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Effect of spring fixation on dynamics of reservoir with liquid
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Mathematical model of combined motion of rigid cylindrical reservoir, filled by liquid with a free
surface and fixed by spring to immovable point, is constructed. Nonlinear oscillations of the sys-
tem under impulse force are investigated for springs of different stiffness. Potential of usage of
spring with the purpose of liquid vibroprotection is studied.
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Introduction. Problems of dynamics of liquid with a free surface in reservoirs for dif-
ferent variants of fixations are caused by demands of modern engineering. Reservoirs
with liquid are used in engineering structures in machine building, aircraft and rocket
construction, means of transport and storage of liquid cargo [1, 2, 3]. Special attention
is paid to behavior of these structures under impulse loading, as well as to means of
vibroprotection of such systems. Until now analytical solutions of these non-stationary
boundary values problems are not obtained, therefore, for investigation of these prob-
lems approximate algorithms, based mostly on variational techniques are used. We state
the problem of investigation of effect of spring fixation of reservoir on restriction of
liquid oscillations for impulse disturbance of system motion, which models, for example,
abnormal situations of operation.

1. Object of investigation

We consider translational motion in the horizontal plane of absolutely rigid cylindrical
reservoir, partially filled by liquid and attached by spring to immovable point. At the
initial time instant the system reservoir — liquid with a free surface is at rest state.
Motion of the system is generated by force, applied to reservoir walls, in the form of
rectangular impulse of duration A and height F.

The general scheme of such mechanical system is shown in Fig. 1. Here t is the
domain, occupied by liquid at arbitrary time, S and S, are perturbed and unperturbed
free surface of liquid, X and X, are surfaces of contact of liquid with reservoir walls in

perturbed and unperturbed states. We assume that liquid is ideal, homogeneous and at
initial time vortex motions are absent, since we consider the problem for ground-based
conditions we neglect contribution of capillary forces on liquid oscillations.
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Fig. 1. General scheme of the mechanical system

2. Mathematical model

The problem is solved on the basis of variational algorithms, which are based on
mathematical statement of the problem in the form of the Hamilton-Ostrogradskiy
variational principle. Elevation of a liquid free surface is described by the equation
z=§(x,y,t). Mathematical problem represents a system of kinematic and dynamic

conditions. We have the following kinematic restrictions: continuity equation for liquid
Ap=0 in t, (1)

here ¢=¢, +£-7, boundary conditions of non-flowing through surface of contact
reservoir — liquid and a free surface
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where 7 is radius-vector of points of the domain 1, € is vector of translational motion
of the reservoir, ¢ is the potential of velocities of liquid. At initial time instant displa-
cements and velocities for all system components are accepted as zero. Dynamic boun-
dary conditions are obtained from the Hamilton-Ostrogradskiy principle as natural.

Let us write kinetic and potential energy for every component of the system

1 fre, 2\ 1
E:Epj(v¢+8) dt, T,=EM,82, 3)
T
1 1
n,:ngjaZdS, M,=0, I, =Fe, I =—ce. (4)
So

Here 7; is kinetic energy of liquid, 7, kinetic energy of the reservoir, I, is potential
energy of liquid, II, is potential energy of the reservoir, Il is potential energy of the
applied force (conventional representation), I is potential energy of elastic forces of
the spring, p is liquid density, M, is mass of the reservoir, c is stiffness factor of spring.
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Taking into account the expressions (3), (4) let us write the Lagrange function
for the mentioned system

1
L——pI(V¢+g) dt+— Ms ——ngF, dS - Fe, ——6‘82 5)
2
0
Further we consider kinematic boundary conditions as mechanical constraints,
which superimpose restriction on variations in the Hamilton-Ostrogradskiy variational
principle

]
5[ Ldt=0. (6)
1
Dynamical boundary condition on a free surface of liquid follows from the
Hamilton-Ostrogradskiy variational principle, and in the case of movable reservoir it
takes the following form

2‘1’ (v¢) ~§-Vo+gE=0 on S. (7)

3. Construction of discrete model of the system

Investigation of nonlinear dynamics of combined motion of the system reservoir —
liquid with a free surface was done according to the method of publication [1]. Non-
linear discrete model for this system is constructed on the basis of the Kantorovich
method applied to kinematic restrictions of the problem and to variation formulation of
the problem on the basis of the Hamilton-Ostrogradskiy variational principle. For effi-
cient usage of the variational principle it is necessary to satisfy kinematic constraints
before solving the variational problem. Since irrotational motion of ideal, homogene-
ous incompressible liquid is completely defined by motion of its boundaries, then ele-
vation of a free surface & and displacements of tank walls € completely characterize

motion of liquid with a free surface, which is defined by liquid velocity potential ¢.
For solutions of the nonlinear problem we shall use for values ¢ and & decom-
positions by normal modes of the linear problem y, about motion of liquid with a free

surface in movable reservoir, which holds kinematic boundary conditions on reservoir
walls and linearized boundary conditions on a free surface

X,,(Z"‘H)

¢= Zb O w,(r,0) shy I

. E=a,(0)v,(r0). (8)
1
here a; is amphtude parameter of excitation of normal modes of oscillations of liquid.
Nonlinear kinematic boundary conditions on a free surface are satisfied by means of the
Galerkin method [1]. According to this technique the coefficients b, (¢) are expressed
by the parameters a, and their time derivatives. Decompositions (8) make it possible to
transit from continuum system to its discrete constrained model. It is possible to accept
amplitude parameters a, and parameters of translational motion of the reservoir € as
independent variables. If we eliminate kinematic boundary conditions, we obtain the
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Lagrange function, which corresponds to free mechanical system with the number of inde-
pendent parameters equal to the number of degrees of freedom of the system. Therefore,
the obtained model is o minimal dimensionality. Further from the Hamilton-Ostro-
gradskiy variational principle we obtain the motion equations in parameters «; and &

Za (8 +Zaj i +Za ay ”jka—k,,d,, +Zaa Cj, + Za Jk,
i.j

i,j,k

i,j,k

(ZaD +Zaa D3,+Za WJ )

F
— ) a; B+ a;B2+Y a.aqB, |[+é=————+g—
M+MZ ( ; Y z * f"J M, +M,

P .. B2 .
—_— a;a;B; +2 ) aa;4B 10
Mr+M1(;jtjy [%{ kykj ( )
The system (9), (10) is a system of ordinary differential equations, which is linear rela-
tive to the second derivatives of a; and €. This enables its reduction to the Cauchy
normal form with further usage of standard methods of numerical integration by time.

4. Numerical analysis of the system behavior

For numerical implementation we accept the model, which includes 12 normal modes
of oscillations [4]. We analyzed numerically the problems about motion of the system
cylindrical reservoir — liquid with a free surface in elastic fixation in the form of
spring, attached to immovable point, under action of forces in the form of rectangular
impulses with heights = 1000 N, 4500 N, 8000 N and for different stiffness of spring
¢=0, 50 N/m, 100 N/m, 200 N/m, 500 N/m, 1000 N/m, 2000 N/m with duration in
time A =1 s. In the case of the absence of elastic fixation amplitudes of all harmonics
perform oscillations near constant mean value and reduce in time. Under the presence
of elastic fixation considerable modulation of these oscillations takes place with evident
changes of mean value. Liquid oscillation essentially effects the motion of the reservoir.
It is seen from Fig. 2 that on the increase of spring stiffness frequency of reservoir
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Fig. 2. Displacements ¢, for forces F'=4500 N («) and F'= 8000 N (b)
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oscillations increases, and amplitude of reservoir displacements decreases. Variation of
reservoir velocity in time shows that influence of liquid oscillations on reservoir motion
decreases with growth of time (Fig. 3).

Let us analyze behavior of amplitudes of perturbation of a liquid free surface. It
is seen from Fig. 3, where variation of amplitude the first antisymmetric mode a, is
shown, that under the absence of spring oscillations of liquid decrease with time. In the
case of elastic fixation of the reservoir liquid performs oscillations with strong varia-
tion of mean value of graph. In this case frequency of oscillations of the mean value
increases with increase of string stiffness. Since reservoir performs motion with the
frequency, defined by stiffness of elastic fixation, free surface of liquid has systematic
inclination with this frequency. Namely oscillations with this frequency manifest in
variation of mean value of oscillations. At the same time maximum of aggregate oscil-
lations of a liquid free surface remain practically the same. This testify, that elastic sup-
port cannot be considered as efficient technique of vibroprotection. The system shows
similar behavior for other magnitudes of external force F.

Amplitudes of oscillations of normal modes «@; decrease with growth of their
number i. Thus, if @, has magnitude about 0,3, amplitudes of the first and second axis-
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Fig. 3. Variation of velocity ¢, for = 8000 N and different stiffness of spring
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Fig. 4. Variation of amplitude a; in time for = 8000 N

symmetric normal modes a;, a, are about 0,05 and 0,006 correspondingly, and the
second and the third antisymmetric normal modes «,,, a;, are about is about 0,05. So,

the first normal mode significantly dominates. Nevertheless, let us analyze variation of
the first axis-symmetric normal mode a, because it characterizes nonlinear mechanism

of energy redistribution between normal modes and defines non-symmetry of waves on a
free surface of liquid. It is seen from Fig. 5 that mean value of graph of oscillations of this
amplitude is greater than zero. This just corresponds to the property of non-symmetry of
wave profile, then height of wave crest is greater than depth of wave foot [1, 3]. It is
also interest to note that if general amplitude of wave decrease, it hits into linear range
of oscillations and, therefore, mean value of oscillations of the amplitude a; tends to
zero (Fig. 5¢).

Fig. 6 shows variation in time of high (third) antisymmetric mode q,, . It is seen
that mean value of this amplitude also changes in time with frequency proportional to
spring stiffness. This is caused by accelerated motion of the reservoir, then equilibrium
position of liquid will be inclined. Similar results were obtained for other variants of
external force F' and spring stiffness c.
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Fig. 6. Variation of amplitude a,, in time for 7= 8000 N
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Conclusion. Nonlinear mathematical model of dynamics of combined motion of rigid
cylindrical reservoir, filled by liquid with a free surface and fixed by elastic spring,
caused by impulse force applied to the reservoir, was constructed. It was shown that on
increase of the value of external force F' and spring stiffness ¢ amplitudes of every nor-
mal mode increases; for the same value of the force /' amplitudes a; decrease with
increase of the number of normal mode i; on increase of spring stiffness displacements
of the reservoir g, decrease, and frequency of reservoir oscillations increases; for limi-
ting case of zero stiffness of spring displacement of reservoir has growing character;
mean value of antisymmetric normal modes performs oscillations with frequency, pro-
portional to spring stiffness. Analysis of magnitudes of amplitudes shows that it is not
expedient to use elastic fixation of the reservoir as technique for reduction of amplitu-
des of oscillations of a free surface, however, elastic fixation promotes lowering of
displacements of the reservoir.
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BnnuB npy>XMHHOro 3aKkpinsieHHA
Ha AMHaMIiKy pe3epByapa 3 piguHoro

Oner JlnmapueHko, PokconaHa TkayeHko

Po3pobneno mamemamuury mooenv CyMICHO20 PyXy aOCOTIOMHO ME8epO020 YUNIHOPUYHO2O pe3ep-
8yapa, 3an08HeH020 PIOUHOIO 3 BIILHOIO NOBEPXHEI0 3 NPYICUHHUM 3AKPINACHHAM 00 HepyXomoi
mouxu. Jocniodiceno HeniHiliHG KOMUGAHHs cucmemu nio 0i€r IMIYIbCHOT cuiu OJist PI3HUX HCOPCHI-
Kocmeti npysicunu. Busueno modiciugicms 8UKOPUCTNAHHA NPYICUHHO20 3AKPINAeHHs K 3aco0y
8ibpozaxucmy.

BnusHue NMPYXNUHHOTO 3aKpensneHus
Ha ANMHaMUKY pe3epByapa C XUAKOCTbIO

Oner JlnmapyeHko, PokconaHa TkayeHko

Paszpabomana mamemamuueckas MoOenb COBMECHO20 OBUINCEHUST AOCOTIOMHO MBEPA02O Y-
JUHOPUHECKO20 Pe3epeyapa, 3aN0IHEHHO20 HCUOKOCHIBIO CO C60DOOHOU NOBEPXHOCTbIO C HPYIHCUH-
HbLM 3aKpenieHuemM ¢ HenoosudicHoll moukou. Hccneoosanvl Henunelinvle KONeOanus. Cucmembl
noo oeticmeuem UMNYIbCHOU CUbL OJisk PA3HBIX JcecmKkocmell npyscutvl. Hzyuena 603moocnocms
NPUMEHEHUSL NPYICUHHO20 3AKPENICHUsL KAK CPeOCmead GUOPO3auumbl.
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