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In early December 2019, the pandemic of coronavirus disease 2019 (COVID-19) began in Wuhan City, 
Hubei Province, China. Since then, it has propagated rapidly and turned into a major global crisis due to the 
high virus spreading. Acute respiratory distress syndrome (ARDS) is considered as a defining cause of  the 
death cases. Cytokine storm and oxidative stress are the main players of ARDS development during respira-
tory virus infections. In this review, we discussed molecular mechanisms of a fatal vicious circle between 
oxidative stress and cytokine storm during COVID-19 infection. We also described how aging can inflame the 
vicious circle.
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F or years, it has been predicted that human 
coronavirus (HCoVs) can become a global 
public health threat [1]. With the emergence 

of novel CoVs in December 2019 in Wuhan, Chi-
na, the prophecy turned into a tragedy. The global 
outbreak of coronavirus disease 2019 (COVID-19) 
caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) [2]. Acute respiratory 
distress syndrome (ARDS) is considered as more 
classic symptom and the most significant complica-
tion of COVID-19 patients who come to the hospital 
[3]. ARDS is a type of respiratory disorder that is 
characterized by stiff and inflamed lung, shortness 
of breath, cough, as well as breathing difficulties [4]. 
Additionally, COVID-19 infection is associated with 
long term complications (such as neurodegenerative 
disease) in patients who survived. It is reported that 
the mortality of COVID-19 is 35-50% [4, 5]. Because 

of COVID-19 global outbreak and its economic and 
social impact, exploring mechanism and therapeutic 
targets of ARDS seem to be a necessity. The mana
gement of ARDS is challenging because of its mul-
tifactorial and complex pathogenesis [6]. Several evi-
dences reported that the imbalance between oxidant 
and antioxidant capacity or oxidative stress plays a 
major role in the development of ARDS in respira-
tory diseases [7]. 

Reactive oxygen species (ROS) are a defense 
system during virus respiratory infections [8]. Vari-
ous cell types in the lung can produce ROS, includ-
ing monocytes and macrophages, neutrophil, as 
well as the pulmonary endothelial and epithelial 
cells [7]. These cells express the ROS-generating 
enzyme such as nicotinamide adenine dinucleo-
tide phosphate oxidases (NADPH oxidases, Nox) 
and Xanthine oxidase (XO) [7, 8]. In physiological 
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condition, endogenous antioxidants such as super-
oxide dismutase (SOD) neutralize free radicals and 
also their harmful effect [9]. However, these antioxi-
dants are rapidly overwhelmed during some patho-
logical conditions, leading to excess level of ROS 
and subsequent cell injury by various mechanisms 
including; direct damage,  lipid peroxidation, oxida-
tion of proteins leading to release of proteases and 
inactivation of antioxidant and antiprotease enzymes 
and alteration of transcription factors such as acti-
vator protein-1 (AP‑1) and nuclear factor (NF)-KB, 
leading to enhanced expression of proinflammatory 
cytokine (cytokine storm) which is associated with 
the pathogenesis of ARDS during virus respira-
tory infections [9-11]. Proinflammatory cytokines 
such as interleukin-1β (IL-1β) and tumor necrosis 
factor-α (TNFα) can stimulate the formation of ROS, 
worsening ARDS and lung injury [12]. Indeed, like-
ly there is a vicious circle between oxidative stress 
and cytokine storm in ARDS pathogenesis. Hence, 
pathological conditions, which are associated with 
the overproduction of ROS can inflame the vicious 
circle. 

Aging is an intricate process with classic hall-
marks, including genomic instability, telomere attri-
tion, mitochondrial dysfunction and cellular senes-
cence. It is well accepted that oxidative stress plays 
a central role in the aging related disease [13]. There-
fore, aging can potentiate the ARDS development in 
respiratory viral infections [14]. 

In the present review, we discussed the molecu-
lar mechanism behind redox biology of SARS-CoV2 
as a respiratory virus. We focus on how cytokine 
production following oxidative stress lead to ARDS 
as the leading cause of mortality. The intersec-
tions of oxidative stress and aging have been also 
described. Finally, we review long term effects of 
COVID-19 infection in patients that recovered.

Mechanism of enhanced ROS production 
during COVID-19 infection 

Excess ROS production and reduced levels of 
antioxidant enzymes are outstanding features of res-
piratory viruses [15, 16]. Some sources of ROS pro-
duction during SARS-CoV2 infection in host cells 
are summarized below. 

NOX2 as main source of ROS 
in respiratory viruses  

 Nicotinamide adenine dinucleotide phosphate 
oxidase (NADPH oxidases, Nox) is one of the main 

sources of ROS production during physiological and 
pathophysiological conditions [17, 18]. NOX is con-
sidered as a professional ROS producer [7]. Five dif-
ferent NOX isoforms have been identified: NOX1, 
NOX2, NOX3, NOX4, NOX5 (22, 23). NADPH oxi-
dase 2 (NOX2) is a multicomponent enzyme with 
two membranes bound subunits (gp91phox, p22 
phox) and three cytosolic subunits (p67 phox, p47 
phox, and p40 phox). In addition to these subunits, 
small GTPase Rac1 or Rac2 may be associated with 
NAPDH oxidase [18]. The contribution of NOX2 
in respiratory viruses-induced ROS production has 
been confirmed [19-23]. NOX2 is a phagocytic en-
zyme, which is expressed in monocytes, neutrophils 
macrophages, as well as on air way epithelial cells 
[24]. It is reported that NOX2 oxidase plays a pivo
tal role in the killing of bacteria and fungi through 
phagosomal ROS production. However, NOX2 oxi-
dase does not appear to eliminate viruses in a man-
ner analogous to that for bacteria. In fact, in the ab-
sence of NOX2 oxidase, influenza A virus causes 
substantially less lung injury, and viral burden, sug-
gesting that NOX2 oxidase-derived ROS promotes 
rather than inhibits viral infection [21, 25]. It is iden-
tified that p47phox phosphorylation has critical role 
in the activation of NOX2 [18]. Different signaling 
pathways involved in the initiation of p47phox phos-
phorylation [18]. Several lines of evidences revealed 
that in endothelial cells, TNFα stimulates PKCzeta 
which subsequently phosphorylates p47phox, NOX2 
assembly and ROS production [26, 27]. In polymor-
phonuclear leukocytes (PMN), TNFα can activate 
NOX2 signaling through different mechanisms [28]. 

NOX2-dependent ROS production is also ac-
tivated by the family of toll-like receptors (TLRs) 
[29]. It is reported that TLRs are a class of pattern 
recognition receptors (PRRs) that initiate the innate 
immune response through the recognition of patho-
gen-associated molecular patterns (PAMPs). TLR7 
belongs to a class of PRRs which recognizes sin-
gle strand RNA (ssRNA) of pathogen [30]. SARS-
CoV-2, a single-stranded-RNA-enveloped virus, 
targets cells through the viral structural spike (S) 
protein that binds to the angiotensin-converting en-
zyme 2 (ACE2) receptor. The COVID-19 particles 
bind to the receptor-binding motif in the receptor 
binding domain (RBD) [31]. Following receptor 
binding, the virus particle uses host cell receptors 
and endosomes to enter cells [32]. After entry into 
cells, ssRNA binds to TLR7. The TLR7 signaling 
induces p47phox phosphorylation and subsequent 
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NOX2 activation and ROS production [33]. In ad-
dition, TLR7 signaling via the adaptor myeloid dif-
ferentiation primary response protein 88 (MYD88) 
and TIR-domain-containing adapter-inducing 
interferon-β (TRIF) results in the activation of seve
ral transcriptional factor including; nuclear factor-
κB (NF-κB), IFN- regulatory factor 7 (IRF7) and 
mitogen activated protein kinase (MAPK). All of 
these factors can highly increase pro-inflammatory 
cytokines production [30] (Fig. 1).

Mitochondrial ROS production 
during SARS-COV2 infection

Mitochondria are the major resource of ROS 
in the mammalian cell types. Mitochondria produce 
ROS predominately at the electron transport chain 
(ETC) complex I and complex III during oxidative 
phosphorylation (OXPHOS) [34]. Invading pathogen 
triggers alterations in cellular metabolism and mito-

chondrial function resulting in increased mitochon-
drial ROS (mtROS) production, which is associated 
with mitochondrial DNA (mtDNA) damages and 
apoptosis [35]. In addition to apoptosis, mtROS can 
stimulate innate immune responses during bacterial 
and viral infections [36, 37]. 

To the best of our knowledge, there is no direct 
evidence indicating the production of mtROS during 
SARS-CoV2 infection. Nevertheless, there is some 
indirect evidence that SARS-CoV infection triggers 
ROS production and apoptosis through the mito-
chondrial pathway. SARS-CoV nucleocapsid pro-
tein induces mitochondrial dysfunction resulting in 
mtROS overproduction and apoptosis in COS-1 cell 
[38]. It is revealed that the 3C-like protease (3CLpro) 
of SARS-CoV can increase ROS production, which 
leads to apoptosis in HL-CZ cells [39]. The involve-
ment of other SARS-CoV proteins such as M, E, 
S, ORF-6, 7a and 9b in apoptosis, which could be 

Fig. 1. Schematic shows: (1) SARS-CoV infection can induce ROS production and proinflammatory cytokines 
and MAPK kinase can amplify cytokine production. (2) Oxidative stress can potentiate proinflammatory cy-
tokines production through TLR4 signaling pathway. (3) Oxidative stress active inflammasome which lead to 
production of IL-1ß and IL-18. (4) IL-B signaling pathway causes mitochondrial dysfunction and ROS produc-
tion. Created with BioRender.com



21

G. H. Meftahi, Z. Bahari, Z. Jangravi, M. Iman

associated with the mtROS production, have been 
studied [40, 41]. 

Endoplasmic reticulum stress can 
be a source of ROS production 
during SARS-COV2 infection 

HcoVs, as intracellular obligate parasites, in-
duce endoplasmic reticulum stress (ER Stress) or 
unfolded protein response (UPR) as a result of over-
loading of protein synthesis and processing during 
viral infection [42]. ER stress is regulated by vari-
ous signaling pathways, which are initiated by three 
receptors in ER membrane: 1) activating transcrip-
tional factor 6 (ATF6), 2) inositol-requiring protein 
1 (IRE1), and 3) protein-kinase-R (PKR)-like endo-
plasmic reticulum kinase (PERK). Over production 
of ROS is not only as an integral component, but also 
as a consequence of ER stress. Different mechanisms 
have been defined for production of ROS under ER 
stress, which have been mentioned above [43]. Acti-
vation of ER stress has been studied during SARS-
CoV infection. The S and 3a proteins of SARS-CoV 
can activate the PERK signaling [44, 45]. Accessory 
proteins of SARS-CoV, which are located in lumi-
nal surface of the ER surface, can activate the ATF6 
signaling [46]. The role of IRE1 pathway has been 
also reported during SARS-CoV infection. The E 
protein of SARS-CoV can inhibit IRE1 signaling 
pathway [47]. 

ROS-mediated cellular signaling 
induces cytokine storm during 
SARS-CoV2 infection

It is reported that cell signaling proteins can 
be affected by ROS overproduction [48]. Changes in 
cell signaling proteins always associated with patho
logical conditions such as overproduction of pro-
inflammatory cytokines, which is named cytokine 
storm [7, 48]. In the following section, we discuss 
ROS-activated signaling pathways that involving 
in the cytokine storm and subsequent lung injury 
during SARS-CoV2 infection.

ROS and NFκB signaling pathway

The NFκB is considered as a ROS dependent 
transcription factor, which plays a pivotal role in 
the activation of the innate immune system [48, 49]. 
ROS-dependent activation of NF-κB triggers mas-
sive production of proinflammatory cytokines and 
chemokines, such as TNFα, IL-1, IL6, and IL8 [49]. 
The NF-κB also plays a major role in pathogenesis of 

most infections, including those caused by viruses. 
Accordingly, NF-κB has been considered as a po-
tential therapeutic target in microbial diseases [50]. 

The role of NF-κB activation in pathogenesis 
of SARS-CoV has been also studied. SARS-CoV 
proteins E, spike, nucleocapsid and nonstructural 
proteins (nsps) promote NF-κB activation [51-56]. 
Studies have been shown that absence of these pro-
teins, resulting in attenuated lung injury because of 
a decrease in proinflammatory cytokines and reduc-
tion in the neutrophils infiltration in lung tissue [51]. 

ROS and MAPKs signaling pathway

The mitogen-activated protein kinases 
(MAPKs) are a group of protein kinases which are 
activated in response to a variety of environmental 
stimulators including oxidative stress, viral infection 
and proinflammatory cytokines [57]. The MAPK 
signaling pathways have been classified into three 
main groups, including the extracellular signal-re-
lated kinases (ERKs), the c-Jun N-terminal kinases 
(JNKs), and the p38 kinase (p38) pathways [58]. 
Activation of MAPKs signaling proteins has been 
detected during SARS-CoV infection, which can 
potentiate the ROS-activated MAKPs cascade. The 
proteins of SARS-CoV such as S and 3b proteins can 
stimulate upregulation of proinflammatory cytokines 
through ERK/AP1 signaling pathway activation [59, 
60]. The S protein of SARS-CoV can activate the 
ERK/NF-κB pathway via activation of PKC alpha 
[61]. Involvement of other SARS-CoV proteins such 
as 3b, 3a, 7a in the JNK activation and increased 
cytokines production has also been reported [53, 60]. 
Increased level of IL-8 as a result of P38 MAPK ac-
tivation has been detected during SARS -CoV infec-
tion [62]. 

ROS and TLR4 signaling pathway

During SARS-CoV infection, oxidized phos-
pholipids (OxPLs), as a product of oxidative stress, 
can trigger the activation of TLR4 and subsequently 
NF-κB [15]. It is identified that both of the TIR-
domain-containing adapter-inducing interferon-β 
(TRIF) and TNF receptor associated factor 6 
(TRAF6) mediate activation of NF-κB, as adaptor 
molecules. Therefore, TLR4-TRIF-TRAF6-NF-kB 
signaling pathway resulting in overproduction of 
proinflammatory cytokines, leading cytokine storm. 
Cytokine storm together with excess ROS produc-
tion can worse lung injury and ARDS in COVID-19 
infection [15, 63]. 
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ROS activate inflammasome complex

The NLRP3 inf lammasome is activated 
through a ROS dependent pathway in the respirato-
ry viruses [19, 64]. Inflammasomes are multiprotein 
complexes consisting of an intracellular sensor such 
as nod-like receptor proteins (NLRPs), the adaptor 
apoptosis-associated speck-like protein containing 
a carboxy-terminal CARD (i.e.ASC) and procas-
pase1 [65]. The NLRP3 is a well characterized NLR 
sensor molecule, which is activated by NOX2-me-
diated ROS or mitochondrial ROS during respira-
tory virus infections [64]. It has been also shown 
that ROS activates inflammasome-activating signal 
transduction pathways via the phosphatidylinositol-
3-kinase (PI3K) and MAPK signaling pathways. As 
a component of the innate immune system, activa-
tion of inflammasome complex results in proteolytic 
processing of pro-caspase 1 into activated caspase 
1, which in turn causes proteolysis of pro-IL-1β and 
pro-IL-18 (in active form) into IL-1β and IL-18 (ac-
tive form), respectively [65]. 

In addition to ROS dependent pathway, NLRP3 
inflammasome activates through ROS-indepen
dent pathway. Shi et al. (2019) showed the role of 
ORF8b protein in activation of NLRP3 inflamma-
some during SARS-CoV infection. Mechanistically, 
ORF8b interacts directly with the leucine rich re-
peat (LRR) domain of NLRP3 and triggers robust 
NLRP3 inflammasome activation and IL-1β release 
[66]. Disturbance of calcium homeostasis can stim-
ulate inflammasome activation during coronavirus 
infection. The E protein of SARS-CoV, which com-
prises only 76 amino acids, forms Ca2+ permeable 
ion channels and activates the NLRP3 inflamma-
some [67]. SARS-CoV 3a viroporin with ion chan-
nel activity also activates the NLRP3 inflammasome 
[68]. Improper regulation of inflammasome produc-
tion could adversely affect the balance between pro-
and anti-inflammatory cytokines, cytokine storm, 
leading to inflammation. The NLRP3 Inflamma-
some also promotes oxidative DNA damage. Both 
of the inflammation and DNA damage lead to an in-
flammatory form of programmed cell death, named 
pyroptosis. Subsequently, pyroptosis can further 
release ROS from damaged cells. So, all of these 
events causes small vicious cycle between inflam-
masome and ROS production lead to further tissue 
injury [65].

ROS and Nrf2 signaling pathway

Nuclear factor E2-related factor 2 (Nrf2) 
signaling pathway plays a main role in keeping the 
balance of the cellular redox statue to prevent oxida-
tive stress [69]. The Nrf2 signaling is activated by 
the increased level of intracellular ROS through dif-
ferent mechanisms. The Nrf2 signaling can trigger 
the expression of antioxidant enzyme such as su-
peroxide dismutases (SOD), catalase (CAT), peroxi
redoxins, and glutathione peroxidases (GPx) [70]. 
Furthermore, Nrf2 can inactivate NF-κB pathway, 
then control cytokine overproduction. Indeed, there 
is a crosstalk between NF-κB and Nrf2 signaling 
pathways, in which negatively regulate each other 
to maintain redox homeostasis in physiological con-
dition [71]. However, in pathological condition this 
regulation is disturbed, resulting in oxidative stress 
and inflammation leading to tissue injury. Reinforce-
ment of NF-κB or suppression of Nrf2 by the other 
signaling pathways causing imbalance in Nrf2–NF-
κB regulation [72, 73]. Therefore, it seems that si-
multaneous targeting NF-κB and Nrf2 signaling 
using pharmacological agents can be a promising 
therapeutic strategy for inflammatory disease such 
as ARDS.

The role of Nrf2 in the respiratory virus patho-
genesis is controversial [8, 74]. Unlike non- patho-
genic Influenza virus (IV) strains, in highly patho
genic IV strains, phosphorylated form of Nrf2 is not 
imported to the nucleus [75]. This discrepancy could 
be justified with dysregulated Nrf2-NF-κB cross-
talk. Although, there is not clear information about 
Nrf2-NF-κB signaling pathway in the SARS-CoV 
infection. It is reported that transient activation of 
Nrf2 during the early stage of viral infection may 
be related to dysregulation of Nrf2-NF-κB signaling 
pathway. Some evidence reported activation of NF-
κB by SARS-CoV proteins [53-56] and inhibition of 
Nrf2 by ROS-activated MAPK/ERK pathway [71] 
(Fig. 2).

Proinflammatory cytokines can 
trigger ROS production

There is a positive feedback loop between 
ROS generation and cytokines produced by NF-kB 
signaling pathway [48]. TNFα is one of the main pro-
inflammatory factors which are secreted in response 
to SARA-CoV-2 infection [76]. TNF could trigger 
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Fig. 2. The diagram shows how SARS-CoV infec-
tion can induce dysregulated Nrf2-NF-κB cross-
talk leads to a viscous circle between ROS produc-
tion and proinflammatory cytokine. Created with 
BioRender.com

ROS production, though mitochondrial and NOX 
pathways [77]. TNFα induces caspase-8 activation, 
which alters mitochondrial function, increases ROS 
production [12]. Engagement of TNF and TNF re-
ceptor1 (TNFR1) leads to NOX complex activation 
[78]. IL-1β also can elevate the cellular ROS level 
through reduction of mitochondrial complex1 [79]. 
Increase in ROS production in response to TNF- 
α, and IFN-γ has been also reported by yang and 
coworkers [77]. 

Delayed IFN-I signaling can 
potentiate the fatal vicious circle 
during SARS-CoV2 infection

Type I interferons (IFN-I) are secreted by 
infected cells and induce innate and adaptive im-
mune responses via Janus kinase signal transducer 
and activator of transcription (JAK-STAT) path-
way, leading to expression of IFN-stimulated genes 
(ISGs) which their products initiate an intracellular 
antimicrobial programmed that limits the spread 
of infectious agents, especially viral pathogen [80]. 
Type I interferons responses keep the balance be-
tween activating and suppressive signals to prevent 
hyperinflammation. The final outcome of IFNs 
signaling is influenced by host, pathogen and en-
vironmental factors. Imbalance of IFN-I responses 
resulting in hyper-inflammation [81]. 

Studies have been shown that SARS-CoV in-
fection is accompanied by a delayed IFN-I signaling 
which lead to enrollment of monocytes into the lungs 
as a result of the enhanced release of monocyte che-
moattractants by alveolar epithelial cells. Continued 
recruitment of blood monocytes into the lungs re-
sulting in accumulation of pathogenic inflamma-
tory monocyte-macrophages (IMM), which leads 
to hyper-inflammation and impaired virus-specific 
T cell responses [82]. The CoV-specific T cells play 
an important role in virus clearance and limit lung 
injury. Therefore, impaired T cell responses causing 
hyper-inflammation, cytokine storm, and excess 
ROS production during SARS-CoV infection [83]. 
The ORF-9b protein of the SARS-CoV localizes to 
host mitochondrial outer membrane. It can trigger 
degradation of mitochondrial-associated adaptor 
molecule MAVS as adaptor molecules in type I IFN 
signaling pathway. In this way, SARS-CoV escapes 
innate immune responses [84]. Coronavirus 3a pro-
tein induces PERK activation resulting in suppres-
sion of IFN1 signaling and innate immunity. The 3a 
protein inhibits IFN1 signaling via induction of IFN 
alpha-receptor subunit 1 (IFNAR1) degradation [44]. 
Coronavirus papain-like protease (PLpro) is a deu-
biquitinating enzyme which works as a type I IFN 
antagonist. Plpro downregulate ERK1 pathway and 
suppress IFN-α-induced responses [85]. 

Age-associated changes are in 
favor of the fatal vicious circle 
during SARS-CoV2 infection

Inflammaging, a chronic state of inflammation, 
is associated with the over-production of ROS and 
hyper-inflammation in the elderly population. In-
flammaging predispose age-associated disease such 
as respiratory and infectious diseases [86]. It seems 
that inflammaging increased fatal vicious circle 
during SARS-CoV2 infection. 

Several mechanisms can be proposed for hy-
per-inflammation in the aging. The declining T 
cell function is the most significant age-associated 
changes of immune cells [87]. In old macrophages, 
increased production of prostaglandin E2 (PGE2) 
as T cell-suppressive factor results in up-regulation 
of NF-κB. Subsequently, up-regulation of NF-κB 
leading to over-production of proinflammatory cy-
tokines [87]. Reduced expression of growth factor 
independence-1 (Gfi-1) and increased expression 
of suppressors of cytokine signaling 3 (SOCS3) 
have been reported in older mice compare to young 
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mice [88]. Macrophage migratory inhibitory factor 
(MIF) is one of the master regulators of senescence-
associated immune response [14]. The MIF, as a 
proinflammatory cytokine, promotes macrophages 
to release cytokines and produce ROS [89, 90]. Al-
though, the role of MIF has not been studied in the 
pathogenesis of SARS-CoV, but its role in the patho-
genesis of some respiratory viruses such as H5N1, 
influenza A and RSV has been characterized [91]. 
The MIF activate macrophage to release proinflam-
matory cytokines such as MCP-1, IL-10 and TNF. 
It also induces NADPH oxidase-derived ROS gen-
eration [91]. The second dimension of inflammaging 
is age-associated ROS overproduction. Oxidative 
stress is a hallmark of the aging process. Aging is 
associated with overproduction of ROS and depri-
vation of the antioxidant system. During the aging 
process, mitochondrial dysfunction and dysregulated 
Nox activation are attributed to ROS overproduction 
[92]. Taken together, there is a vicious cycle between 
ROS and cytokine production, which is the main 
cause of lung injury and ARDS during respiratory 
virus infection. Although, lung injury and ARDS 
are the important cause of admission of COVID-19 
patients in the hospital. However, several studies re-
ported the COVID-19 infection can induce several 
neurologic diseases in patients who recover. In the 
next section, we review the long-term side effects of 
COVID-19 particles in patients who recover.

The long-term complication of COVID-19 
infection on central nervous system 

Butlera and Barrientosa in 2020 reported that 
systemic inflammation caused by COVID-19 parti-
cles may have long-term side effects in patients that 
recover, including dementia and neurodegenerative 
disease [93]. Moreover, several evidences reported 
the incidence of Kawasaki-like disease in the chil-
dren with COVID-19 infection [94]. Additionally, 
Verdoni and colleagues in 2020 reported that inci-
dence of Kawasaki-like disease 30-fold increased 
quickly after the spread of COVID-19 infection 
to Bergamo-Italy [95]. Kawasaki disease is an in-
flammatory vascular disease that mostly involves 
children under 5 years old [94]. TNF-α plays an 
important contribution in aneurysmal formation of 
coronary arteries in Kawasaki disease [96]. It is also 
suggested that COVID-19 infection can increase 
inflammaging related disease, including neurode-

generative disorders, even in younger individuals 
[96]. The underlying mechanism of neural compli-
cation of COVID-19 in patients is far from clear. In 
one hand, COVID-19 particles can directly changes 
blood-brain barrier properties in human, leading to 
an additional mechanism of entry to central nervous 
system [97]. In addition to COVID-19 particles, it is 
also well accepted that SARS-CoV and MERS-CoV 
particles have neuro-invasive properties [98]. It is 
reported that SARS-CoV particles were observed in 
neurons and brain samples from patients diagnosed 
with SARS [99]. In other hand, excess production 
of pro-inflammatory markers during COVID-19 (cy-
tokine storm) indirectly can induce long-term side 
effects in patients that recover [93, 94]. Additionally, 
it is identified that ACE2 express in both neurons 
and glia, suggesting the brain may be a potential tar-
get of COVID-19 particles [98]. Since neuroinflam-
mation can be induced or worsened by both stress 
and COVID-19 infection. So, the contribution of 
neuroinflammatory mechanisms could be central in 
a vicious circle leading to an increase in the mortali
ty risk in elderly adults with COVID-19 infection. 
Additionally, neuroinflammation and subsequently 
neurodegenerative disease can be important long-
term side effects of COVID-19 [100].

Proinflammatory cytokines and ROS produc-
tion are hallmarks of innate immunity during SARS-
CoV2 infection. Molecular mechanism indicates that 
the development of vicious cycle between ROS and 
cytokine is the main cause of lung injury and ARDS 
during respiratory virus infection. Additionally, this 
vicious cycle can induce several neurological disea
ses in the patients who recover from COCID-19 in-
fection such as neurodegenerative disease. Targeting 
this vicious circle can be a promising therapy against 
lung injury and ARDS development during SARS-
CoV2 infection.
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Замкнене коло між 
оксидативним стресом 
та цитокіновим штормом 
у патогенезі гострого 
респіраторного дистрес-
синдрому за зараження 
COVID-19
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На початку грудня 2019 року в місті Ухань 
провінції Хубей (Китай) розпочався спалах 
коронавірусної хвороби 2019 (COVID-19). З 
того часу пандемія значно поширилась і пере-
творилась на велику світову кризу через швид-
ке розповсюдження коронавірусу. Основною 
причиною летальності вважають гострий 
респіраторний дистрес-синдром (ARDS – acute 
respiratory distress syndrome) – синдром гострої 
дихальної недостатності. Цитокіновий шторм 
та оксидативний стрес є основними гравця-
ми за розвитку ARDS під час респіраторних 
вірусних інфекцій. У цьому огляді обговорено 
молекулярні механізми формування фаталь-
ного замкненого кола між оксидативним стре-
сом та цитокіновим штормом у разі заражен-
ня COVID-19 та  описано чому старіння може 
сприяти виникненню такого кола.

К л ю ч о в і  с л о в а: ARDS, COVID-19, 
цитокіновий шторм, оксидативний стрес. 
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