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Mathematical model of combined motion of rigid cylindrical reservoir, filled by liquid with a free 
surface and fixed by spring to immovable point, is constructed. Nonlinear oscillations of the sys-
tem under impulse force are investigated for springs of different stiffness. Potential of usage of 
spring with the purpose of liquid vibroprotection is studied. 
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Introduction. Problems of dynamics of liquid with a free surface in reservoirs for dif-
ferent variants of fixations are caused by demands of modern engineering. Reservoirs 
with liquid are used in engineering structures in machine building, aircraft and rocket 
construction, means of transport and storage of liquid cargo [1, 2, 3]. Special attention 
is paid to behavior of these structures under impulse loading, as well as to means of 
vibroprotection of such systems. Until now analytical solutions of these non-stationary 
boundary values problems are not obtained, therefore, for investigation of these prob-
lems approximate algorithms, based mostly on variational techniques are used. We state 
the problem of investigation of effect of spring fixation of reservoir on restriction of 
liquid oscillations for impulse disturbance of system motion, which models, for example, 
abnormal situations of operation.   

1. Object of investigation 

We consider translational motion in the horizontal plane of absolutely rigid cylindrical 
reservoir, partially filled by liquid and attached by spring to immovable point. At the 
initial time instant the system reservoir — liquid with a free surface is at rest state. 
Motion of the system is generated by force, applied to reservoir walls, in the form of 
rectangular impulse of duration   and height F. 

The general scheme of such mechanical system is shown in Fig. 1. Here   is the 
domain, occupied by liquid at arbitrary time, S and S0 are perturbed and unperturbed 
free surface of liquid,   and 0  are surfaces of contact of liquid with reservoir walls in 
perturbed and unperturbed states. We assume that liquid is ideal, homogeneous and at 
initial time vortex motions are absent, since we consider the problem for ground-based 
conditions we neglect contribution of capillary forces on liquid oscillations.  
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2. Mathematical model 
The problem is solved on the basis of variational algorithms, which are based on 
mathematical statement of the problem in the form of the Hamilton-Ostrogradskiy 
variational principle. Elevation of a liquid free surface is described by the equation 

( , , )z x y t  . Mathematical problem represents a system of kinematic and dynamic 
conditions. We have the following kinematic restrictions: continuity equation for liquid  
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where r  is radius-vector of points of the domain  ,   is vector of translational motion 
of the reservoir,   is the potential of velocities of liquid. At initial time instant displa-
cements and velocities for all system components are accepted as zero. Dynamic boun-
dary conditions are obtained from the Hamilton-Ostrogradskiy principle as natural. 

Let us write kinetic and potential energy for every component of the system 
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Here Tl is kinetic energy of liquid, Tr kinetic energy of the reservoir, П l is potential 
energy of liquid, П r is potential energy of the reservoir, П f is potential energy of the 
applied force (conventional representation), П s is potential energy of elastic forces of 
the spring, ρ is liquid density, Mr is mass of the reservoir, c is stiffness factor of spring. 

Fig. 1. General scheme of the mechanical system 
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Taking into account the expressions (3), (4) let us write the Lagrange function 
for the mentioned system 
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Further we consider kinematic boundary conditions as mechanical constraints, 
which superimpose restriction on variations in the Hamilton-Ostrogradskiy variational 
principle  
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Dynamical boundary condition on a free surface of liquid follows from the 
Hamilton-Ostrogradskiy variational principle, and in the case of movable reservoir it 
takes the following form  
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3. Construction of discrete model of the system 

Investigation of nonlinear dynamics of combined motion of the system reservoir — 
liquid with a free surface was done according to the method of publication [1]. Non-
linear discrete model for this system is constructed on the basis of the Kantorovich 
method applied to kinematic restrictions of the problem and to variation formulation of 
the problem on the basis of the Hamilton-Ostrogradskiy variational principle. For effi-
cient usage of the variational principle it is necessary to satisfy kinematic constraints 
before solving the variational problem. Since irrotational motion of ideal, homogene-
ous incompressible liquid is completely defined by motion of its boundaries, then ele-
vation of a free surface   and displacements of tank walls   completely characterize 
motion of liquid with a free surface, which is defined by liquid velocity potential  . 

For solutions of the nonlinear problem we shall use for values   and   decom-
positions by normal modes of the linear problem n  about motion of liquid with a free 
surface in movable reservoir, which holds kinematic boundary conditions on reservoir 
walls and linearized boundary conditions on a free surface  
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here ai is amplitude parameter of excitation of normal modes of oscillations of liquid. 
Nonlinear kinematic boundary conditions on a free surface are satisfied by means of the 
Galerkin method [1]. According to this technique the coefficients bn (t) are expressed 
by the parameters an and their time derivatives. Decompositions (8) make it possible to 
transit from continuum system to its discrete constrained model. It is possible to accept 
amplitude parameters an and parameters of translational motion of the reservoir   as 
independent variables. If we eliminate kinematic boundary conditions, we obtain the 
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Lagrange function, which corresponds to free mechanical system with the number of inde-
pendent parameters equal to the number of degrees of freedom of the system. Therefore, 
the obtained model is o minimal dimensionality. Further from the Hamilton-Ostro-
gradskiy variational principle we obtain the motion equations in parameters ai and   
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The system (9), (10) is a system of ordinary differential equations, which is linear rela-
tive to the second derivatives of ai and  . This enables its reduction to the Cauchy 
normal form with further usage of standard methods of numerical integration by time. 

4. Numerical analysis of the system behavior 
For numerical implementation we accept the model, which includes 12 normal modes 
of oscillations [4]. We analyzed numerically the problems about motion of the system 
cylindrical reservoir — liquid with a free surface in elastic fixation in the form of 
spring, attached to immovable point, under action of forces in the form of rectangular 
impulses with heights F = 1000 N, 4500 N, 8000 N and for different stiffness of spring 
c = 0, 50 N/m, 100 N/m, 200 N/m, 500 N/m, 1000 N/m, 2000 N/m with duration in 
time  = 1 s. In the case of the absence of elastic fixation amplitudes of all harmonics 
perform oscillations near constant mean value and reduce in time. Under the presence 
of elastic fixation considerable modulation of these oscillations takes place with evident 
changes of mean value. Liquid oscillation essentially effects the motion of the reservoir. 
It is seen from Fig. 2 that on the increase of spring stiffness frequency of reservoir 

Fig. 2. Displacements εx for forces F = 4500 N (a) and F = 8000 N (b) 
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oscillations increases, and amplitude of reservoir displacements decreases. Variation of 
reservoir velocity in time shows that influence of liquid oscillations on reservoir motion 
decreases with growth of time (Fig. 3). 

Let us analyze behavior of amplitudes of perturbation of a liquid free surface. It 
is seen from Fig. 3, where variation of amplitude the first antisymmetric mode a2 is 
shown, that under the absence of spring oscillations of liquid decrease with time. In the 
case of elastic fixation of the reservoir liquid performs oscillations with strong varia-
tion of mean value of graph. In this case frequency of oscillations of the mean value 
increases with increase of string stiffness. Since reservoir performs motion with the 
frequency, defined by stiffness of elastic fixation, free surface of liquid has systematic 
inclination with this frequency. Namely oscillations with this frequency manifest in 
variation of mean value of oscillations. At the same time maximum of aggregate oscil-
lations of a liquid free surface remain practically the same. This testify, that elastic sup-
port cannot be considered as efficient technique of vibroprotection. The system shows 
similar behavior for other magnitudes of external force F.  

Amplitudes of oscillations of normal modes ai decrease with growth of their 
number i. Thus, if 1a  has magnitude about 0,3, amplitudes of the first and second axis-

Fig. 3. Variation of velocity x  for F = 8000 N and different stiffness of spring 
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symmetric normal modes 3 6,a a  are about 0,05 and 0,006 correspondingly, and the 
second and the third antisymmetric normal modes 10 12,a a  are about is about 0,05. So, 
the first normal mode significantly dominates. Nevertheless, let us analyze variation of 
the first axis-symmetric normal mode 3a , because it characterizes nonlinear mechanism 
of energy redistribution between normal modes and defines non-symmetry of waves on a 
free surface of liquid. It is seen from Fig. 5 that mean value of graph of oscillations of this 
amplitude is greater than zero. This just corresponds to the property of non-symmetry of 
wave profile, then height of wave crest is greater than depth of wave foot [1, 3]. It is 
also interest to note that if general amplitude of wave decrease, it hits into linear range 
of oscillations and, therefore, mean value of oscillations of the amplitude a3 tends to 
zero (Fig. 5c). 

Fig. 6 shows variation in time of high (third) antisymmetric mode 12a . It is seen 
that mean value of this amplitude also changes in time with frequency proportional to 
spring stiffness. This is caused by accelerated motion of the reservoir, then equilibrium 
position of liquid will be inclined. Similar results were obtained for other variants of 
external force F  and spring stiffness c. 

Fig. 4. Variation of amplitude a2 in time for F = 8000 N 
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Fig. 5. Variation of the amplitude a3 in time for F = 8000 N 
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Conclusion. Nonlinear mathematical model of dynamics of combined motion of rigid 
cylindrical reservoir, filled by liquid with a free surface and fixed by elastic spring, 
caused by impulse force applied to the reservoir, was constructed. It was shown that on 
increase of the value of external force F and spring stiffness c amplitudes of every nor-
mal mode increases; for the same value of the force F amplitudes ai decrease with 
increase of the number of normal mode i; on increase of spring stiffness displacements 
of the reservoir εx decrease, and frequency of reservoir oscillations increases; for limi-
ting case of zero stiffness of spring displacement of reservoir has growing character; 
mean value of antisymmetric normal modes performs oscillations with frequency, pro-
portional to spring stiffness. Analysis of magnitudes of amplitudes shows that it is not 
expedient to use elastic fixation of the reservoir as technique for reduction of amplitu-
des of oscillations of a free surface, however, elastic fixation promotes lowering of 
displacements of the reservoir.  
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Вплив пружинного закріплення  
на динаміку резервуара з рідиною 

Олег Лимарченко, Роксолана Ткаченко 

Розроблено математичну модель сумісного руху абсолютно твердого циліндричного резер-
вуара, заповненого рідиною з вільною поверхнею з пружинним закріпленням до нерухомої 
точки. Досліджено нелінійні коливання системи під дією імпульсної сили для різних жорст-
костей пружини. Вивчено можливість використання пружинного закріплення як засобу 
віброзахисту. 

Влияние пружинного закрепления  
на динамику резервуара с жидкостью 

Олег Лимарченко, Роксолана Ткаченко 

Разработана математическая модель совместного движения абсолютно твердого ци-
линдрического резервуара, заполненного жидкостью со свободной поверхностью с пружин-
ным закреплением с неподвижной точкой. Исследованы нелинейные колебания системы 
под действием импульсной силы для разных жесткостей пружины. Изучена возможность 
применения  пружинного закрепления как средства виброзащиты. 
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