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Arachidonate 5-lipoxygenase (ALOX5) is considered a prime target for drug discovery in the area of
liver fibrosis, rheumatoid arthritis, atherosclerosis, cancer and asthma. To date, the lead rate in the discovery
of drugs that inhibit ALOX5 for the treatment of the above diseases is not satisfactory. So, the development
of powerful and effective ALOX5-targeted drugs is desired. In this regard, Quantitative Structure-Activity
Relationship (OSAR) and molecular docking can have a major role in screening and designing drugs. In this
work, 3D-QOSAR models were proposed, which were built using the techniques like Multiple Linear Regres-
sion (MLR), and Partial Least Squares (PLS) for the pEC50(M) taking a diverse dataset of 112 molecules. The
technique of the ‘Index of Ideality of Correlation (IIC)’ was also investigated to generate an optimal descrip-
tor derived from the SMILES molecular structure. The effect of the number and nature of descriptors on the
model were analyzed. The models can be helpful in providing better directions for the development of novel
drug targets for 5-lipoxygenase. A significant improvement in the stability of the model was observed by the
incorporation of the optimal descriptor. The molecular docking results showed that the ALOX5 receptor was
well inhibited by the 112 ligands showing the least binding energy (-10.8 Kcal/mol). In order to validate the
binding mode of the ligands docked with AutoDock Vina software, the top-scored compounds were re-docked
using DockThor online docking server. The results obtained from docking suggest that the ligands with 1Ds
18, 20, 24, 30 and 44 are some of the potential inhibitors for ALOX5.
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portant enzyme that helps in producing pro-

inflammatory mediators, like leukotriene B4
and cysteinylleukotrienes. Inhibition of ALOXS can
be a potential remedial approach for inflammation.
At present, the orally active inhibitor for the ALOX5
is Zileuton brought by Abbott Laboratories(1996).
The other brand names associated with Zileuton are
Zyflo and Zyflo CR. However, it is reported this drug
is known to cause liver diseases or liver toxicity [1].
The discovery of potent drugs that inhibit ALOX5
drug targets, without any harmful side effects like
liver toxicity is a challenging task.

5 -Lipoxygenase (5-LO or ALOX5) is an im-

QSAR is an important chemometric method
that is widely used in virtual screening to discover
new leads [2-6]. A number of high-quality research
papers based on QSAR study are available in litera-
ture [7-12]. An inclusive study on the present sys-
tem of ALOXS5 is necessary for the discovery of
potent drugs without any side/or toxic effects. How-
ever, the literature review revealed, it is now gain-
ing the right attention and is all set to achieve the
momentum. Five good QSAR models for develop-
ing benzoquinone derivatives as ALOXS5 inhibitors
using CoMFA, RF, MLR, and SVM were described
in [13]. Another group of authors has used QSAR
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models to indicate the significance of the chemical
characteristics for the ALOXS5 inhibition for a se-
quence of coumarin derivatives [14]. The binding af-
finity and interactions with the active sites of human
5-LOX were estimated by the molecular docking
study. Computational methods were implemented to
get 5-LOX inhibitors and to screen chalcone and fla-
vones derivatives [15]. The potential hits from grid-
based ligand docking with energetics were re-docked
using Genetic Optimization. 3D QSAR models were
developed using IC, values of 51 compounds for an-
alyzing the biological activities of the inhibitors of
5-LOX with R? > 0.75 [16]. In the literature, QSAR
study on EC50 values for the ALOX5 inhibition has
not been reported until now.

In this communication, QSAR models were
built using MLR and simplified molecular input
line entry system(SMILES). A good combination of
2D, 3D and optimal descriptor is evaluated for the
prediction of pEC50 values for theALOXS5 receptor.
In our recent publication the prediction of pEC50
values for Adenosine A2A Receptor was reported,
where the incorporation of the optimal descriptor
showed better performance [17]. In this article, the
combination of 2D, 3D and optimal descriptor is
evaluated for the prediction of pEC50 values for the
ALOXS receptor. Molecular docking has also been
performed to find the active binding sites available
in ALOXS5 receptor.

Molecules, Software Codes and methods

Data set preparation and data reduction. The
dataset contained EC50 (nM) values of 112 differ-
ent inhibitor compounds for the ALOX5 receptor
derived from the popular Binding database [18]. The
EC,, values converted to their pEC50 equivalent
(negative decimal logarithm of EC50). Spartan-10
and OpenBabel were used to generate the SMILES
and MDL (.mol) chemical structures for these mole-
cules from the SDF (structure data file).

Descriptors. PaDEL_2.18 was used to obtain
more than 900 molecular 2D and 3D descriptors.
CORAL software [19-21] was used to generate the
optimal descriptors based on SMILES. Preliminari-
ly scans were performed using 100 descriptors each
time. The preliminary scan was performed to iden-
tify high correlation descriptors for ALOX5.

Optimal descriptor and Index of Ideality of
Correlation (11C). The application of ‘Index of
Ideality of Correlation (I1C)" in QSAR/QSPR is
elaborated in the literature [27-31]. The established
principle of IIC is obtained from the distribution of
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points in the graph plotted between experimental and
observed pEC50 values [32]. The optimal descrip-
tor (DCW) can be obtained by using the following
mathematical relationships :

DCW(T*N*) = DCW,(T*N*) @)
DCW,(T*,N*) = CW (HARD) +

NA NA-1
+ Z CW (S + Z CW(SS,) +
k=1 k=1
NA=2
+ Z CW (5SS, %)
k=1
TGF=T—F, +1IC_, x 0.1, 3)

where HARD, Sk, SSk and SSSk are parts of
SMILES code of each molecule [31, 33, 34] and the
calculation of 1IC , is represented elsewhere [28-31]:

min( "MAE ,, "MAE _,)
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MAE === |4,
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N
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The calculation of DCW for the SMILES
molecular structure: Clc4cc(CCc3c(c(=0)OCC)
cle(c2cecec2e(O)cl)[nH]3)cecd (ID-1) is supplied
in the Table 6S of the Supplementary file. The in-
dividual correlation weight(CWs) of each smiles
attribute(SA,) such as Cl... = 0.3084, c.. = -0.0554,
similarly (SA, ) c...Cl.....= 0.3995 and so on. There-
fore for the full SMILES code, the DCW was cal-
culated using the eq. 1, which became 4.54963.
The extrapolative QSAR model on the pEC50 for
ALOXS5 could be modelled by the following simple
mathematical linear equation:

PECS0 = C, + C*DCW(T*N*) ®)

The above eq. 8 has been used to develop the
QSAR model in this work which is described in sec-
tion 3.2. The optimal parameter DCW has also been
used to develop hybrid QSAR model detailed in sec-
tion 3.3.
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Molecular Docking. Molecular docking is one
of the most outstanding techniques used in recent
days for the realistic design of drugs. Docking deals
with the process of binding drugs with the protein
by determining active binding sites. Since molecular
docking facilitates the realization of the biological
activities of the drug targets, these days it has be-
come a widely used technique in discovering effec-
tive drugs for a variety of diseases. In this article,
the development of the therapeutic activities of the
above-mentioned 112 different inhibitors against
ALOXS5 has been analyzed through the docking pro-
cess. Molecular docking was carried out to estimate
the binding energies and site interactions to evaluate
the inhibition potential of the ALOX5 main protease.

The .pdb files for the ligands were prepared
using OpenBabel (ver. 2.3.2). The crystallographic
structure of ALOXS was taken from the Protein
Data Bank. The PDB code of the protein structure
was 308y. For docking purposes, the protein struc-
ture derived from the data bank and then was pre-
pared by removing all water molecules, adding polar
hydrogen and Kolman charges. Molecular docking
was executed with the help of Autodock vina [38]
and some other Auto Dock Tools. Docked structures
and interaction of the ligand with the protein resi-
dues in the active sites were analyzed by Discovery
Studio Visualizer.

QSAR Models for ALOXS5 Inhibition

QSARINS (QSAR-Insubria) software [22] code
developed at the University of Insubria was applied
to build the desired robust QSAR models. Since
more than 900 different descriptors were there and
taking all descriptors simultaneously to build the
model requires heavy computational time, prelimi-
nary scans were performed using 100 descriptors
in each case to identify potential descriptors for the
5-LOX receptor. Finally, a descriptor set of 33 mole-
cules with their pEC50(m) was chosen to construct
QSAR models using GA. The 112 ligands dataset
for the ALOXS5 receptor was randomly distributed
into four different sets such as the training, invisible
training, calibration and validation sets as the ro-
bustness of a model basically depends on the quality
of the training set and during the training process,
the decrease in performance for a model due to over-
training can be significantly removed by the calibra-
tion set [23-25]. Once, these processes of the model
building were over, the performance of the QSAR
models was further verified by an external valida-
tion set.

A linear regression model was formed between
the response variable pEC50 and the descriptors us-
ing the ordinary least squares (OLS) method. The
models were arranged in accordance with their R?,
0?, R%-0?% and RMSE values. Internal and external
validation methods and principal component analy-
sis were explored to verify the robustness and pre-
dictability of the constructed models. The model
with the minimum value of R2-Q? was considered
more stable.

2D-QOSAR models. The semi-empirical (AM1)
quantum chemical calculation was used for the geo-
metrical optimization of the molecules. After the op-
timization process, mathematical models have been
developed with a good collinearity between the de-
scriptors with the endpoint.

The 2D-descriptors like MATS3c,SpMax1
Bhp andATSC6s showed excellent correlation with
the experimental pEC50 values for ALOXS5. The
model built with these descriptors mathematically
described in the following equation.

PEC50 = 17.1019 + 1.8165(AATSC6s) +
+ 4.7179(MATS3c) - 4.9211(SpMax1_Bhp) (9)

Internal and external validation parameters for
these models and performance towards the valida-
tion set are presented in Table 1, 2 and 3. The R? for
the training set is 0.7340 (Eq. 9) and for the valida-
tion set is 0.9481 (Eq. 9). For a robust model Average
R? should be greater than 0.5 and AR? should be
lower than 0.2 [26], where as k and k' should be
in the range of 0.85 and 1.15. For the above model
(Eq. 9), the values of Average R? and AR?  kand k'’
are within the required ranges. The model qualified
the required internal and external validation charac-
teristics to justify that this is a robust model.

Single Optimal Descriptor Based OSAR
Models. The model based on the optimal descrip-
tor defined in section 2.3 is described in Eq. 10. For
this model the optimal descriptor DCW was first de-
termined from their SMILES Attributes (SAs). The
calculation of these type of descriptors is described
in literature [23, 34-36]. This model displayed very
good statistical parameters (Table 1-3). However, to
describe any model as robust only these statistical
parameters such as R? (test set), O? (test set), etc. are
not sufficient. Another validation characteristic like
°R?p is also needed [37]. For good models, the value
of °R?p should be greater 0.5. For the model defined
by Eq. 10 the °R?p was found to be 0.8718 (training),
0.9443 (validation) and 0.7971 (test set).
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Fig. 1. Experimental VS predicted pEC50 values by
Eq. 10

PEC,, = 6.7556863 (+ 0.0067206) +
+0.0755563 (+ 0.0003592) * DCW(1,7)  (10)

The plot of the experimental and predicted
pEC,, obtained by Eq. 10 is given in the Fig. 1.

Hybrid QSAR models(2D,3D& DCW). Some
models were built using 2D descriptors, 3D descrip-
tors and the optimal descriptor introduced in the
previous section. Fig. 2(a) shows R? and Q? values
for the training dataset without the optimal descrip-
tor. From this figure, it is clear that as the number
of variables is increased, the R? and Q? values rise
up to a maximum of six variables then a decrement
in 0? is detected. The maximum R2 (training set) is
0.7340 for the three variable QSAR model (Eq. 9)
with R?_ 0.9481 (Eq. 9). Increasing the number of
descriptors (more than 3)shows a marginal increase
in the R? (training set) with a significant reduction
in the internal and external validation characteris-
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tics. Such a type of performance occurs due to the
overtraining of the dataset. Therefore the optimal
descriptor has been introduced in the model. The
graph for R? and Q? with the optimal descriptor is
presented in Fig. 2(b) which shows a significant en-
hancement in the R? and Q? values.

Principal Component Analysis (PCA) for the
descriptors Eaq (kJ/mol), XLogP, E HOMO (kJ/mol),
MATS6¢ and DCW(L,7) was studied by means of the
score plots and loading plots. Fig. 3 is the score plot
for the descriptors Eaq (kJ/mol), DCW(1,7), XLogP
and MATS6¢ which form the hybrid model (Eq. 11).
It clearly shows that molecule number (ID = 77) is
an outlier. Similarly, PCA Loading plot for the de-
scriptors Eq. 11 is given in Fig. 4 for the above four
descriptors.

One of the robust QSAR models built with
DCW(1,7) as one of the descriptors is defined as fol-
lows:

pEC50 = 57771 + 0.0001 (Eaq (kJ/mol))+
+0.0727 (DCW(1,7)) - 0.0642 (XLogP) +
+0.8800 (MATS6¢) (11)

For the model presented in this section (Eq. 11)
the R? for the training set is 0.8681. The R? for the
validation set is 0.9762. Tables 1, 2 and 3 show the
internal and external validation parameter values for
this model. The values of average R? , AR? , k and
k" are within the required ranges confirming the ro-
bustness of this hybrid model. The value of R? shows
a good fit for modelling ALOXS inhibition. The LOF
is very small which makes sure that there is no over-
fitting. The low value of Kxx specifies that the cor-
relation between the model descriptors is very less
resulting in a model having the least redundant in-
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Fig. 2. a: R? and (? for the models without DCW, b: with DCW
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Fig. 3. Score plot for model 8 (Eq. 11)

formation in the descriptors. Fig. 5(a) demonstrates a
comparison between the predicted values and the ex-
perimental values of pEC50 for the training dataset.

Model validation according
OECD principles

OECD principles were used to ascertain the ef-
ficiency of the QSAR models proposed in this work.
According to these principles, the models should
have a definite endpoint. The endpoint for the de-
scribed models is pEC50. The second principle says
that models should be represented using a definite
algorithm that can derive a proper relationship be-
tween the descriptors and the endpoint. The algo-
rithms used to obtain such a relationship here are
MLR and OLS. The third principle states that the
models can have reliable predictions with leverage
values below the critical leverage with +3 standard
deviations. William graph was used to represent the
applicability domain (DA) of the models. According
to the fourth principle, the difference between the
experimental values and forecast values should be
the minimum. The difference between the experi-
mental values and the values predicted by the models
was very low. The goodness of the fit of the models
was measured with the coefficient of determination
(R?) and adjusted R* (R? ;). R? is used to compare
between the predicted and experimental activities.
The difference between the R* and R?, . value for the
defined models were less than 0.3 which indicates
that the number of descriptors involved in the QSAR
model is acceptable. The value for R? _indicates the
ease of adding a new descriptor to the model. The
fit of the QSAR models can be determined by root-
mean-squared error (RMSE). This method is used to
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Fig. 4. PCA loading plot for model 8 (Eq. 11)

PC2 (EV% = 26.68%)

decide if the model possesses the predictive quality
reflected in the R2. The use of RMSE shows the er-
ror between the mean of the experimental values and
predicted activities. RMSE values greater than 1.0
reflect the model’s poor ability to accurately predict
the bioactivities. The models defined in this work are
having RMSE less than 1.0 indicating higher predic-
tive power of the models. Q? ., and LMO internal
validation methods were used to confirm the poten-
cy of the defined models. The Y-scrambling method
was employed to prove that the models are not the
result of a chance correlation.

The validity of the models was evaluated by the
OECD principles and their regulatory values. The
models were validated by the LOO and LMO inter-
nal validation methods. The obtained results authen-
ticate the internal predictions as the value estimated
by LOO (Q? ) is almost the same as the R? value
signifying the reliability of the defined models. The
error in the predictions is very low. Fig. 5(b) pre-
sents the similarity between the experimental values
and values estimated by LOO (leave-one-out). The
Leaving-Many-Out (LMO) method that leaves out
thirty percent of the dataset to evaluate the perfor-
mance of the models is very helpful in the validation
process as each deviation of data is treated as impor-
tant, unlike LOO.

The statistical validation parameters for the
defined models are presented in Tables 1, 2 and 3.
For good predictability R2-Q? value should not ex-
ceed 0.3. It can be seen in Table 2 that, the differen-
ce between R* and @? | is very less than 0.3,
authenticating the models as robust.

From the statistical measures, it is clear that the
QSAR models defined in this work satisfy both the
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versus the actual experimental values of pEC, (Eq. 11)
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internal and external validation criteria as required.
Moreover, the models with the optimal descriptor
are showing better results and therefore they can be
regarded as robust and can be considered for further
applications in drug discovery.

Fig. 6(a) shows the correlation between descrip-
tors and pEC,, inhibition (K, ). From the figure, it
can be observed that the values of Q? , are very
alike authenticating the models as a good fit. The
Y-scrambling method has been carried out to exhibit
that the models are not the result of casual correla-
tions. The low values of R, and Q%  indicates
the robustness of the developed models. The R? o
and Q°,  values against R? and Q? are presented in
Fig 6(b). The R? and Q? values are far away from the

R?, ., and 0%  values confirming the nonexistence
of random correlation in the model. The extrapo-
lative capability of the models was evaluated with

b
1'OI T T Ll T
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N
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=i 0.4, o Qerscr
% e Mod R?
5 ® Mod Q? T
o
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values against R? and Q? (Eq. 11)

some external prediction tools such as R?_ [37],
RMSEext (RMSEext is the Root Mean Square Er-
ror in external prediction), MAEext (Mean Absolute
Error in external prediction), PRESSext (Predictive
Residual Sum of Squares in external validation),
0%, 0%, 0%, CCC__ (CCC inexternal prediction),
average R? and AR? . These values are similar to
the values calculated by the training set. Since the
predictions that are within the applicability domain
(AD) are considered reliable the approach of leverage
(h) and standardized residuals were also applied here
to present the AD of the models. The leverage value
for the defined hybrid model is calculated as 0.140.
Fig. 7(a) presents William’s graph for Eq. 11 which
shows that the majority of the compounds are within
the AD of the model. Fig. 7(b) is the William’s graph
calculated by LOO for the same model. In both
graphs, the molecule with ID = 77 is an outlier. The
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prediction of the outlier by William’s plot justifies
and gives a second confirmation after the prediction
by the score plot obtained by the PCA study (Fig. 3).
The graph of Insubria (Fig. 8) of QSARINS facili-
tates visualization of the model’s AD. It can find out
the molecules lacking experimental response. Here,
it is quite similar to William’s graph. The graph of
Insubria is also indicating that molecule number 77
is an outlier.

Docking Results

The results of the docking process described in
this section include the docking scores for different
compounds with different EC values. The highest
negative binding energy indicates the best docking
score.
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Table 4 shows the interaction between the
protein and different ligands in 3D. It provides the
docking scores of the interaction of the protein
with different ligands. To validate the docking re-
sults of Autodockvina the protein receptor was re-
docked with the ligands which scored high ranks
in the docking process performed with Autodock
Vina. The re-docking was performed using Dock-
Thor online docking server. The ordering of the
ligands on the basis of their scores is the same for
both the docking protocols, which enhances the va-
lidity of the docking results obtained from the first
attempt using AutodockVina. Table 5 shows docking
scores for different conformations of the ligand 30.
The scores are quite similar indicating favourable
interactions between the binding sites and the ligand.

The 2D figures of the ligand’s interaction with
the active site residues of the protein target are pre-
sented in this section (Fig. 9-12). PHE450, GLN549,
TYR470, ALA453, SER447, ARG370, ALA456,
ARG457, VAL243, ARG246, LEU244, VAL361,
LEU288, ASP285, and GLU287 are found to be the
active site residues of the receptor. Hydrogen bonds
are a primary contributor factor in supporting the
binding affinity of drugs with the receptor. Strong
hydrogen bonding interaction represents a high
binding capability between the ligand and the pro-
tein. The ligands 30, 20, 18, 24 and 44 have shown
a strong binding affinity towards the receptor by
forming hydrogen bonds. Strong hydrogen bonds
have bond angles close to 170 or 180 degrees. Some
characteristics of the h-bonds, such as distance, the
bond angles between the donor atom and the accep-
tor atom, the name of the donor and acceptor atom
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Table 4. Docking Scores of different compounds

Score Score
. Ligand position in Protein- EC50 (keal/ (keal/
ID | 2D structure of the ligand licand Interaction (M) mol) mol)
g Autodock | Dock
Vina Thor
30 GLUZsR, >10000 -10.8 -7.9
‘“L S ASP285
— _kEU288 [
I il
\__ARG246
\ 0
VAL361 . LEU244 | ARG4S7
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. INE365ALA439
£y y
.CF_LP_EE{IQes \ARG438
N i

109



ISSN 2409-4943. Ukr. Biochem. J., 2021, Vol. 93, N 6

Table 4. Docking Scores of different compounds (Continued)

Score Score
. e . kcal/ kcal/
ID | 2D structure of the ligand L'gaﬂdﬁfgllt:ggrg; tl?(:ﬁtem- I(EnCMS? (mol) (mol)
g Autodock | Dock
Vina Thor
18 HsC \-—' O GLNS“Q 1700 '10. 2 '7.4
0 [
HO A VAL243
B A Rrausy . sy
N DRI
‘ O e
SER44T". THR386
; . WU | ARG3T0
P VACSeT =\
I~ ILE365
24 _LEU288 5700 -10.2 74
1l 7=
TARG246 |\ _ 4
I V- VAL361
: [ pspasz
ol N
'_:T‘-iLESES
— TAR3G6
| 1%
TYRH.‘:LMS i . .-'AhGam
“. .. = ?: P
“PHE450 GLN549
16 - "1 480 -10.1 74
F ~_ ARG3T0
W ALASE3
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Table 4. Docking Scores of different compounds (Continued)

Score Score
. Ligand position in Protein- EC50 (keal/ (keal/
ID | 2D structure of the ligand . . mol) mol)
ligand Interaction (nM) Autodock | Dock
Vina Thor
44 __ ARG246 >30000 -10 14
\ = ._ARG45?
VAL243 éLMREA%S
| LEU244 o’
_ ASP285~
A& \ SER447
ey
PHE28@~\
s L
: 287
ok - o ARG3T70
[\ LEu288 ):.SP442
13 340 -9.8 -71
ASP285
LEU288
-
ARG246
SER447
\ ALAS3
VAL36! /
B ! o ARGITD vaLaes

are presented in Table 6. Almost all the bond angles
are above 120 degrees and close to 170 degrees con-
firming the strength of the bonds formed between
the receptor and the ligands. From all the active resi-
dues the aminoacids ASP442, ARG246, THR366,
ARG370 and LEU288 are forming hydrogen bonds
with the interacting ligands. The qualitative aspect
of this interaction is that hydrogen bonds are dis-
tributed over the sides and centre of the molecule,
which represents high inhibition efficiency to bind
the receptor-binding domain. The formed hydrogen
bonds were in the categories of strong and modera-
te hydrogen bonds (1.76-2.60 A) showing the high
binding potential of the ligands for the receptor.
Conclusion. Computational techniques for
estimating the activities of ALOXS5 inhibitors can
smooth the progress of the drug design process by re-
ducing cost and time. In the present communication,

successful three sets of QSAR models were present-
ed. The first model was built using 2D-Descriptors
(MATS3c, ATSC6s and SpMax1_ Bhp); the second
model was built using a single optimal descriptor
(DCW) and the third model was built using some
3D-descriptors [E HOMO (kJ/mol)), XLogP, Eaq
(kJ/mol)] along with the DCW descriptor and one
of the above discussed 2D descriptors. The models
fulfil all regulatory principles established by OECD;
the robustness of the model was tested through in-
ternal validation techniques (LOO, LMO and Y-
scrambling), and the predictability of the models was
determined with an external prediction set. The pre-
sented MLR based QSAR models provide an added
mode of control to screen, check and develop better
drug candidates. The study of PCA, William’s Plot,
graph of Insubria (AD) were helpful in identifying
the outliers in the dataset. The incorporation of the
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Table 5. Scores of different confirmations for the ligand-30

Confirmations Position of the ligand Score
1 -10.8
2 -10.8
3 -10.5
4 -10.4
5 -10.2
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Table 5. Scores of different confirmations for the ligand-30 (Continued)

Confirmations Position of the ligand Score
6 -10.2
7 -10.2
8 -10.0
9 -10.0

DCW descriptor in the model building decreased the
number of descriptors, registered impressive statis-
tical parameters, internal validation characteristics
and external validation characteristics. The proposed
models can help to screen large databases to genera-
te leads for the ALOX5 receptor. From the statisti-
cal parameters presented in Tables 1, 2 and 3 it can

be concluded that the use of the DCW descriptor
along with the 2D, 3D descriptors is a good move in
designing stable QSAR models, which in turn can
find applications in drug design, screening and vir-
tual screening, etc. The molecular docking compu-
tations provide evidence that compound 30 has the
minimum binding energy while interacting with the

113



ISSN 2409-4943. Ukr. Biochem. J., 2021, Vol. 93, N 6

Table 6. Distances of the h-bonds formed between the receptor and the ligands

Angle DHA
Ligand HBondName Distance (A) Donor - Acceptor (Donor
atom atom hydrogen
acceptor)
30 A:ARG370:HH22 - A:SER447:0G 2.05485 HH22 0G 163.645
20 B:ARG246:HH22-.UNLI:O 2.35526 HH22 @) 120.457
B:ARG370:HH22 - B:SER447:0G 2.06678 HH22 0G 163.094
B:ASP442:HN- B:ALA439:0 2.24637 HN O 159.556
18 B:LEU288:HN - :UNLI:F 2.40638 HN F 142.639
B:THR366:HGI - B:ASN241:0DI 2.08457 HG1 OD1 154.742
24 :UNLI:H - A:THR366:0Gl 2.49049 H 0OG1 152.245
A:THR366:HN - A:VAL361:0 2.24918 HN @) 161.915
A:THR366:HGI - A:ASN241:0DI 2.07258 HG1 OD1 155.233
A:ARG370:HH22 - A:SER447:0G 2.05485 HH22 0G 163.645
44 B:ARG246:HH22 - :UNLI:O 2.2936 HH22 @) 119.086
B:ARG370:HH22 - B:SER447:0G 2.06678 HH22 0G 163.094

Fig. 9. Interaction of the protein with ligand 44
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Interactions

:’ van der Waals I:lAIkyI
- Conventional hydrogen bond [:l Pi-Alkyl
D Pi-Cation

Fig. 10. Interaction of the protein with ligand 30
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Fig. 12. Interaction of the protein with ligand 24

receptor. Strong hydrogen bonds were formed be-
tween the protein and the ligands indicating that the
studied ligands have good potential as the inhibitors
of ALOX5.
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TA MOJIEKYJISIPHUI JOKIHT
Y NIOIYKY CEJEKTUBHOI'O
IHT'IBYBAHHS APAXIJOHAT-5-
JINOKCUTEHA3H

N. R. Das!, P. G. R. Achary**

Department of CSIT, Siksha ‘O” Anusandhan deemed
to be University, Bhubaneswar, Odisha, India;
2Department of Chemistry, Faculty of Engineering and
Technology (ITER), Siksha ‘O’ Anusandhan deemed
to be University, Bhubaneswar, Odisha, India;
Me-mail: pgrachary@soa.ac.in

ApaxigoHar-5-TinoKcurenasa (ALOXS)
BBYKAETHCS TOJIOBHOIO MIIICHHIO Jii JiKapChbKUX
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npernapatiB mpoTH Gidpo3y NediHKH, peBMATOi THOTO
apTPHUTY, aTepOCKIepo3y, paky Ta acTMu. Hapasi
po3po0Ka mperapariB s JiKyBaHHS ITUX 3aXBO-
proBaHb, 10 iHTiIOYI0TH akTuBHICTH ALOXS, He €
JIOCTaTHBOIO. TOMY aKTyaJIbHOIO 33/1a4€T0 € BHHAXI1]
moTy)kHUX Ta edexkTtuBHUX ALOXS-TapreTHuUx
mpemapariB.  MeToaum  TOMIYKY  KUTBKICHUX
CHIBBiAHOIIEHB CTPYKTYypa-BnacTuBicTb (QSAR) Ta
MOJICKYJISIDHUN TOKiHT MOXKYTb BiZi'paTH BayKIUBY
POJIb Y CKPHHIHTY Ta CTBOPEHHI JIiKiB. Y 1ili po0OTi
3amporonoBaHo 3D-QSAR moneni, moOynoBaHi 3 BU-
KOpPHUCTaHHSIM MHOXWHHOI JiHiitHOT perpecii (MLR)
1 METOAy 4aCTKOBHUX HalMeHIuX kBasnpartiB (PLS)
1ot BumiptoBanus pEC50(M), Ha 0cHOBI makeTy Jia-
HuX 112 Monexy. Takoxx MpoaHani30BaHO KPUTEPil
Index of Ideality of Correlation (IIC) nns cTBopeH-
HS ONTHMAJIBHOTO JAECKPUIITOPA, IPEACTABICHOTO
3 Bukopuctanusm cnernudikanii SMILES. Iokaza-
HO BIUIMB KiJIBKOCTI Ta MPUPOAH JECKPUIITOPIB Ha
moJieib. Li Mojeni MOXKyTh OyTH BUKOPUCTAHI IS
po3pobku HOBUX ALOXS-TapreTHux mnpenapartis.
3HauHe  MIABHUINEHHS  CTAOIIBHOCTI  MOAENI
CriocTepirayjiocs 3a BBEIEHHS ONTHMAJIBHOTO Je-
CKpHUNTOpa. PO3paxyHKH MOJIEKYJISPHOIO JOKIHTY
nokasai, mo peuentop ALOXS no6pe inriOyeThes
112 nmirangamu. HailimeHmna eHeprisi 3B’s3yBaHHs
cranoBuia -10,8 kkan/monb. Crionyku 3 Halkpa-
NIMMH TIOKa3HUKaMH OyJIM TIOBTOPHO JIOKOBaHI 3a
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noromoroto jiokiHr-cepsepy DockThor. INoka3zano,
110 JTiranu 3 ineHTudikaropamu 18, 20, 24, 30 1 44
MaroTh BUCOKHI MOTeHIiaN sk iaridiTopn ALOXS.

Knwoyosi cioBa: S-IIIOKCUIeHasa,
QSAR, SMILES, MonexysipHHii JOKIHT.
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