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Peculiarities of modelling of the gas motion process in pipeline
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Peculiarities of modeling the gas motion process in horizontal pipeline are considered. The mathe-
matical model of the gas motion process in pipeline is modified to avoid the operations with the
numbers of different orders and the instability of desired solution during the setting of boundary
conditions on the one of the ends of pipeline. The iterative method of determination of the gas
motion parameters based on the data which are set at one of the ends of pipeline is suggested.
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Introduction. Depending on the put problems the systems of partial differential equa-
tions of varying degrees of complexity and of different orders are used to describe
unsteady non-isothermal gas motion process in pipelines [1]. Different mathematical
and computational difficulties arise during formulating and solving the problems of mathe-
matical physics. In particular: the equations which describe processes are nonlinear; the
coefficients of equations are dependent both on the coordinates and on the time; in com-
puter terms it is necessary to perform the operations with the numbers of equal orders etc
[2, 3]. In addition the boundary conditions are usually set on the both ends of the pipe-
line. Setting the boundary conditions on one of the ends that often happens in practice
causes the considerable instability during the calculation of the desired solution.

The aim of the work is to modify the mathematical model of the gas motion
process in pipeline to avoid the operations with the numbers of different orders and the
instability of desired solution during the setting of boundary conditions on one of the
ends of pipeline.

1. The formulation and solving the problem

In the case of isothermal approximation the system of interconnected partial differen-
tial equations are used for describing the gas motion in pipeline [1-3]
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p=pzRT, (1)
here p = p(x,t) is the pressure distribution along the pipeline; p is the gas density; v

is the gas motion velocity; A is the coefficient of hydraulic resistance; 7T is the gas
temperature; R is the gas constant; z is the coefficient of the gas compressibility; x is
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the movable coordinate x e[0,L]; L is the length of pipeline; D is the inner diameter

of pipeline; ¢ is the time; ¢ is the sound velocity in gas.
The first equation of the system of equations (1) is obtained in the case of change
neglect of the gas density over time. Otherwise, the system of equations has the form
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If we introduce the marking y = zRT the system (2) will be written
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The system of equations (3) is written concerning the key functions p and v. In
practically important problems the pressure p is the value of order 10 ® and the velocity
v is the value of order 10 [1]. During the study of the system of equations (3) by
means of numerical methods it should write it on such solving functions which will
acquire the values of the same orders. Such change will significantly improve the
stability of numerical methods which are used in the algorithm of solving. For this
purpose use the equation Inp = f.

In this case the system (3) will be written
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In order to find the analytical solution of the system (4) construct the following
iterative algorithm. Let v, is the velocity value at the previous iteration step. Taking

into account that the change of the gas motion velocity is minor we can write the sys-
tem (4) in linearized form
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In the stationary case the system (5) will look like

@ vy

de 2D “dx dx

From the obtained system express velocity and pressure distribution along the
pipeline in steady state for the given conditions at the pipeline inlet v, and f, =Inp,:
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v =vge 22, f()=fy—-2|e 2P —1|.
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The last two equations are initial conditions for the formulation of the problem
in the unsteady case. Turn to the definition of the boundary conditions which we shall
set at the pipeline inlet. If one need to change the magnitude of pressure on the value
Ap then as follows from the experimental data analysis the dependence of boundary

condition from the time is approximated good enough by the function p(O,t) =
= pon +Ape "5 Ap = py — po, s here py, p,, are initial and eventual value of pressure;
parameter y is responsible for the transition rate from one stationary process of the gas

motion to another. As for setting the speed limit at the pipeline inlet note the following.
It is evident that pressure and velocity correlate by the formula p,q, =pg =

= pSv/(zRT) or v=zRTp,q,/(pS). If volumetric gas outlay under standard condi-
tions at the pipeline inlet varies according to the formula ¢(0,7)= g, +Age ™' ;

Aq=qy—q,,; here g, q,, are initial and eventual value of volumetric gas outlay

under standard conditions, and 8 determines the transition rate from the one steady gas
motion mode on another then

U(O t) :%q_o(]_kﬂe_sot +A—p€_Y0[J .
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The similar relationship between pressure and velocity of gas motion can be
used on another end of pipeline
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Here index k appertains to the end of pipeline. Let’s get to solving the problem.
In Laplace transforms [4] the linearized system (5) has the form
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Since the boundary conditions are nonzero then it is reasonable to solve the
system of equations (6) in the form of Fourier series for cosines which we write so
nmix

¢(x)=Rei¢ne L xe[0,L]. (7

In the last formula i*> =—1 is the complex unit, and Re means real part of a complex
number. The coefficients of the series (7) are defined by the formula

nmix
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If we use the function expansion (7) for the system (6) we shall obtain the
following system

fn kUcUn
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Introduce the notations

s(s+a) B 1

h,(A4,B,s) = , =
a ) (s—sl)(s—sz) 5 s*+Ks+M

, a=B/A.

Then the solution of the system (8) will have the form
Ju(8)=hy, () + By, (5)0(0,5) + Ay, ($)O(L, ) + Dy, (5) f(0,8) + hs, () f (L)
there
h,(s)=h,(4,B,s), hy,,(s)=h, (AI,BI,S), hs, (s)=h, (AZ,BZ,S) ,
h4i’l (S) = h}'l (A3,B3,S), hSH(S) = hn (A4,B4,S), dln (S) :ZS (XS + Y), dzn(s) = ZSY N
ds, (8)=2zY,,d,, (5)=2,X5s, dy,(s)=2,X5s, ds,(s)=z,X,5 .
Here
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Since p=e’ then v= zRTquoe_f/S. If we denote 7y =zRTpyq,/S, then

L= roe_f . Then

£(8) =Ry (5) + hoyy (e ™ O + by ()™ ) By, (5) £(0,8) + s,y (5) £ (Ly5), (9)
L, (S) = dln (S) + d2,, (S)Voe_f(o"g) + d3n (S)Voe_f(L’S) +
+d4n(s)f(ovs)+d5n(S)f(L,S), (10)
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The initial problem solution in the Laplace transforms is written in the form

f(x,s)=Re i fn(s)exp (— mcixj

n=0 L
and
v(x,s) = Rei v, (S)exp[— mcixj
n=0 L
or
Sf(x,s)=Re i (hl,, (s)+hy, (s)roe_f(0°s) +hy, (S)I”Oe—f(L’S) "
n=0
+hy, () (0,5) + s, (5) f(L,s))exp[_mziXJ )
and

v(x,s)=Re z (dln (s)+d,, (S)roe_f(o’s) +ds, (s)roe_f(L’S) +
n=0

+dy, () f(0,5)+ds, (S)f(L,S))exp[_ mzix) |

Write the equation (11) so

S (x,s)=Re i (hln (s) + hy,, ()" O + Iy, (5) f(O,S))exp(— ? ) .

n=0

e PR iy, (s) exp(—?) + f(Ls)Re hs, (s)exp(— ”TZ") . (12

n=0 n=0

The iterative method of solving the problem consists in the following. We set the
initial velocity approximation v, and calculate velocity and pressure value at the given

point. The found velocity value is assigned to v, and the calculations of the unknown

parameters are repeated until the difference between two consecutive approximations is
less than the given value. This approach made a good showing in solving nonlinear
differential equations and systems of differential equations.

2. Methods for determining pressure and velocity value at the pipeline outlet

1. If the value f(0,s) is known then we can determine f(L,s) from the equation (12).
f(L,s) is the pressure value in Laplace transforms at the pipeline outlet. Heaving
determined f(L,s) one can determine pressure and velocity distribution in Laplace
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transforms. Determination of the value f(L,s) results in solving the transcendental

algebraic equation. Note that in order to find the final solution we need move from the
transforms space to the originals space. Since we search f(L,s) by means of appro-

ximate or numerical method then we need find the original by means of the similar
method.
2. Consider another way of finding the value f(L,s). In order to find desired solutions

f(x,t) and v(x,f) we need move from transforms to originals in equations (9) and
(10) [4]. The originals of values /; and d; are found from the correspondence tables
[5]. Since the originals f(0,7) and v(0,7) are known then the originals of coefficients
f,(s) and v, (s) are found by the convolution namely

S0 = by O+ [ [ (1 =0)0(0,7) + By, (1 = D)0(L, ) +
0

+h4n(t—r)f(0,r)+h5n(t—r)f(L,r)]dr (13)

and
v, () =d,, )+ I [dz,, (t—1)0(0,7) +d;, (t —T)0(L,7) +
0

+d4n(t—r)f(0,1)+d5n(t—r)f(L,r)]dr. (14)

If we substitute the equations (13) and (14) in corresponding series we shall

obtain the system of integral convolution type equations in originals. Note that the

Syt

original of transform 4,(4, B,s) is function A, (4,B,t)=o,e"" +a,e™ . Here

a+s a+s,

(x‘l :—’ (x‘l :——’
VK? —4M VK? —4M
) =%(—K— K2—4M), S5 =%(—K+\/K2 —4M).

3. If we substitute x =L in equation (13) we shall obtain nonlinear algebraic equation
with one unknown f'(L,s)

f(Lo)=ReY (1)’ (i () + B (g™ ) + g, ()£ (0,9) )+

n=0
e I RS (1) gy () + £ (Los)Re S (<1) gy (s).
n=0 n=0

Heaving solved the equation and moved to the original we shall find the beha-
vior of pressure and velocity at the output end of pipeline.
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Conclusion. The problem of modeling the gas motion process in horizontal pipeline is
considered. The method for determining parameters of transitional processes of the gas
motion at the pipeline outlet for the given input data at the pipeline inlet based on the
found solution is suggested.
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Oco6nuBocCTi MOaentoBaHHA Npouecy pyxy rasy B Tpy6onpoBoAi

ManuHa M'aHuno, Oner bpaTtaw

Poszenanymo ocobnueocmi modeniogants npoyecy pyxy 2asy 6 opu30HmManbHOMy mpyoonposooi.
Mooughixosarno mamemamuuny mMooeib npoyecy pyxy 2azy 8 mpybonpogooi 3 Memow YHUKHEHHS
onepayitl i3 YUCIAMU PI3HUX NOPAOKIE I HeCMIUKOCMI WYKAHO20 PO38 3Ky V pasi 3a0anHs 2pa-
HUYHUX YMO8 HA OOHOMY 3 KiHYi8 mpyOonpogooy. 3anpononosano imepayiinuii Memoo 8U3HAYEHHS
napamempie pyxy 2asy Ha OCHO8I OAHUX, BUMIDAHUX HA OOHOMY 3 KIHYI8 MpPyOOnposooy.

Oco6eHHOCTU MOAeNMpPoOBaHUA NpoLliecca
ABWXeHUA rasa B Tpybonposoge

ManuHa MaHbino, Oner bpaTaw

Paccemompenvl ocobernocmiu MOOIUPOBAHUsL NPOYECCa OBUICEHUSL 243A 8 20PUZOHMALLHOM MpP)-
60onposode. Moouguyuposana mamemamuyeckas Mooelb NPOYecca OBUNCEHUsL 2a3a 8 MpPyOonpo-
600€ 80 U30ENCAHUE ONEPAYULl C YUCIAMU DA3TUYHBIX NOPIOKO8 U HEYCMOUYUBOCU UCKOMO2O
peuienus npu 3a0aHUU SPAHUYHBIX VCI08Ull HA OOHOM U3 KOHYos mpyboonpoeoda. lIpednosicen
UMEPAYUOHHDBITL MENMOO ONpedeieHUs: NAPAMEmMpPO8 OBUNCEHUS 230 HA OCHO8E OAHHbIX, U3MEPEH-
HbIX HA OOHOM U3 KOHYO8 mpybonposooa.

IIpeacrasiieHo 10KTOPOM TexHiuHuX Hayk B. I'aiiBach
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