largest ∆-ideal of R such that I(U) ⊆ U .

Proof. Let u, v ∈ I(U), x, y ∈ R and δ ∈ ∆. Clearly that I(U) is an
additive subgroup of R, I(U) ⊆ U and (ux)y = u(xy) ∈ (ux)R = u(xR) ⊆
uR ⊆ U that is ux ∈ I(U). From

u(xy) − (yu)x = (ux)y − y(ux) = [ux, y] ∈ U

(and so (yu)x ∈ U) it holds that yu ∈ I(U). Hence U is a two-sided ideal
of R. Moreover,

δ(u)x + uδ(x) = δ(ux) ∈ δ(U) ⊆ U

and uδ(x) ∈ uR ⊆ U . Therefore δ(u)x ∈ U . This means that I(U) is a ∆-
ideal of R. If A is a ∆-ideal of R that is contained in U , then AR ⊆ A ⊆ U
and hence A ⊆ I(U).

Lemma 13. Let U be a Lie ∆-ideal of R. If U is an associative subring
of R, then [U, U ] = 0 or U contains a nonzero ∆-ideal of R.
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Proof. Assume that x ∈ R and [U, U ] 6= 0. Then [u, v] 6= 0 for some
u, v ∈ U and

[u, vx] = u(vx) − (vx)u = (uv − vu)x + v(ux − xu).

Since [u, x], [u, vx] ∈ U and v[u, x] ∈ U , we deduce that [u, v]x ∈ U . This
means that [u, v] ∈ I(U). In view of Lemma 12, I(U) is a nonzero ∆-ideal
of R that is contained in U .

Proposition 2. If U is a Lie ∆-ideal of R, then [U, U ] = 0 or there
exists a nonzero ∆-ideal IU of R such that [IU , R] ⊆ U .

Proof. By Lemma 3 of [7],

T (U) = {t ∈ R | [t, R] ⊆ U}

is both a Lie ideal and an associative subring of R and U ⊆ T (U).
Moreover, for δ ∈ ∆, we have

[δ(t), R] + [t, δ(R)] = δ([t, R]) ⊆ δ(U) ⊆ U

and so [δ(t), R] ⊆ U . Hence T (U) is ∆-stable. If [U, U ] 6= 0, then, by
Lemmas 12 and 13,

IU = I(T (U)) ⊆ T (U)

is a nonzero ∆-ideal of R such that [IU , R] ⊆ U .

Lemma 14. Let U be a Lie ∆-ideal of a ring R. If [U, U ] = 0, then the
centralizer CR(U) is a Lie ∆-ideal and an associative subring of R.

Proof. Is immediately.

We extend Theorem 1.3 of [9] in the following

Proposition 3. Let R be a ∆-simple ring of characteristic 2. If U is a
Lie ∆-ideal of R, then one of the following holds:

(1) [R, R] ⊆ U ,

(2) U ⊆ Z(R),

(3) R contains a subfield P such that U ⊆ P and [P, R] ⊆ P .
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Proof. If [U, U ] 6= 0, then [R, R] ⊆ U by Proposition 2. Therefore we
assume that [U, U ] = 0. By Lemma 14, CR(U) is a Lie ∆-ideal and an
associative subring of R such that U ⊆ CR(U).

a) If CR(U) is non-commutative, then CR(U) = R by Lemma 13.
Hence U ⊆ Z(R).

b) Now assume that the centralizer CR(U) is commutative. If c ∈
CR(U) and x ∈ R, then

c2 ∈ CR(U) and [c2, x] = [[c, x], x] = 2c[c, x] = 0.

This gives that c2 ∈ Z(R). By Theorem 2 of [22], Z(R) is a field. As a
consequence, c2 (and so c) is invertible in CR(U). Hence CR(U) is a field.

Corollary 3. Let R be a ∆-simple ring. If U is a Lie ∆-ideal of R, then
one of the following holds:

(1) [R, R] ⊆ U ,

(2) U ⊆ Z(R),

(3) char R = 2 and R contains a subfield P such that U ⊆ P and
[P, R] ⊆ P .

4. Jordan properties

Lemma 15. Let R be a ∆-simple ring of characteristic 6= 2, U its proper
Jordan ∆-ideal and a ∈ U . If [a, R] ⊆ U , then a = 0.

Proof. Let us x, y ∈ R. Since [a, x] ∈ U and (a, x) ∈ U , we obtain that
2ax ∈ U and, as a consequence, ax ∈ U and (ax, y) ∈ U . Moreover, from
axy ∈ U it follows that yax ∈ U . This means that RaR ⊆ U . Since
d(a) ∈ U for any d ∈ ∆, in view of [21, Lemma 1.1] we obtain that

∞∑

k=1

∑

δ1,...,δk∈∆
(m1,...,mk)∈N

k

Rδm1

1 . . . δmk

k (a)R

is a proper ∆-ideal of R that is contained in U . Hence a = 0.

Remark 1. Let R be a 2-torsion-free ring, U its Jordan ∆-ideal. If ∆
contains all inner derivations of R, then U is an ideal of R.
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In fact, we have

2xa = [a, x] + (a, x) ∈ U

for any a, b, x ∈ U and so xa ∈ U . By the same argument, we can conclude
that ax ∈ U .

Proof of Theorem 1.

(1) (⇐) If A is a nonzero proper ∆-ideal of a ring R, then AJ is a
nonzero proper ∆-ideal of RJ , a contradiction.

(⇒) Let U be a proper Jordan ∆-ideal of R, a, b ∈ U and x ∈ R. By
Lemma 1 of [7], [(a, b), x] ∈ U , and, by Lemma 15, we see that

(a, b) = 0. (4.4)

In particular, 2a2 = 0 and, as a consequence, a2 = 0 and 2axa =
(a, (a, x)) = 0. It follows that axa = 0. Since

0 = (a + b)x(a + b) = axb + bxa

and

0 = (b, (a, x)) = b(ax + xa) + (ax + xa)b = bax + bxa + axb + xba,

we deduce that bax + xab = 0. But ab = −ba and so bax − xba = 0. This
means that ba ∈ Z(R). Then (RabR)2 = 0. Since

I =
∞∑

k=1

∑

a,b∈U, δ1,...,δk∈∆
(m1,...,mk)∈N

k

Raδm1

1 . . . δmk

k (b)R

is a ∆-ideal of R that is a sum of nilpotent ideals, we obtain that I = 0.
Therefore

0 = (b, x)a = (bx + xb)a = bxa + xba = 2bxa.

We conclude that URU = 0. From (RUR)2 = 0 and δ(RUR) ⊆ RUR for
any δ ∈ ∆ it holds that U = 0.

(2) (⇐) If A, B are ∆-ideals of R such that AB = 0, then (BA)2 = 0
and so BA is a Jordan ideal of R satisfying the condition

(BA, BA) = 0.
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Thus the condition (4.4) is true for U = BA. As in the proof of the part
(1), we obtain that BA = 0. Then AJ , BJ are ∆-ideals of a Jordan ring
RJ such that

(AJ , BJ) = 0.

Hence A = 0 or B = 0.

(⇒) Let a1, a2 ∈ A and x, y ∈ R. Suppose that RJ is not ∆-prime
and therefore there exist nonzero Jordan ∆-ideals A, B of R such that

(A, B) = 0.

By the same reasons as above, we conclude that A ∩ B = 0. Then, by
Lemma 1 of [7], we have [(a1, a2), x] ∈ A and hence

[(a1, a2), x] ± ((a1, a2), x) ∈ A.

Therefore x(a1, a2)y ∈ A. Thus R contains ∆-ideals R(A, A)R ⊆ A and
R(B, B)R ⊆ B such that

R(A, A)R(B, B)R ⊆ A ∩ B = 0.

Hence (A, A) = 0 or (B, B) = 0 and this leads to a contradiction.

(3) (⇐) If A is a nonzero ∆-ideal of R such that A2 = 0, then AJ is
a nonzero ∆-ideal of the Jordan ring RJ such that

(AJ , AJ) = 0,

a contradiction.

(⇒) Suppose that R has a nonzero Jordan ∆-ideal U such that

(U, U) = 0.

Then the condition (4.4) is true for any a, b ∈ U . As in the proof of the
part (1), we obtain that U = 0.

If R is a ring, then on the set R we can to define a left Jordan
multiplication “〈−, −〉” by the rule

〈a, b〉 = 2ab

for any a, b ∈ R. Then the equalities

〈〈〈a, a〉, b〉, a〉 = 〈〈a, a〉, 〈b, a〉〉 and 〈〈a, b〉, a〉 = 〈a, 〈b, a〉〉
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are true and hence

RlJ = (R, +, 〈−, −〉)

is a non-commutative Jordan ring (which is called a left Jordan ring
associated with an associative ring R). It is clear that, for commutative
ring R, we have

RJ = RlJ .

If A is an additive subgroup of R that 〈a, r〉, 〈r, a〉 ∈ A for any a ∈ A and
r ∈ R, then A is called an ideal of RlJ . If δ ∈ ∆ and a, b ∈ R, then

δ(〈a, b〉) = δ(2ab) = 2δ(a)b + 2aδ(b) = 〈δ(a), b〉 + 〈a, δ(b)〉

and therefore δ ∈ Der(RlJ). By the other hand, if δ ∈ Der(RlJ), then

2δ(ab) = δ(〈a, b〉) = 〈δ(a), b〉 + 〈a, δ(b)〉 = 2(δ(a)b + aδ(b)).

If R is a 2-torsion-free ring, then δ ∈ Der R. Similarly, as in Theorem 1,
we can prove the following

Proposition 4. For a 2-torsion-free ring R the following conditions are
true:

(1) R is a ∆-simple ring if and only if RlJ is a ∆-simple Jordan ring,

(2) R is a ∆-prime ring if and only if RlJ is a ∆-prime Jordan ring,

(3) R is a ∆-semiprime ring if and only if RlJ is a ∆-semiprime Jordan
ring.

5. Proofs

The next lemma in the prime case is contained in [18, Lemma 7].

Lemma 16 ([2, Lemma 1.7]). Let R be a ring. If [[R, R], [R, R]] = 0,
then the commutator ideal C(R) is nil.

Corollary 4. If R is a non-commutative ∆-semiprime ring, then [R, R]
is non-commutative.

Proof of Theorem 2.

(1) It is clear that a ring R is non-commutative. If A is a nonzero
proper ∆-ideal of R, then AL is a nonzero proper ∆-ideal of RL. Therefore
A ⊆ Z(R) and, as a consequence, A · C(R) = 0.
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(2) Suppose that a ∆-simple ring R is non-commutative and U is
its nonzero proper Lie ∆-ideal. By Proposition 2, [U, U ] = 0. Then, by
Lemma 11, U ⊆ Z(R). Hence the quotient ring RL/Z(R) is ∆̂-simple.

(3) Let A be a nonzero ∆-ideal of R such that A2 = 0. Then AL is a
nonzero ∆-ideal of a Lie ring RL and, moreover,

[AL, AL] = 0.

By Lemma 11, A ⊆ Z(R) and hence A · C(R) = 0.

(4) Suppose that R is non-commutative. Let A be a nonzero Lie
∆-ideal of R such that [A, A] = 0. Then, by Lemma 11, A ⊆ Z(R) and,
as a consequence, the Lie ring RL/Z(R) is ∆̂-semiprime.

(5) Let A, B be nonzero ∆-ideals of R such that AB = 0. Obviously,
[A, B] ⊆ Z(R). Then A ⊆ Z(R) or B ⊆ Z(R).

(6) Assume that R is non-commutative and A, B are nonzero Lie
∆-ideals of R such that

[A, B] = 0.

Then A ∩ B ⊆ Z(R). Since A ∩ B ⊆ ann C(R) in a ∆-prime ring R, we
have that the intersection A ∩ B = 0 is zero. If T (A) = R (see proof
of Proposition 2), then [R, R] ⊆ A and B ⊆ CR([R, R]). By Lemma 9,
B ⊆ Z(R). So we assume that T (A) 6= R. If [T (A), T (A)] = 0, then
[A, A] = 0 and, by Lemma 11, A ⊆ Z(R). Suppose that [T (A), T (A)] 6= 0.
By Lemma 13, T (A) contains a nonzero ∆-ideal I of R. Since

[I, B] ⊆ A ∩ B = 0,

we conclude that B ⊆ Z(R) by Lemma 7.

The map

∂a : R ∋ x 7→ [a, x] ∈ R

is called an inner derivation of a ring R induced by a ∈ R. The set IDer R
of all inner derivations of R is a Lie ring. Every prime Lie ring is primary
Lie.

Lemma 17. There is the Lie ring isomorphism

IDer R ∋ ∂a 7→ a + Z(R) ∈ RL/Z(R).

Proof. Evident.

Corollary 5. Let R be a ring. Then the following statements hold:
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(1) IDer R is a simple Lie ring if and only if RL/Z(R) is a simple Lie
ring,

(2) IDer R is a prime Lie ring if and only if RL/Z(R) is a prime Lie
ring,

(3) IDer R is a semiprime Lie ring if and only if RL/Z(R) is a semipri-
me Lie ring,

(4) IDer R is a primary Lie ring if and only if RL/Z(R) is a primary
Lie ring.
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