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The problems of the existence and propagation character of spatial spin surface waves in ferro-
magnic media are considered. The condition of a surface wave existence is obtained depending on 
the physical constants of the medium and the angle between the wave vector direction and the 
direction of the axis of a ferromagnet easy magnetization. The regions of the wave numbers chan-
ge, where the surface wave propagation becomes impossible (zone of silence) are determined. 
Formulas for determining the phase velocity and penetration depth of the surface wave are found. 
It is show that with a certain choice of the wave vector direction one can achieve the necessary 
localization of the spin wave at the body surface. 
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Introduction. Based on the equation of motion of the magnetic moment and quasista-
tic Maxwell’s equations, in work [1] the problem of existence of spin surface wave in a 
ferromagnetic semispace has been studied in a two-dimensional statement. It was taken 
that in the Cartesian rectangular system of the coordinates 1 2 3, ,x x x  the semispace 
occupies the region 2 0x   and the 3Ox  axis coincides with the axis of easy magnetiza-
tion of the ferromagnet. The two-dimensional problem (all quantities characterizing the 
wave motion in a medium do not depend on the coordinate 3x ) was considered: in this 
case the wave propagates parallel to the 1Ox  axis (perpendicularly to the axis of easy 
magnetization) and damps with removal from the semispace surface. The dispersion 
equation was derived, the analysis of which reveals that: i) in a semispace two-dimen-
sional surface spin waves (Damon-Eshbach waves) can propagate with a frequency 
independent of the wave vector modulus; ii) these waves depending on the wave vector 
direction, propagate either only along the positive direction of the 1Ox  axis or only 
along the opposite direction. More recently this problem was considered by many 
authors [2-6] which studied the influence of various factors (homogeneity of medium, 
exchange interaction, external magnetic fields, etc.) on the existence and propagation 
character of two-dimensional surface spin waves. Information on these investigations 
can be found in monographs [3, 5, 7] containing a sufficiently complete review of 
works related to spin waves. In all mentioned works the problem of surface spin waves 
was studied in a two-dimensional statement. 
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In this paper, the problem of existence and propagation of a spin surface wave is 
studied in a three-dimensional statement. The functions, which are the solutions of the 
considered three-dimensional problem, are represented in the form   2 expkf x i t    

1 1 3 3k x k x    , where   is the wave frequency, 1k  and 3k  are the components of the 
wave vector 1 1 3 3k k k e e , ie  are the unit vectors of coordinate axes, and 2( )kf x  are 
unknown functions to be determined. With allowance for surface conditions of the 
problem, the functions 2( )kf x are derived and the dispersion equation with respect to 
  is obtained, which at k3 = 0 coincides with the dispersion equation of the Damon-
Eshbach wave. By analysis of the dispersion equation, the following condition of exis-

tence of a spin surface wave is derived:   20 1 1
0 3 1 4H M k k      where β is the 

anisotropy constant, M0 is the magnitude of the saturation magnetic moment M0 = M0n, 
H0 is the strength of magnetic field 0

0 HH n , and n is the unit vector along the axis 
of easy magnetization of the ferromagnet. This means that in the considered ferromagnetic 
medium i) one can excite a surface wave if the angle   made by the vectors n and k 
belongs to the following regions (zone of existence of the surface wave): 0 0      

and 0 02          where  2 1
0 0 0tg 4H M       and 1

0 0 0H M   ; ii) the 

surface wave cannot propagate, if   belongs to the regions 0 0          and 

0 02 2          (zone of silence). From the solution of the dispersion equation if 
follows also that:  

a) the surface wave can propagate either only along the positive direction of the 
wave vector or only along the opposite direction of this vector;  

b) if one changes the direction of the wave vector to the opposite one, the direction 
of the surface wave propagation remains unchanged;  

c) with a proper choice of the wave vector direction one can achieve a necessary 
localization of the spin waves at the surface of the body;  

d) spatial surface waves, as well as the Damon-Eshbach waves, propagate with 
a dispersion.  
The influence of the wave vector direction on the phase velocity and penetration 

depth of the spatial spin surface wave is also studied.  

2. Problem of propagation of spin (magnetic) waves in ferromagnets 

Let us consider a dielectrical ferromagnetic crystal occupied a region Ω (inner region) 
of a three-dimensional Euclidean space. It is assumed that properties of a medium out-
side the crystal (in outer region) coincide with the properties of vacuum. A Cartesian 
rectangular system of coordinates x1, x2, x3 is chosen in such a way that the Ox3 axis 
coincides with the axis of easy magnetization of the ferromagnet.  

Our investigation of the wave process is carried out on the basis of the equation 
of motion for the magnetic moment of the ferromagnet. In the absence of dissipative 
processes, this equation has the following form [7] 
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  ( )efd g
dt

 
μ μ H . (1) 

Here g is the gyromagnetic ratio (g ≈ 1,76·10 7c – 1e – 1),  1 2 3, , ,x x x tμ  is the 
magnetic moment of a unit mass of the ferromagnet, and H(ef) is the effective magnetic 
field, the components of which are defined by formulas [7] 

 ( ) 1ef
i i

i k ik

F FH H
x
   

        
, 

 i
ik

kx


 


,        , 1,3i
i

d v i
dt t x

 
  
 

μ μ μ . (2) 

In formulas (2)   is the density, v is the velocity,  ,i ikF    is the potential 
energy of the ferromagnet per unit mass, and H is the magnetic filed in the ferromag-
net. Hereinafter we assume a summation over repetitive indices. 

It is necessary to add to equation (1) the equations of magnetostatics in the 
region occupied by the ferromagnet (region Ω) 
 rot 0, div 0 H B , 
 4 4     B H M H μ , (3) 
and also the boundary conditions 

 ( ) ( )0, 0e e           B B N H H N  (4) 

on the surface S of the ferromagnet. In formulas (4) N is the unit vector of the outer 
normal to the body surface, M is the magnetic induction, and index «e» implies that a 
considered quantity belongs to the external medium. Quantities with this index satisfy 
the equations of magnetostatics for vacuum 

 ( ) ( ) ( ) ( )rot 0, div 0,e e e e  H B B H  (5) 

and conditions at infinity. 
Consider two states of magnetization of the ferromagnet. The first one will be 

named the equilibrium state and all quantities related to this state will be denoted by the 
index «0». It is assumed that in this state the medium is homogeneously magnetized up 
to saturation in the direction of the axis of easy magnetization: M0 = M0n = MSn (MS is 
the saturation magnetic moment). The second state will be named the excited state. All 
quantities related to this state will be denoted by the tilde and they will be represented 
as a sum of quantities related to the equilibrium state and to the perturbation of corres-
ponding quantities: 0Q Q q  . Perturbations are considered as small quantities as 
compared to the corresponding quantities of the equilibrium state and are not marked 
by any additional indices. 

According to formulas (3)-(5), characteristics of the magnetic field of the equi-
librium state should satisfy the equations 
 0 0 0 0 0rot 0, div 0, 4    H B B H M  (6) 
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in the region  , the equations 

 ( ) ( ) ( ) ( )
0 0 0 0rot 0, div 0,e e e e  H B B H  (7) 

in the external region, and the condition of interfacing on the ferromagnet surface 

 ( ) ( )
0 00 00, 0e e           B B N H H N . (8) 

In addition, the conditions at infinity should be fulfilled 

 ( ) 0
0lim e

r
H H  (9) 

(here 2 2 2 2
1 2 3r x x x   , and H 0 is a given external magnetic field directed along the axis 

of easy magnetization: H0 = H0n), as well as the condition following from equation (1) 

 ( )
0 0ef n H . (10) 

Further, for simplicity, we consider such regions   (occupied by the body) 
where the problem (6)-(9) has a solution H0 parallel to the vector n: H0

 = H0n. Such 
regions are, for instance, the regions occupied by an infinite cylindrical body, the axis 
of which is parallel to the axis of easy magnetization, and the region occupied by a bo-
dy in the form of an infinite layer or a semispace the boundary planes of which are 
parallel to the vector n. 

According to the above, the quantities characterizing a perturbed state of the 
medium should be represented as 
 0 0 0, ,i i i i i iH H h            , 
 ( ) ( ) ( ) ( )

0 0,ef ef ef ef
i oi i i i i i i iH H h H h v v v v        . (11) 

Here 0 const  is the equilibrium density of the ferromagnet, 1
0 0 0

 μ M  is the 
magnetic moment density of the equilibrium state, , ,i ih   and ( )ef

ih  are perturbations 
of the corresponding quantities of the equilibrium state. 

As seen from formulas (2), in order write the equations with respect to the per-
turbations ,i ih , and ( )ef

ih  of the equilibrium state, it is necessary to give an expres-
sion for the density of the potential energy F of the ferromagnet. Here we consider the 
expression for F in the case of small perturbations and a low gradient of the magnetic 
moment density, restricting ourselves to uniaxial ferromagnets. Then, expanding the 
function  ,i i kF x    into a Taylor series in the vicinity of equilibrium state and 
limiting ourselves up to the terms of the second-order smallness, we obtain for F the 
representation [7]  

    21
02 i i

k k
F b

x x
  

       
 

μ μ μ n , (12) 

where   is the magnetic anisotropy constant of the medium and   is the exchange 
constant (modulus of the exchange interaction). 
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Taking into account expression (12) and basic assumption of the theory of small 
perturbations (for instance, such as 2

0 ,q Q q q  , etc.) from formulas (2) we get 
the following linearized expression for the perturbation of the effective magnetic field 

  ( )
0 0 0h h μ μ n μ nef b          , (13) 

where   is the three-dimensional Laplace operator. 
Similarly, considering expressions (6)-(11) and conditions for the smallness of 

perturbations, one can derive from formulas (1) and (3)-(5) the linearized equations 
and boundary conditions describing the perturbations of corresponding quantities, 
characterizing the equilibrium state of the considered ferromagnetic medium: 
equations in the region Ω 

 
0

0 0 0
0

Hg
t M

  
               

μ n h μ μ , 

  0rot 0, div 4 0   h h μ ; (14) 

equations in the external region  

 (e) (e)rot 0, div 0 h h , (15) 

boundary conditions on the surface S 

    ( ) ( )
04 0, 0e e       h h μ N h h N  (16) 

and conditions of perturbations damping at infinity 

 ( )lim 0e
r

h . (17) 

Equations and boundary conditions of type (14)-(17) characterizing the propaga-
tion of the spin (magnetic) waves in ferromagnets, based on different approaches, have 
been obtained in many works (see [3, 5, 7]). The method of small perturbations used in this 
paper is similar to the approach applied in [7], and the final equations and surface 
conditions derived in [7] completely coincide with formulas (13)-(17) at H0 = 0. 

3. Dispersion equation of spatial spin surface waves 
Let Ω be a semispace the boundary of which is parallel to the axis of easy magnetiza-
tion of a ferromagnet occupying the region Ω. The system of coordinates x1, x2, x3 is 
chosen so that Ω coincides with the region x2 > 0 and the Ox3 axis is directed along the 
vector n, i. e. along the axis of easy magnetization. Then let a medium be in a permanent 
magnetic field H0(0, 0, H0). In this case the problem of determining the magnetic field 
H0 of the equilibrium state, i. e. the problem (6)-(9), has the solution 

 0
01 02 030,H H H H   . (18) 
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Based on formulas (18) and (14)-(17), the study of the wave process in a consi-
dered magnetic system, in the case of the long-wavelength approximation    μ μ , 
is reduced to solving the equations 

 1
2 0

2

ˆ 0M g
t x

 
    

 
, 

 2
1 0

1

ˆ 0M g
t x

 
     

 
, 

 3 0
t





, 

 04 div 0  μ  (19) 

at x2 > 0 and the equation 

 ( ) 0e   (20) 

at x2 < 0 with the conditions at the surface x2 = 0 

 
( )

( )
0 2

2 2
, 4

e
e

x x
 

      
 

 (21) 

and the conditions of damping of perturbations at infinity 

 
2 2 2

( )lim 0, lim 0, lim μ 0e
x x x  

     . (22) 

In formulas (19)-(22) the functions  1 2 3, , ,x x x t  and  ( )
1 2 3, , ,e x x x t  are the 

potentials of the perturbed magnetic filed in the medium and vacuum, respectively, Δ 
is the three-dimensional Laplace operator 

 ( ) ( )grad , grade e     h h , 

 0 1
0 0 0 0

ˆ,M g gM H M          . 

Note that in formula (22) the conditions at 2x   are also the necessary 
conditions for existence of a surface wave. 

Solutions of equations (19), corresponding to propagation of the wave with a fre-
quency  , wave numbers k1, k3 and an amplitude depending on the coordinate x2 can 
be sought for as  

    2 1 1 3 3expj jf x i t k x k x       , 

      2 1 1 3 3exp 1,3x i t k x k x j         . (23) 

Substitution of formulas (23) into the first three equations of system (19), with 
allowance for the last condition from the set (22), leads to the following expressions 
for unknown functions f j (x2) 
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   0
1 2 12 2 2

2

ˆ
ˆ M

M

ig df x k
dx

  
     
    

, 

   0
2 2 12 2 2

2

ˆ
ˆ M

M

g df x k
dx

  
       

    
, 

   2 2 2
3 2

ˆ0, Mf x      . (24) 

By substituting expression (23) and (24) into the last equation of system (19) we 
obtain the following ordinary differential equation with respect to the unknown func-
tion  2x  

  
2

2 2
3 12

2
0d k k

dx


      ,        
  2 2

2 2 2

ˆ ˆ 4
ˆ

M

M

      
 

   
. (25) 

Solutions of equation (20) (in the region 2 0x  ) corresponding to representation 
(23) and satisfying the first condition from the set (22), have the form 

  2( ) ( )
1 1 3 3expkxe eA e i t k x k x     ,       2 2

1 3 0k k k   , (26) 

where ( )eA  is an arbitrary constant. 
As seen from equation (25), at 0   one has either a trial solution  0, 0i ih    

or a transverse bulk wave. Therefore we assume that 0  , because further only the 
problems of existence and propagation of surface waves are considered. Then, by using 
formulas (23), (24), (26) and surface condition (21) one can show that, if k1 = 0, then 
spin surface waves cannot propagate in the ferromagnetic medium under consideration. 
Indeed, if k1 = 0, equation (25) can have a solution satisfying the condition 

 
2

2lim 0
x

x


   (condition of perturbations damping at infinity) only at 0  . Then 

for Φ(x2) we obtain 

   3
2 2exp

k
x B x

 
    

. (27) 

Substituting expressions (26) and (27) into formula (21), we get the dispersion 
equation 

 1 0,    

which does not have real roots. Hence, it is impossible to excite surface spin wave 
propagation along the axis of easy magnetization. 

Now we proceed to consideration of the general case 10, 0k   . In this case 
equation (25) has a solution vanishing at infinity  2x   only in the case when the 
following condition is fulfilled 
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 2 2
1 3

1 0k k   


, (28) 

which is a necessary condition for existence of a surface wave. 
Under condition (28), the solution to equation (25), satisfying the conditions of 

damping of perturbations at infinity, has the form 

    2 2expx A x    , (29) 

where A is an arbitrary constant. 
Satisfying the surface condition (21), one can derive the following dispersion 

equation with respect to the frequency ω 

 
2

2
2 2
4 1 1ˆ

x rr
x


    

 
, (30) 

where 

 
  2

11
3 1 2 2

1

ˆ ˆ 4
, , ˆM

xkx r k k
k x


    

   
  

. (31) 

Thus, the problem of existence of a spatial surface wave (and, hence, the charac-
ter of its propagation) depends on whether equation (30) has real roots satisfying con-
dition (28) or not. 

4. Solution of dispersion equation. Condition of existence  
and character of propagation of surface waves 

Taking into account that the quantity α is nonzero and in view of formula (31), it is 
convenient to represent the dispersion equation (30) in the form 

 ( ) ( )f x g x , (32) 
where 

 
 

 
  

 
2 2 2 2 2 2

2 2

ˆ ˆ ˆ1 4 1 4
( ) , ( )

ˆ ˆ ˆ ˆ4 4

r x x r x
f x g x

x x

        
 

         
. (33) 

In consideration of equation (32) we restrict ourselves to the case ˆ 0  . This 
equation has real roots only in those cases when  

 ( ) 0, ( ) 0f x g x  . (34) 

With allowance for expression (33), one can establish that the function f (x) is 
positive in the regions 

 1x x    ; (35) 

 1 x x   ,     if   2ˆ 4r   ; (36) 
 1x x    ,     if   2ˆ 4r   , (37) 
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and the function ( )g x  in the regions 

 2 2
2 2

ˆ ˆ4 4ˆ ˆ
1 1

x
r r
 

      
 

; (38) 

 1x   ; (39) 
 1x   . (40) 

In expressions (35)-(40) the following notations were introduced 

 
2

2 2
12 2

2 2ˆ ˆ ˆ, 4
1 1

x
r r

   
             

, 

From these expressions one can conclude that conditions (34) (at which equation 
(32) can have real roots) are fulfilled in the following cases: 

 2
2

ˆ4ˆ0
1

x x
r

 
    


; (41) 

 1x x     if 2ˆ 4r   . (42) 

Taking into account expressions (41) and (42), it is easy to show that equation 
(32) does not have positive roots. Hence, if 

 2ˆ 4r   , (43) 
equation (32) does not have real roots, i. e., under condition (43) the existence of a spin 
surface wave becomes impossible. 

However, if 

 2ˆ 4r   , (44) 
equation (32) has a single root belonging to region (42) and determined by the formula 

 
 2

2

ˆ 2 4

2 1

r
x

r

   
 


. (45) 

Thus, expression (44) is the condition of existence of a surface spin wave in the 
ferromagnetic medium under consideration. 

Let us introduce an angle   between the direction of the axis of easy magnetiza-
tion (direction of the vector n) and the direction of the wave vector  1 3,0,k kk  counted 
from the vector n clockwise. Then from equation (44) we conclude that in the conside-
red ferromagnetic medium:  

a) one can excite a surface wave if   belongs to the following regions (zones of 
existence of a surface wave) 

 0 0          and   0 02         ,      0 arctg
4
     

; (46) 
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b) a surface wave cannot propagate if   belongs to the regions (zone of silence) 

 0 0 0 0, 2 2                  . (47) 

Let us return to expression (45) which, in view of formulas (31), allows one to 
obtain the following formulas for determining the frequency ω of a surface wave 
depending on the square of the ratio of wave numbers  2 2

3 1k k  and the sign of the 

wave number k1 

 
 
 

2
1

1
2 21

ˆ 2 4

2 1
M

rk
k r

   
  


. (48) 

Substituting k3 = 0 into formula (48), we get the known expression for the fre-
quency of a two-dimensional surface wave (Damon-Eshbach waves [1]) 

   1

1

ˆ 2DE M
k
k

       . (49) 

By comparing formulas (48) and (49) we arrive at the inequality DE    (the 
equality takes place only at k3 = 0). 

It is easy to establish from expressions (48) and (23) that: 
i) if k1 > 0, the surface wave can propagate only in the opposite direction of the 

wave vector k;  
ii) if k1 < 0, the direction of the surface wave propagation coincides with the 

direction of the wave vector k;  
iii) if one changes the wave vector direction to the opposite one, the direction of the 

surface wave propagation remains unchanged. 
Formula (48) allows one also to derive the following expression for determining 

the modulus v of the phase velocity v  ,k k  v N N k  is the wave normal, 
2 2
1 3k k k   is the wave numbers) of the surface waves 

 
  2 2

1 3
2 22 2 1 1 31 3

ˆ ˆ2 2

2
M

k k
v

k k kk k

    
 


. (50) 

By taking k3 = 0 in expression (50) we obtain the following formula to determine 
the phase velocity of the Damon-Eshbach wave  1 0k   

  
1

ˆ 2 M
DEv

k


   . (51) 

Formulas (50) and (51) show that spatial surface waves as well as the Damon-
Eshbach waves propagate with dispersion. 
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Using expressions (28)-(31) and (45), it is easy to show that the penetration 
depth γ of a surface wave (i. e., the depth, at which the wave amplitude falls e times) is 
determined by 

 
2

22
1

ˆ1 4
ˆ41

r
rk r

 
 

 
. (52) 

Note that in this case γ > 0, according to condition (44) (condition of existence 
of a surface wave). 

Let us consider the dependence of the phase velocity v and penetration depth γ  
of a surface wave on the direction of the wave vector k, taking R const k . Then 

the mentioned quantities are represented in the following way  2 2 2
1 3 0k R k    

 
   

 
 
 

2 2 2 23 3 3 2 3
31 22 2

2 3 32
3

ˆ ˆ ˆ2 2 4 4 11, ,
ˆ2 4 1

1

M
k k k kv k

R R Rk k
k

         
   

   


. (53) 

From the condition of existence of a surface wave (44) it follows that 3k  (– a, a), 

where   1 2ˆ4 4a        . As seen from expression (53),  3v k  and  3k  are the even 

functions of k3 and have a maximum at the point k3 = 0. There are not any other points 
of extremum in the interval  ,a a . The case of k3 = 0 corresponds to the Damon-
Eshbach wave, and the maximum values of these functions are the phase velocity 

    ˆ0 2 Mv R      and penetration depth  1(0) R   of this wave. Hence, one 

can conclude that:  

i) the phase velocity of a spatial surface wave is lower than that of the Damon-
Eshbach wave;  

ii) the penetration depth  3k  of a spatial surface wave satisfies the condition 

 3 (0)k    (where 1(0) R   is the penetration depth of the Damon-Eshbach 
wave) and is an infinitely small function in the vicinity of the points 3k aR  ;  

iii) in contrast to spatial surface waves, the penetration depth of the Damon-Eshbach 
wave does not depend on the magnetic properties of the medium. 

Based on the above properties of a spatial surface wave (particularly, the pro-
perty ii)) we conclude also that with a certain choice of the wave vector direction one 
can achieve a necessary localization of the spin wave at the surface of the body. 
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Існування та характер поширення просторових  
спінових поверхневих хвиль у феромагнетиках  

Ґеворг Багдасарян 

Досліджено питання існування та характер поширення просторових спінових поверхневих 
хвиль у феромагнітних середовищах. Отримано умову існування поверхневої хвилі залежно 
від фізичних постійних матеріалу середовища та від кута, утвореного напрямком хвильового 
вектора з напрямком осі легкого намагнічування феромагнетику. Визначені області зміни 
хвильових чисел, за яких поширення поверхневої хвилі є неможливе (зони мовчання). Знайдені 
формули для визначення фазової швидкості та глибини проникнення поверхневої хвилі. 
Показано, що з вибором напрямку хвильового вектора можна досягти необхідної локаліза-
ції спінової хвилі біля поверхні тіла. 

Существование и характер распространения 
пространственных спиновых поверхностных  
волн в ферромагнетиках 

Геворг Багдасарян 

Исследованы вопросы существования и характер распространения пространственных спи-
новых поверхностных волн в ферромагнитных средах. Получено условие существования 
поверхностной волны в зависимости от физических постоянных материала среды и от 
угла, составленного направлением волнового вектора с направлением оси легкого намагни-
чивания ферромагнетика. Определены области изменения волновых чисел, при которых 
распространение поверхностной волны становится невозможным (зоны молчания). Найде-
ны формулы для определения фазовой скорости и глубины проникновения поверхностной 
волны. Показано, что с выбором направления волнового вектора можно достичь необходи-
мой локализации спиновой волны у поверхности тела. 
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