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General approaches to mathematical modelling of thermomechanical processes in thin-walled
elements of plate and shell type in a three-dimensional approximation are discussed. The energy
balance equation, formulated in a three-dimensional statement by Lagrange approach on the ex-
tended space of parameters of local state and a corresponding choice of the function of local situ-
ation is the basis for the construction of governing equations. In this connection the mechanic
energy flow, in a general case, is given by a sum of additive components in which apart of tradi-
tional characteristics (stress tensor, velocity vector) the higher order characteristics of gradienta-
lity of deformation and inertial motion and corresponding to them tensor characteristics of force
action are introduced iteratively. The set of governing equations enabling to account the effects of
locally-gradient and high-speed deformations was constructed for determination of the phase spa-
ce of parameters of local situation. The transition to a two-dimensional analogue in governing
equations is realized by the averaged characteristics of the stressed-strained state using presenta-
tion of the sought-for values by means of the expansion by a tensor base.

Key words: elastic shells, thermomechanical processes, locally-gradient and high
speed deformation, averaged tensor characteristics, optimal decomposition base.

Introduction. Thin-walled elements of constructions of plate and shell types are wide-
ly used in the engineering practice. It causes a great interest and the necessity of further
development and improvement of calculational models describing their mechanical
behavior. It was quite natural that Professor Yaroslav Burak paid attention to investi-
gations in this direction in his many-sided scientific activity [1].

It is known that classical postulates of Kirchhoff -Love and Tymoshenko not al-
ways sufficiently described the stressed-strained state of this type of elements of const-
ruction. The development of calculational schemes in linear and nonlinear statements is
shown in [2, 3]. The analysis of the main approaches to the construction of the solu-
tions of the boundary value problems of the theory of shells using numerical-analytical
methods in the classical and refined statements is proposed in [4]. The stable method of
discrete orthogonalization and an effective algorithm of its realization enabling to ob-
tain solutions with high accuracy were taken as the basis.

As the transition from the three-dimensional statement of the problem to its two-
dimensional analogue is the key problem for mathematical modelling, the method of ex-
pansion of the sought-for values by the given system of basic functions is widely used.
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Though, as it was noted in the work [5], the convergence of solutions for boundary va-
lue problems for a small number of iterations is not always sufficient. On the other
hand, the model presentation in the shell thermomechanical behavior study which
accounts the effects of high-speed and locally-gradient deformation deserves extension. It is
of special importance for pulse loadings and for materials with the clearly expressed micro-
structure that were investigated from other points of view in the works [6-8].

The idea of energetic approach to the construction of iterative models of the lo-
cally-gradient dynamic thermoelasticity which on a thermodynamic level describes the
local gradientality and inertia of a deformational form of motion was proposed by
Ya. Burak and realized in [9, 10].

In this work the approach is used for the construction of initial equations for
thermoelastic shells in a three-dimensional approximation. The equations in generali-
zed variables using the expansion of the sought-for values by the tensor basis are writ-
ten for the shells of variable thickness. The method of choice of the optimal base of
expansion corresponding to the boundary-value problem in the three-dimensional state-
ment is proposed.

1. Formulation of the problem

(+) (-)
Consider a shell with a variable thickness 2]’!((11, ocz): h (al,a2)+ h ((11, ocz) refer-
red to a mixed orthogonal coordinate system o', o.®,y, where the coordinate lines

a',a’ are the lines of the principal curvatures of the median (basic) surface (ZO ); y is

(+) )
a coordinate in the direction normal to (EO) and y=h (ocl,(x2 ), Yy=—nh (ocl, o’ ) —
shell face smooth surfaces. The shell is considered as a three-dimensional solid, which
at the initial moment of time 1 =7, corresponds to the Euclidian space domain X, .
The law of the random point motion is given in the form

F(al,az,y,t)zﬁ,Jrfoerﬁ, (1)

where 7, :Fo(ocl,az,r) — radius-vector of the points of the median surface;

%, =Y3,, 3, — basic orth in the direction to the normal to the median surface; u —

vector displacement. It’ll be assumed that vectors 7, 7, u are dimensionless i. . nor-

malized by some characteristic dimension and T — normalized by some characteristic time.
Assume the full energy balance equation for the element of the shell X — X,,

built on the basis of the arbitrary derived area dX“(t) of its median surface to be an

initial one

di [Eav == [ii-Jmds+ [weav . (2)
T X() X(x)

ax ()
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Here J £ = Tj  + J s Wp = fv+ Wy, E — full energy density, T — absolute tempera-

ture, js — entropy flow, J , — mechanical energy flow, f — body force flow,

. ou . IS
v :6_ — velocity vector, w, — heat source strength density, 7 — outer normal,
T

dX (t) — the surface of the derived area X(t).

After the transition to the values E, =E57V, Wi ZWES—;, iy Jo =

o o

. = dx . o . .
=n-Jp—— corresponding to the normalization by geometric characteristics of the

o

initial configuration X(t, ), with account of the dependence of dV, = (1+ kyy)(1+ kyy)x

x dydZ, equation (2) can be written in the form

L[ Rk )z -
dt . )
a‘Xo(‘to)_],l
(+)
h — — —
- [ [V0~(TJ;’+J;’1)+ wg](1+k1y)(1+k2y)dydzg. 3)
oxg(x,) ")
= 4 0 ., 0 ., 0 . c
Here V, =5, —+ 5, —+5) — k;, k, — main curvatures of the shell, dX; —
oo, oo,

area of a small element of the median surface of the shell. Index «o» indicates that ba-
sic parameters are normalized relatively to the metric characteristics of the physically
small subsystem at the initial moment of time.

~ A(i-1)T = A(i=1)T
]Az_ao.a_“_é((j),ae((; ) _f,(_z)'a"j—l_f)(,-).asg ) .

, 4
ot ot . ot K ot @)

In a general case we’ll represent the mechanical energy flow J , by a sum of the follo-

wing additive components in which along with the traditional characteristics (stress
tensor, velocity vector) higher order tensor characteristics of the strain process and
inertial motion are introduced as well as the corresponding characteristics of the force

N o= . . J _ —
action. Here é,()’) =V(o’_1)®ﬁ, ég) =a—,é£’), v, =a—w7, v, =V, (i=3,n; Jj =1,m);
ot/ ot’
6(0"_1) is i —1 multiple diad product of operators V; 6, — Piola- Kirchhoff stress tensor;
ész) — stress tensor components that characterize material dynamic deformation; 13:)5’) —

impulses corresponding to the gradient character of the deformational motion.
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By symbols « - » the operation of full scalar product and symbols « ® » the operation
of tensor product are denoted. Indexes (i), (i — 1) refer to tensor functions valence.
Indexes repetition denotes operation of summation, and «7» — transposed values.
With account of the fact that in this model only processes of heat conduction are
dissipative the energetic relation (3) in a local form can be presented in the form

v AT
= [Tas” B2 o, 9,6 Lo (6147, -60)
o gL ot ot o
—h
aégl)T p(2 v p3 Ao pli i+l é(()i)T
e +(BF) 49, -29) . +(B0 49, p0§+)).a_i+

5(n)r n aln)r
+6£n), oe, +ij") . oe, (1+k1 y)(l+k2 y)dy , (5)

or ot

where

h j —
= B -~ - o’ 5(2) ov
o (LLO Uebrlirkar)dr, Lo=E, =, 7 _(VO .QP(./H))Ea
~h

j

130 = QO(O) + Hﬁo -{60 + 130(12) +%]30((2j)+1)} + fa}di — force impulse vector; 130(0) —

To

A

- . . Oe . .
initial value of this vector; s, — entropy; €, = 3 ¢ — velocity deformation tensor.
T

It proceeds from (5) that under conditions of the potential description of the local
situation the function ]:, can be treated as a state function prescribed in the phase spa-
ce of the state parameterss,, v, é,, {é((f) }, €,» {é((,’) }

Coupled parameters to basic ones are averaged respective by
T, B, 6,+V,-6%), (694+,.60) (B, +¥,-B), (B -+, Bi*)) which
will be treated as generalized forces the concretization of which will depend in the
iterative model on the manner of prescription of the vector of the shell random point

displacements.
We shall obtain the following equations of thermodynamic state

o <[ ) R o . - oL
P = 0(0)+ J{Vo '(Go +Po(12)+TjPo((2j)+1)]+fo}dé:_ 8\70 -
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R - A OL A\ = aq oL oL oL
BO+V, By = POV, B = e sl = S P (6
ol o ol 65:0 oj o oj aéolj o aégn 9 aé();n ( )

It should be noted that the prescription of the mechanic energy flow in the form
(4) enables to account in the model both the influence of effects of the high-speed de-
formation and the moment stresses in their interrelation. In the partial case for n =2
only deformable form of motion is taken into account, in particular, for m =1 its de-
pendence on the velocity of deformation. For m = 0 we’ll get the iterative model of the
gradient theory of elasticity.

Putting n =2, m =0 in (4) we’ll get a classical model of nonlinear thermoelasti-
city and the generalized equation of impulse conservation.

2. Equations of elastic shells in generalized variables

Thus, if one represents displacement vector u# and the velocity vector v by the follo-
wing invariant approximations

i(F, +7,,7)= FUE, )20 ),

G, +7,05)= F0VG, ) 9060, (=T W) )

oy’ oy

and restricts oneself by the first component only in the expression (4), then for condi-
tions of isothermal deformation relation (5) will have the form

of, o) oy oel) apay . 0 L,
Lo TG 24T o B g, (k=1 ®
Here
(Z)
W) = [B@ FU(1+ky)(1+ kyy)dy, O =
-)
—h

o

h
= I& ®I:"(H)(1 + kly)(l + kzy)dy,
(,

(+)

B s
. . _oF
ol = [6,®

(1 + le)(l + sz)d%

oy 612(1) =0 A ~ g
e/({m) = ®39, e§1+1) pOFS 50

A general form of the equations of thermodynamic state will be
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QAglyﬂ): 78@5 _ Qélyﬂ)({‘;(l)},{é£l+l)T}’{é§l+l)T})' ©)

In order to determine the unknown functions [t(l)(Fo,r) it is necessary to concent-
rate the state function structure Zo , to choose the system of basic functions F (H)(Foy),

and to formulate the initial boundary conditions, which correspond to the initial ones
for three-dimensional statement of the problem.
In the partial case for a shell of constant thickness 2/, the set of equations of

motion will be a set of N tensor equations

A

6ooc : QAgl(;rl)_ 3; leyﬂ) + qA)S)l) + 6;/ ® FJr(l_l)(l + klho )(1 + k2ho)_

X R 00 (1)
~ &5, ® FU(1—kyh, (1~ kyh, ) = %1 ’ (10)
T
which within the accuracy of the approximate equation corresponds to the equation in
the three-dimensional statement of the problem.
Here

0 = 0

_30 _zo0 - o A
oa =% =—> Vo= <> 0, =30
oo, oy

<!

h()
&= [ 7@ F14 kg )1+ ke
—h

index « £ » denotes boundary values of the corresponding observables for y =+4, .

3. Optimal basic functions

Consider a functional

. | R T SR

IT G,u]z—j 56:(b:0+20c91)+u-( ~6+F) dv +

+ [ii-(6-7i-p,)dz, (11)
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the steady-state conditions of which are described by equations of linear thermoelasticity

<\
(o}

+F=0in (V); 6:£+aei—%(?a+ﬁ)=om );

&-n—p. =0 on (). (12)
Here 6=T-T,; p, are surface forces; G is the stress tensor; # is the displacement
vector; b is the tensor of elastic material pliability; o is the coefficient of linear ther-
mal expansion; [ is the metric tensor; 7 is the unit vector directed normally outside
the surface (Z); V is the Hamilton operator in an actual configuration; the dot and co-
lon denote, respectively, scalar product and double scalar product; 7, is the tempera-

ture of the shell in its natural state; (V) is the region occupied by the shell; (Z) is the

shell surface.
Let us present the components of stress tensor and displacement vector in the form

oo’ 0% y)= Mo’ o Joll (). (13)
u (o, o2, v)= Ul o2 Juiny) - (=13 m=0.N). (14)

Here, according to the indices which repeat and are not taken in brackets, the summa-
tion holds. Both moments M7 (al, o ), U, (ocl o ) and basic functions ¢’ (y) s Win (y)

are taken as the sought values, which allows to obtain an adequate mathematical model
with a small quantity of terms in expansions.

Making use of expansions (13), (14) and the formula of reintegration, the steady-
state condition of functional (11)

j{B(ﬁﬁ+iﬁ)—6:5—aef}:86—(6-6+F)-8L7}d1/+
)

v

+|(6-i-p,) 8iddZ=0
)

is transformed into the form
(Z)
I j{[%(@ﬁ +ﬁ§)—6 : Z;—OLOIA} (M,’,’i&p’,{q + (pf{;SMZ)iSj -
)0

(V64 F)- (U, + U, )3 | H, dydZ, +
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(+) )
+ I |:®6(8Uim’8\'lim)| 3 (};) H3+(DG(8Uim’8\Vim)| 3 (*}) H3:|d20+
(Z0) * - o
(;)
+ I jq)c(SUima&Vim)Hz dydl, =0,
(ro)(__}z

where
o (SUim > 6\ljim ) = (6 ' ’_/i - ﬁn) (Uzm 8\Ijzm + WzmSUzm) 5 1 - (1 - le)(l * kz’Y),

1/2

H, = [1 + 23((1’(1 cos” y + k, sin? X)"‘ (y)z (kl2 cos” y + k22 sin’ x)] ;

2

)2 +
) T AT ) A Py
Hy= [[vekon | [1ekgn | wa2fizin || 28| a2 1en n || 20
a (0

(T,) is a contour limiting (£,); 3,,3" are the covariant and countervariant basic vec-
tor systems of coordinates o', 0?,y in an actual configuration; k,,k, are principal
curvatures of the surface (20 ); ¥ 1is the angle between the coordinate line o' and con-
tour ( ) A,, 4, are coefficients of the first quadratic form of the basic surface

From condition (15), we obtain equations
) 5@‘; ()5, o) OVlols _y xakyy o ppit_gro g

) s dle U, 265U, 2B, MY =0

ms o aolk
dr?mU_’as 33kUks _blils;nkal 833 0,

(o DM 03 YR
sm W—i_e(i)msMs +g(i)jmsMs +pjkmsMs -
_q(l)]msMs(l)j +q;:ll +fri: = (16)

A(K)w\U(K)s + Agls))KW(m)s 2CKkaks 2’Bklms(Ps _2951(0 = 07
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d
D(K)% A319W39 _ZCK3 Wi _2Bklms(pf - 0
D3 d\(‘;SS C33k\|}kc - Bklms(pY 63”3 =0,

i d (l) i
D§2%+E(i)Kms(Pg) +G()]ms(P£) +Pkms(PS

- Q(i)jms(PE'i)j + Q;l + Fr:l =0
and boundary conditions

(#) |: W) ( (* )H ()
V( )jmv +h = Vm:

wr

V([)jmsMs(i)j = vrr: on (FO )

Here i, j,k,/=1,3; x,0=1,2; m,s =0, N and

(z) (;l)
A, = J O Hidys bl = ([(p(n’;’ Wby H
i 5
5 5
= J(Pﬁz N T Hdy 5 I(Pm H,dy;
] 9
Z p 03 ( )
em = [ Wty 1= j JwHdy
—h -
(;l)
Cijms =(I)<Ps”)\|f(,-)mf(kj)kH1dv; Dl = Coms
—h
SR G O O
Gims = Limst Lijms > G = 4t 4 0>
(+) ) () @) . (£)
qgms=<ﬁVanmnu)a3:gﬁfiy qZ==wqgmp$)wz+%ﬂ¥y
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(17)

(18)

(19)
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(+) (+)

T
T

h h
Viims = j(PE”)W(i)mn(j)szv; Vi = IW(I-)mp,(Z)szv;
9 9
(+)
h
9'}’; = Jael(i/)(pgg)Hld’Y ;
9 |
. - OU (s ; .
Ar"‘:s - JAMI(;IK)_((;))_HleO’ B/{lms J.MISII)M\(kI)b(z/kI)HleO;
c) oo (%)
ijk ij k i i)3
Cn]m - J‘Mr(n])U(k)vr((ij))Hldzm Dmv - JMr(n) U(t)ledZm
(=) (Z)
oM™ () .
ixms J. a(X(K) U(z)m 1%40> Fm = _[F U(i)mHldzm
(o) (Zo)
Gljms JMS(U)U(l)mr(kl)kHleO’ Pjikms = CsJ: ;
(o)
Qs = [ MU, HdTy: O3 = [U), p\ H,dTy;
(o) (o)
() ) () () (=) *) )
V(i)jms (psl th = I Msl J(Psl th U(i)m n jH3dZO;
(o)
), (COPNCY) " "
Vo= IU(i);n p ZZ)H 3dZg; 0, = J‘OLGI(,-j)M,(éJ)HIdZO;
(Zo) (=0)
(%) (*) A a

. k
); by » 1; are tensor components, respectively, b, I; I
y=th

are Christoffel’s symbols of the second kind; F', p!, n, are vector components, res-
pectively, F, D, N.
The system of equations (16), (17) and boundary conditions (18), (19) make it
possible to find solutions to static problems of thermoelastic shells with variable thickness.
The obtained boundary-value problem, (16-19), enables one to define all compo-
nents of the stress tensor and consider boundary conditions of the face surfaces, which
is particularly essential in regions of abrupt changes in load as well as geometrical and
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mechanical parameters of the shell. A solution of nonlinear system of equations (16-19)
is proposed in [11].

Conclusions. General equations of iterative models of thermoelastic shells which take
into account the effects of locally-gradient and high-speed deformations were obtained
in the three-dimensional approximation. The method of choice of the optimal basis of
expansion functions at the transition from the three-dimensional boundary-value prob-
lems to their two-dimensional analogues.

(1]
(2]
(3]
(4]
(3]
(6]
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MatemaTtu4yHe mogentoBaHHA B TepMOMeEXaHiLi Npy>XHUX 060TOHOK
3a iTepayinHO-MOMEHTHUM NiaxXoA0oM

HOpin 3o3ynsik

0b62060protomsbca 3a2a1bHi NIOX00U 00 MAMEMAMUYHO20 MOOETIOBAHHS MEPMOMEXAHIYHUX Npoye-
Ci8 y MOHKOCMIHHUX eJleMeHmMax muny niacmut i 060J10HOK y MPUGUMIPHOMY HaOaudicenHi. Buxio-
HUM 0151 N0OYO08U GUSHAYATILHUX CNIGBIOHOUIEHb € DIBHSHHS OANAHCY eHepeii, cqhopmynvosane 8
MPUBUMIPHITL NOCMAHOBYL 3a NIOX000Mm Jlacpansica Ha po3uiupeHomy npocmopi napamempie jio-
KAIbHO20 CMAHy ma 6i0N08i0H020 eubopy (yHKYil 10KanbHoi cumyayii. YV 36 ’53Ky 3 yum nomix
Mexaniunoi emepeii 6 3a2anbHOMy 6UNAOKY NOOAEMbCA CYMOIO AOUMUGHUX CKIAOOBUX, 8 AKUX
nopyu 3 mpaouyiiHuMu Xapaxmepucmukamu (MmeH30poM HANPYs*CceHb i 6eKMOpOM WEUOKOCMI)
imepayiiuHumM WaAsXomM 6800AMbCA U020 NOPAOKY XAPAKMEPUCTNUKY 2PAOIEHMHOCI dedhopmy-

Ha Yiti OCHOBI (Aa306020 NPOCMOPY NAPAMEMpIE JOKAAbHOI cumyayii 6yoyemuvcs cucmema
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BUSHAYATILHUX CNIBBIOHOWEHD, AKI 00380AI0Mb 8PAXOBYEAMU epHeKmU NOKATbHO-2PAOIEHMHO20 |
BUCOKOWBUOKICHO20 Oeghopmysanns. Illepexio 00 0808UMIpHO20 aHANOZY Y BUSHAYANLHUX
CNIBBIOHOWEHHAX — 30IUCHIOEMbCA — Yepe3  OCepeOHeHi  XApaKmepucmuKku — HanpyiceHo-
Oeopmosanozo cmany, BUKOPUCMOBYIOUU PO3GUHEHHS WYKAHUX 8EIUYUH Y PAOU 3d MEH3OPHOIO
6a3zo10. [lpononyemucsa eapianm subopy onmumanvroi 6asu pos3knady, aKka 00360J5€ 30UCHI8AMU
Hauadekgamuiwull nepexio 6i0 MpUGUMIPHUX KPAtlosUux 3a0ay 00 ix 0808UMIPHUX AHANOZIE.

MaTemaTn4yeckoe moaenMpoBaHue B TepMOMeXaHUKe ynpyrux
06ono4eKk ¢ NOMOLLbIO UTEPALLIMOHHO-MOMEHTHOrO NoaxoAa

FOpun 3o3ynsk

102

Obcysrcoaromesa obwue noOXoobl K MAMeMaAmudecKkomy MoOenuposanulo mepmMomMexanHuyeckux
npoyeccos 6 MOHKOCMEHHBIX NeMEHMax mund Nidcmut u 000104eK 8 MPexmMepHOM NpubaudICce-
Huu. HCX0OHbIM NpU NOCMPOEHUU ONPeOensoWux COOMHOWEHUL SA6IAeMCs ypasHeHue 6aianca
9Hepeuu, cHOpMYIUPOBAHHOE 8 MPEXMEPHOU NOCMAHOBKe 3d Nooxodom Jlazpawdica na pacuiu-
PEHHOM NPOCMPAHCMEe NAPAMEMpPOs8 JIOKANLHO2O COCMOAHUS U COOMBEMCMBEHHO20 6blO0Opa
@yHKyull 10KanbHOU cumyayuy. B amoil ceéa3u nomok mMexanuyeckou sHepauu 8 odujem ciyuae
npeoCcmasnAaemcs CyMmol a0OUMUEHbIX Cia2aemulx, 6 KOMopbix Hapsady ¢ MpaouyuOHHbIMU XapaK-
mepucmuxkamu (MeH30pOM HANPAXCEHULl U 6eKIMOPOM CKOPOCU) UMEPAYUOHHBIM NYmeM 68005M-
cA sbicuell cmeneny Xapakmepucmuky 2paoueHmHoCmy 0eopMuposanus U UHePYUOHHO20 O8U-
JHCEHUS, A MAKIHCE COOMBEMCMEYIOWUe UM MEH30PHbIE XAPAKMEPUCTNUKU CUTOB020 B030€ICMEUS.
s onpedeneHHo2o0 Ha 3MOM OCHOSAHUU (DA308020 NPOCMPAHCMEA NAPAMEMPOS NOKANLHOU
cumyayuu  Cmpoumcs CUCMeEMAd OnpeoeNsiowux COOMHOWEHUL, NO360JANUUX  VUUMbIEAMb
aphexmul NOKANHO-SPAOUCHINHO20 U BbICOKOCKOPOCHHO020 Oepopmuposanus. Ilepexod k osymep-
HOMY aHAano2y 8 ONpeoensiowux YPAGHEHUAX Peanusyemcs: NOCPeOCm8OM OCPEOHEHHbIX MEH30PHbIX
XapakmepucmuK HAnpsiCcenHo-0eQOPMUPOBAHHO20 COCMOAHUA C UCNONL30BAHUEM Npedcmasie-
HUSL UCKOMBIX 6ETUYUH PA3I0NCEHUEM 8 PAObL NO meH30pHoM basuce. [Ipednazaemcs eapuanm 6vi-
b6opa onmumansHo2o 6asuca pasnodiceHls, No38ONAOUUL OCYUWeCMEIAMb Hauboaee aoeK8amHmblil
nepexo0 om mpexmMepHbIX KPaesbix 3a0a K Ux 08YMEPHbIM AHAL02AM.
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