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On the basis of the solution of a weight transfer problem in the drying process for models of cy-
lindrical capillaries, namely, models of equivalent radius and stochastic model and cylindrical
capillaries of various radiuses on uniform distribution of pores by their radiuses taking into
account Young’s module and Poisson’s coefficient changes with change of a relative saturation by
moisture accepted in the form of continuous splines by which experimental study for cement stone
materials are approximated, results of calculations of stress-deformed condition in the different
planes by the thickness with change of border of phase transition in symmetric drying are given.
The problem about on divergent stability of a form of an ortotropny porous plate with instant bila-
teral heating and uneven distribution of moisture content by the thickness in drying process, in
particular, distribution of critical efforts and critical time in natural drying is considered.

Keywords: natural drying, stressed state, stability of form, relative moisture
saturation of the pore.

Introduction. Processes of mass and heat transfer in porous media are influenced sig-
nificantly by structure of vapor space, which is difficult system of the interconnected
separate emptiness (pores) [1, 2]. For its description in literature stochastic models of
cylindrical capillaries, serial models, trellised, models of pores of variable radius which
branch, etc. often use. In capillary models space of the pores is considered in the form
of system of channels with certain geometrical properties. In model of identical parallel
capillaries the equivalent radius which is accepted equal to radius of a cylindrical capillary
in which fluid rises on height of the measured capillary lifting of moistening fluid in
the porous medium is the main parameter. Systems of parallel capillaries of various radiu-
ses are generalization of this model. Within the limits of this model it is accepted, that
all capillaries are connected one with another by the developed system of micropores.
In the model of cylindrical capillaries of various radiuses the widest pores which
go to external surfaces are liberated at first from fluid. The narrow pores going to
external surfaces, are nourished with by fluid at the expense of capillary accumulate.
In a layer the diphasic area is formed where capillary accumulate of fluid and convec-
tive-diffusion vapour transfer are dominating mechanisms of transfer. Over time
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the spatial front changes its width and moves inside the porous material, or other sur-
face (at asymmetrical drying). With the further evaporation process of a capillary con-
densate the porous body is saturated with gas.

In works [3, 4] it is established that at indicative and normal distributions width
of the two-phase zone is small and the two-phase zone practically degenerates in a sur-
face. Its parameters significantly depend on coefficients of permeability and a relative
saturation of a body.

Most significantly it is manifested at the uniform distribution, since width of the
diphasic area and its changes for such distribution are the greatest. The more permeabi-
lity of fluid is, the wider the diphasic zone is. At small width of the diphasic area the
influence of a dispersion of the pores sizes at the radiuses can be neglected.

The purpose of this work was: on the basis of the constructed mathematical
models to establish dependences between processes of a heatmass transfer and the
intense deformed condition caused by them and stability of a form of studied objects.

1. Stress-deformed state of the porous layer at symmetric and asymmetrical drying
with the account and without account of dispersion of the pores sizes at the radii

Deformable bodies can undergo structural changes in the mass transfer processes. Swelling at
saturation with fluid and shrinkage at drying concerns reorganization processes of struc-
ture [5]. Shrinkage process represents the change of volume which is occupied by the
ordered structure owing to change of mass content of moisture. In the porous bodies
with the various pores sizes shrinkage begins at the expense of narrowing of the rough
pores at first. After formation of capillary meniscuses in thinner channels their deformation
occurs changing the rate of shrinkage. At wide distribution of the pores on the sizes
nonlinear shrinkage with gradually variable coefficient of shrinkage B can be developed.

Components of the stress tensor 6 are satisfied by the equations of balance and
the compatibility equation, similar Beltrami-Mitchela equation in thermoelasticity.
In one-dimensional case for an isotropic material of the layer the problem is reduced to
the equation solution

2

0 E
az_z(cn(z)"‘:QJ:O‘ (1)

Here Q is distortion, connected with change of moisture content, 6, =c,,(z) =6,,(2) is

normal to a stress contour.
Under the conditions of forces absence on lateral surfaces of the layer having the
thickness L, it follows, that resultant effort an resultant body moment are equal to zero.
Considering distinction of the effective Young’s module and Poisson’s coeffi-
cient in the drained and moist body, we consider these effective characteristics and
distortion as the continuous generalized functions of characteristic function of interval.
In the case of two boundaries of the section we have

2 2 2
E=ZEj6j(zj,zj+1); V=Zvj9j(zj,zj+1); Q=ZQj6j(zj,zj+1), 2)
j=0 Jj=0 Jj=0
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where 6/ (zj,zj+1):co(z—zj)—co(z—sz). We accept shrinkage 8, and 3,, in damp
and diphasic areas as constant. On the basis of experimental data shrinkage {3, in the

drained area is approximated by continuous linear splines concerning saturation z,,

By (Z,) =28, (2,)9;(Z,)- (3)

Here B, =a,z,,

lindrical capillaries coincides with dimensionless limit of the section of phases; z,, is

-Z, [_1)—00 (E -Z, [) is cha-

) B szO ml 5

-3, 4.

o, =0,4; a,,=0,4; B,;0=-5556-10"; B, =-5,556-107"; Bvil,Bw.o,ocvz,ocvl are
approximation coefficients, which are estabhshed experimentally [5].

Results of calculations at the accepted approximations are given in the table 1.

The analysis shows that at reduction of relative humidity at coincidence of the plane of

stresses measurement with the plane of phase gas transition is the diphasic area jumps

of stresses and deformations ¢, take place. Taking into account the diphasic area stresses

+ [3[ is linear function of the relative saturation which in model of cy-

dynamic coordinate of phase transition; ©; (Z,,) =0, (Em

racteristic function of the interval; &; = (B, — B, )/ (Ao

are larger than at model of the equivalent pore. At asymmetrical drying the moments
from distortions which are absent in symmetric drying play the main role. The calcula-
tions for the material of a cement stone have shown that the influence of stress on
moisture content is small. Porosity of the material slowly grows only when the relative
saturation comes to zero. The account of change of porosity on the intense-deformed
state of the cement stone leads to the change of the intense-deformed state that does not
exceed 2 %. The account of dispersion of the pores sizes is important at asymmetrical
drying as the maximum stresses in this case are more.

Table 1
Dependence of stresses in model of equivalent pore and in model
of capillaries of various radii in planes z =0,1; zZ = 0,9 at change z,
0,,(300;0,5;Z,,;0,1) 6., (300;0,5;2,,;0,1) 6,,(300;0,5;7,,:0,9) 6. (300;0,5;Z,,;0,9)
2,855-10 7 — 665,004 2,855-10 7
2,85510° 1,221-10° 0 ~-2,57'10°
1,141-10° 1,185-10° —4,99810° —4,657-10°
2,566:10° 3,110-10° —6,187-10° —5,594-10°
4,562-10° 4,952-10° ~6,902:10° —6,851-10°
7,127-10° 7,376:10° ~17,127-10° ~7,13810°
1,026:10" 1,039-107 —6,831-10° ~6,856:10°
3,636:10" 3,641-10° ~1,561-10" ~1,563-10"
6,956:10" 6,957-10" ~1,796:10" —1,747-10"
1,09810° 1,09810° ~1,230-10" ~1,230-10"
— 140,413 — 139,723 — 141,658 — 142,348
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The given approach allows to find out change influence of moisture content in
the process of deepening the boundary of phase transition and the reasons of stability
loss of the form of thin-walled elastic porous elements that is important for preserva-
tion of quality and efficiency of this or that way of drying.

2. Stability of flat elements form in the drying process

Research of the form stability of flat elements in the drying process is important from
the point of view of efficiency and quality of the drying process. According to the law
of conservation of energy the quantity of heat which is accumulated in elementary
volume, causes the corresponding increase of temperature and in its turn stimulates
transfer of moisture and phase transitions in the porous body.

We accept model of cylindrical capillaries of the porous material. We consider a hypo-
thesis about deepening phase transition boundary at body drying is fair. We will write
down Generalized Hooke’s law for orthotropic body in the case of flat stress state in a kind

e =ic —mcyy+a1(T—To)+Bl(W—Wo),

XX El XX E2
e =Lg Vg oL, (T-Ty)+B, (W -W,) _1 4)
W E, y E, Oxx 2 0 2 0)> €y = chy’

where e,,, e,,, e,, are components of total deformation; o,,, 6,,, Gy, are components of
the elastic intense state; E,(W,T),E,(W,T) are elasticity modules in a direction of
axes Ox, Oy; W, W, are moisture content and 7, T, are temperature during the actual

and initial moments; vy, is coefficient of cross-section compression in the direction Oy
at a stretching in the direction Ox; v, is coefficient of cross-section compression in the

direction Ox at the stretching in the direction Oy; o, (T,W),a, (T,W) are coefficients
of linear temperature expansion in the direction of axes Ox, Oy; B, (T, W ),B, (T, W)

are coefficients of shrinkage in the direction of axes ox,o0y respectively; G(W,T ) is
the shear module.

Between characteristics E), E», V12, V21 the dependence Ev,; = E,v, takes place. Defor-
mations of a layer which is at a distance z from a median surface, we will define by formulas:
€ =8, +2K,,€, =€, +7K e, =8, + ZZKW,exx =g, +zK e, =€, +7K e, =§,, +2zK

)9) b
ou 1(owy oo 1{ow) du v owow . .
="+ — | & ="*7| |ty =ttt Is deformation of the
ox 2\ ox dy 2\ oy dy Ox Ox Oy
. o*w o*w 0w
middle surface; x, = K, =Ky, = are curvatures; , v, w are moving in
’ ox oy Oxi

the plane of the plate and deflection respectively. Deformations of elongations and

landslips of the median surface will be defined in geometrically nonlinear statement [6, 7].
In the theory of plates instead of stresses it is favourable to consider statically

equivalent forces and the moments. The equations (4) are statically equivalent to
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elastic efforts Ny;, Ny, N> and to the moments M, M,,, M, which are connected with
deformations by the system of the equations:

Ny =Byj&, + Bjye, + A K, + Ak, — Nigy
Ny =Biy€, + By, + Ak, + Ay, —Nopy s Nip = Bise,, + 2455k, (5)
M, =Dy &, + Dy, + Ayje + Ape, — Mgy,

My, =Dk, +DyyKy + Ay, + Ay, —Mopy ., Myy =2D53x,, + 4338, (6)

where
o h R
B, = E(TW)dz, A;= E, (T W)zdz,
1-vpvy I, 1-vivy I,
P
D, = E (T, W)z%dz (i=1,2),
1-vivy I,
LO LO
A= [ G(T.W)zdz, Dy = [ G(T,W)Zdz,
_LO _LO
Ly
Dy, =—2 E (T, W)z,
1-vi,vy I,
LO
Niw = [ E,(T.0){o; (T =Ty) +B; (W W, )} dz
-L
L
Mgy =% [ E(TW){a] (T =Ty)+B; (W =W,) }zdz  (i=1,2),
_LO

~ -1 * *
V:(I_VIZVZI) s Oy =0+ Vy0,, B =B +vyB,,
* *
Oy =0, + Vo, By =By + VB, (7

The equation of deformations compatibility taking into account expressions of
deformations through the efforts takes the form

;C_ZQ[BHE(NH + Norw )J_;C_ZZ[BUE(NH + Ny )J"‘

+§)}—22[8221§(N11 + Ny )} —;}}—22[3125'(1\’22 + Nopy )} -

2
L0 N |_, @ [Ay Pw) [d'w) wilw ®)
oxdy| By, | oxdy| By oxdy | | oxdy | ax? oy

and the balance equation at bend is the such:
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M M
6N11+6N12 -0, 6N12+6N22 -0, 5M11+6M12=Q1’ 0 12+6 2_0,,
Ox Oy Ox Oy Ox Oy ox Oy
2 2 2
U LA TR Ly T ©)
ox oy ox Ox0Oy Oy

Here 0, O, are cutting forces which through deflection w are expressed as follows:

0 o*w *w | . 2 0
O =__|:D11_+D3 6}}_2}_VE1(2L0) aMlTWv

ox ox?
—8062W052 VE, (2L, ) 2 M
Qz——a 82+ g Vz( 0)5 20W >

- -1
B= (311322 —3122) s Dyvay=Dyvy,, Diy= (2D33 +V21D11)~

. : o’ o’ O
We introduce the function of stresses ©: Ny =2Ly—-, Ny =2Ly—-, Nj, =21,
o’ ox Ox0y

First two equations of balance (9) are identically satisfied, and the equation of
deformations compatibility (8) and the third equation (9) are written down as follows:

4 4 40 2 2
aq>+[E2 5 J&@ E, 0*0 —Eza(éNHﬁéNTJ—

ot G ox*oy? E oy o’ o, oy
2
| CN BN | Ly (10)
ox B, oy° 2
o*w o*w o*w D, «0’M
D +2D +D =2L,H(P,w)-—La r_
11 x4 3 axz 2 22 6_)}4 0 ( W) 2L0 1 axz
Dy, +&M; Dy «My Dy o+ O°M
_ 722 az > 11 BI W 22 B W , (11)
2L0 5y
21 A2 24 A2 2
() D D
H(d),w)z oD o'w 0D ow 6 o“w

+ - .
o oyt oyt ox? Oxdy oxdy
For the solution of problems under the mixed boundary conditions the balance
equation in moving looks like

o*u (E, M E,o'u LN, . 63
ot TV ot s s th
ox G ox“oy-  E; oy Ox
VE, | G || &Ny | VE, G || o’y
+—2Jay — 0| V), + L By B3| vai +_ ~
G oxdy* 6x6y
o*v (E 841) LB o*v o 83NT ) 83
a2t 574V |73 =0/ Bz
ox G ox*oy? E 6y oy
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- 3 - 3
+V_El{0‘; o |:V12 +i}}%+v_bﬂl{[3; -B, |:V12 "'i}}& Ny 12)

G VE, || ox?ey G VE, || ax?oy
P P

Last two equations are used at non-uniform distribution of the efforts in the me-
dian surface. From the system (10)-(12) it is evident that the influence of moisture
distribution and temperature in the drying process is manifested through derivatives of
efforts Ny, Ny and the moments M7, My caused by non-uniform distribution of tempe-
rature and moisture in the process of deepening of phase transition boundary.

3. Bulging of the orthotropic plates with non-uniform distribution
of moisture content and temperature on thickness in the process of drying

From the problem solution of heat and mass transfer we find distribution of temperature
and moisture content on thickness of the porous plate in the process of drying. These
values are co-ordinate z functions on the thickness and mobile co-ordinate of the phase
transition z,. For simplicity we accept that material characteristics do not depend on
temperature and moisture content. The rectangular plate of the sizes a, b is abutted on
elastic edges, which temperature and moisture content are constant and different from
temperature and moisture content of the plate. Materials of the plate and edges are
supposed to be different, and temperature and moisture stresses in such case arise even
at uniform heating of all panel. The solution of the equation (10) will be presented in a kind

o A PG
2 2

The values F,(Zz,,), P, (Z, ), that represent the intensity of compressive effort [8],

in the process of drying of the porous medium depend on both co-ordinate of phase
transition on thickness, and on the difference of temperatures and moisture between the
plate and edges. Their dependence on elasticity of edges we define from conditions of equa-
lity of deformations in the planes of joint of the plate and edges. From equations of relative
rapprochement of edges of the plate the corresponding deformations of edges we define
the values o,,, 6,, through P,, P,. Let F,,, F,, are the areas of cross-section edges. Then

6y =—R(@)2Lpb/F,, . o, ==P(2)2Lya/F,

From equation of the plate and edges deformations we obtain

A-viph R2Lb B vy B 2Lya
+ 0y =— + 0w + Oy =— +0,0mw - (13)
£ Fokp £ Fpkp
1 Ly 1 L,
Here O,y :m.l._% [aip (];P — Ty ) +By, (sz ~ Wi )}dz, Oirw = a'l.‘% [ai (T-Ty)+

+B; (W =W, )] dz = o,;Ny +B;Ny depend on distribution of temperature, relative saturation
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and coordinate of phase transition which are defined from the problem solution of heat
and mass transfer; a,,, B;, are coefficients of temperature and moisture expansions of
edges. From the system (13) we find

A (Em ) =K, E |:(Qp1TW = Oiw (Em ))Ky *+ Vo (Qp2TW = O (Em ))] 5
Py(Z0) = KoEs | (Qparw = Oorw (Z))Ke +Vi2 (Qoirw = Qi () | (14

-1
where K, =(K K, -vivy) . K, =1+Eb2Ly/F K, =1+E,a2L

0/ »w p >
Z,, =z, /L, is dimensionless co-ordinate of phase transition in the process of drying.

xp P’

For definition of deflection w(x, y) we use the equations (11). If we present the

deflection w(x,y) in the form of a series w(x,y)= Zm 12 sin (mmnx/a)

n=1 mi’l

xsin(nmy/b) then the solution satisfies the following conditions:

2
0, DHZ—+VE(2L) My =0 for x=0, x=a;
x

w

o*w

Y

Here M7y is defined by formulas (7). The moments My, M7y are presented in the
form of schedule in Fourier numbers on sines from arguments mnx/a, nmy/b , and we
substitute these series in formulas (9), we obtain

Wy 4\7[(—1)’” 1] [=1"-1]

2L, n° ( )2 F

2 2
T \[D11D22 mb Dll a D22 _ _ n2a2
F=——u = — 2 1+8(z,)+h(z,) 55>
2Ly a Dy \/D11D22 Dy m°b

where F'= 0 the characteristic equation for definition of critical parametres of the rela-

2
[MITWEI (mbja) + MZTWEznZJ ,

tive saturation of fluid z,, =1-Z,, ,which has evaporated; B(Z,,), P, (Z,,) is defined
according to formulas (14).

The values of the critical parameters of the relative saturation of the evaporated
fluid of orthotropic plate with elastic edges of rigidity are defined from the characte-
ristic equation ' = 0 and relations (14).

ﬁz\/DllDzz (me [aJ Dy +
2L0b2 Dzz \/D11D22 Dy,

KVEI{(QpITW QITW( ))K +V21(QP2TW_Q2TW(E’:))}+

2 2
n-a

e e <KE {[szrw erw( )JK +v12[Q,,1TW—Q1rw(2,:)}}>=o_

m
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On the smallest root z,, we define the critical efforts 7 (z,,), P, (z,, ) from for-

mulas (14). For each concrete way of drying we have dependence between the relative
saturation and time, defined from the problem of mass transfer, meaning time of
stability loss of the body form.

4. Thermal and moisture resistance of the plate at fast flowing of heating process

Let’s introduce the hypothesis similar to Kirchhoff hypothesis in character of change of
temperature field on the thickness, that is, we accept, that the temperature is linear
function of co-ordinate on z thickness

T=Ty(x,y,7)+2z0(x,»,7).

Here Ty(x, y, 1) is the temperature of the median plane 0(x, y, T) is the temperature
gradient on the thickness and we consider material characteristics independent of tem-
perature and dynamism of the process. Then at the designations introduced earlier in
the right parts of the balance equations (9) inertial members are added, and the solution
of this system should satisfy homogeneous initial and corresponding boundary conditi-
ons at the plate edges. We consider only forces of inertia which correspond to cross-
section moving of elements of the plate that is we consider that longitudinal moving
can be found under formulas without inertial forces. We enter function of stresses and
we consider presence of initial deflections wy. Then geometrical relations are nonlinear
and the problem is reduced to the solution of the compatibility equation

160 (1 2v,) &' 1%
T a4t AT P 4
E, ox G E )Jox“oy- E; oy
2 2
T,
ox~ 0,y Oy

J+%[H(wo,wo)—H(w,w)] (15)

and cross-section displacements

ot (w- ot (w- ot (w- 2 2
ox Ox“0y Oy Ox Ox0Oy
3w . 2 «0°0 2« 0%0
+Nyy ———VE (2L,) oy ——VE, (2Ly) o0, ——
22 8y2 1( 0) léxz 2( 0) 26y2

Dll

2« O*My, *w

VE, (2L, —p2L , 16
2( o) 2 8y2 pP<Lg o0 (16)

—VE| (2Ly) B, 2

where E[ =FE; (1 —Vi5Vy; )_1; p is the given density of the porous body.

Relations (15), (16) consider temperature of the median surface 7y, temperature
drop on the thickness 0 and the moments that is the consequence of introduction inste-
ad of stresses statistically equivalent to them efforts and the moments.

For an example we assume that the thin moisture plate initially is in the medium
at temperature 7=0 and at the moment Tt =0 the temperature of medium raises to
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value T=T, and coefficient of heat transfer under conditions of convective heat
exchange K, =K_ =K . Plate edges are heat isolated. The plate on all contour leans
against elastic edges, that are heat isolated and the beginning temperature is not
changed. Also we consider that heating is carried out from both parties and the plate is
uniformly heated on the thickness. Then 6 = 0 and we obtain the following equation:

T; K = . . .
Ty + K Ty = T . The common solution of such equation looks like
dtv Cpl, CpL,
T,=T|1-e | (17)

If K =0 then plate is the heat isolated; if K = oo then the surface temperature instantly
accepts value T . The equations (15), (16) take the form

1 a4c1>+(1 _ZVIZJ o 10

:%[H(wo,wo )—H(w,w)] s

_— —_ +_
E, ox* \G E )ax*o® E o
ot (w- ot (w- ot (w- 2
ox Ox“0y oy ot
o*w *w o*w
+N, + 2N, + N 18
11 xz 12 P 22 ayz ( )
. e . . . . WX . Ty
We will accept full and initial deflections in a kind w=f s1n—s1n7,
a

wy = /o sin™>sin-~ . Then the first equation of the system (16) takes the form

— — + = w" —wy )| cos—— + cos——
E, ox* G E )ax’oy* E ot 24%? 0

164<1)+[1_2v12J oo 180 ot (2 2)( 2mx 27ty)
a

which solution is

2 2 2 2 2
= Pl; + P22x + 8;; {Ez (%j cos2—m+E1 (EJ coszz—y], (19)
a a

where Py, P, are intensities of compressing efforts &2 = ( f?- f02 ) Considering that

in the drained and moist areas coefficients of shrinkage and moisture contents are
different, from formulas (5)-(7) we find the efforts Ng, Nrw» caused by moisture-
thermal deformations which can be written down as follows

Ly

Npwy = By 2L, Ty (1) + E, (BT/@) I Bs (W (2)-Wy)dz,

_LO
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Ly
Npwa = Ex03 2Ly Ty (1) + £, (32/33) I By (W (2)-Wy)dz.
-I,
The integral from the distortion O, connected with the change of moisture content
0=p; (W - WO) taking into account movement of boundary z,, of phase transition of

fluid in vapour, is presented in a form iJ‘_LZ Qdz=C(z,,) where C(Z,) is defined
0 0

under formulas

Z, 1
C(Em)zJ-QL(E)dE-'-J‘QV(E)dE:QLEm-'_ vl(l_Em)-'- v2£’ (20)

0 a3

0,(2:5,)=B,{C!' [a +(as+aslal) |+ i) 01(5)=BLCH(1-2,).

3/2_ — \32
0,=b.(cllay+C). 0=p(c). G=lur) learam)

Cl1 = pnn/[ps (1 _H)] > Cé = _pLH/[pS (1 _H)] > Cl11 (Em (Z)) = Cl1 (1 _Em)’
a=—(+a)/b, a, =(1—a1)2 , ay==2alA, a,=a,—-aZ,,
a:D,MaHg/(KgpalRT)v b:pnMa/pale’ 1—‘OZCOLODII/(SD)’

k:—(l—no)[Zal _(1‘”10)]/[“1 -+ g (I—Em)],CO :1+pv1Ma/(Mvpal)’
Mo 1s relative density of the vapor on the external surface of the interface, z, is

external border of the two-phase zone, D], D" are diffusion coefficients in an interface
and pores. R, T are gas constant and absolute temperature, M, M, are molecular
masses of air and vapour, p,, p,,p; are density of air, vapour and fluid, K,, p, are

penetration of the material concerning gas and viscosity of gas. Thus, moisture-thermal
efforts are

Nipr = 2L B9 oq Ty () +B1C (5, (D)) | o Npypa = 29L0E, | a3Ty (1) + B5C(Z,,) |

where z, is function of time t, which is defined from the problem solution of heat
and mass transfer. From relations (13), (14) we obtain

A, P-v,P &7*n?
- 21—122+_a_2+(x,1NT +B1NW’

a E,
A, P —-v, P &7n®
y _15H=Vvofh 2 2 2
= + +0, Ny +B,Ny, Of° = - .
b E, 2 Tl BNy, of (f fo)

Here Ny, Ny are described by expressions (13). With (13), (19) under condition of
equality of displacement of the plate edges to deformations of edges, we obtain
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2 1
R(z,) =K. {(Q,,I ~0(20))K, +va1(Qp -0 (2,))+ 5 (%71<yﬂ,
P(Z0)= KBy | (Qp2 =02 () K, +vi2 (01— 01 (7)) +
: 1
o [%ﬂb—zlgﬂ, 1)

where O, =(ocl-p7}p +Bl-le»p) are moisture-thermal deformation of edges in the pro-

cess of drying;

Ly
0,=0s+Qw Q=5 | (ly(®)dz=aTy(®
O_LO
Q[W_E IBL[ WO d_+ IB W _WO)dE

— moisture-thermal deformations of the plate in directions x, y.
The solution of the second equation (18) is constructed by Bubnov-Galerkin method:

4 4o 4.
J‘J‘ 0" (w- Wo) 2D38 (“2’ 2"0)+D25 (W4Wo)+
Ox~0y oy

2
+p2L, 8——2L oH (@, w) s1n—s1n—dxdy 0.
i a b

If to substitute value w, @ from (18), (19) in this equation after integration we obtain
pa’ 62§ n2 {1+2£D a* D,

n’E E (2L )8r 12(1—\;12\;21) b? D, 4D J(i &)+

+Z—§{—Pf +%(§2 —i;)} +§—T{—P; +%(&2 &, )”% =0,

where &= f/(2L,), F = —PlaZ/[E1 (2L, )2 J , P = —szZ/[E2 (2L, )2} . In separate case
of an isotropic square continuous plate neglecting moisture content we obtain the equation [8].

Having lowered an inertial member and considering &, =0 and £ — 0, we find para-

meter of critical loading for the plate in the direction x which has no initial deflection,
through efforts in the direction y and relations of geometrical and strength parameters

~1.2. 2
p, =_Lapr VT (1+2“ Dy a4 D22J. (22)

o E1 ? 12a2 b2 11 b4
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From the relations (21), (22) provided that on the one hand the expression
Pf;{p + ])Z*kp E,, /E,, is defined through geometrical and strength parameters, and on the

other hand, according to formulas (21), through moisture-thermal parametry, it is
possible to define critical relative humidity o,, =z, that corresponds to static loss of

stability of the plate. Considering (18), (21) from formula (22) it is possible to define
the critical time that corresponds to loss of stability of the plate in the process of drying
as function of relative saturation by moisture:

|:(Qp1 -0i(z, ))Ky +Vy (sz -0, (Em))}+
+g[(sz ~0,(2,)) K, +vi2 (2 - Qi (Z, ))] _R,

where R =

bI2 nK! (1+2a2 D, +£D22J _E b
a

! b’ Dy b* Dy E a® ‘
Opening expressions for Q,(Z,), 0,(Z,), and considering (17), we define
time, corresponding static loss of stability:

K R _(Qpl — Oy (Em))(Ky +gV12)—(Qp2 ~ Oy (2, ))(VZI + 2K, )

=-In<1
oty =1 (K, v a(ve 5K,

Here Qy;(Z,,) are the moisture-thermal deformations connected with the change
of relative humidity in the process of drying.

Conclusions. From the obtained results it follows, that at small coefficients of heat
transfer the plate can not lose stability, at intensive heat transfer the plate can lose
stability instantly, and geometrical, strength and kinematic parameters of the porous
material and edges influence the time of stability loss. The joint solution of the equa-
tion for critical time and communication of relative saturation with time for each conc-
rete way of drying (natural, convective, electroosmotic), allows to define critical humi-
dity and time in which it is reached, taking into account the structure of the body and
effective properties of the material which are necessary for timely conducting of hydro-
treatment of the body material in the process of drying.

Let’s note that the stress state and stability of ortotropny plates taking into
account shift stresses were investigated also and stability of the plates form with the
big deflection [9] was considered.
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HanpyeHnu cTaH i CTiKKiCTb ¢hopMM NOPUCTUX TiN y NpoLeci CYLLiHHA

boraaHa ManBacb, AgpiaH Topcbkuid, €reH Hanns

Ha ocnosi po3s’a3ky 3a0aui nepenocy macu 8 npoyeci CywinHs Onsi Mooeell YUniHOPUYHUX Kani-
aapie, a came, Mooeni eKisaIeHmMHO20 padiyca ma CmMoxXacmuyHoi Mooeni YuliHOPUYHUX Kanins-
PIi8 pisHux padiycie 3a pPiGHOMIPHO20 PO3NOOLTY NOP 34 POIMIPAMU 3 YPAXYEAHHAM 3ANEHCHOCTE
Mmooyna FOnea ma xoegiyienma Ilyaccona 6i0 6i0HOCHOT HAcUYEHOCMI 80102010, AKI NPULIHAMO
¥ 6uenadi HenenepepsHux CHIAUHIE, WO ANPOKCUMYIOMb eKCNEPUMEHMANbHI OOCTIONCEHH O0/is
mamepiany yemeHmHo20 KAMeHIO, HA8eOeHO pe3yibmAamu po3PaxyHKié Hanpyiceno-oeghopmosa-
HO20 CMaMy 6 Pi3HUX NIOWUHAX 3 MOBWUHOIO ) Pa3i 3MIHU Medici (ha308020 nepexody 3a cumem-
puunoeo ocyuwenns. Posensnmymo 3adauy npo Ousepzenmmuy cmitikicmv @dopmu opmomponnoi
Nnopucmoi NIACMUHY 3 MUMMEBUM 0BOCHOPOHHIM HASPIBOM | HEPIGHOMIPHUM PO3NOOLIOM 801020~
8MICIY 3a MOBWUHOIO ) NpoYeci CYWinHs, 30Kpema, po3nooil KPUMUYHUX 3YCUTb | KPUMUYHO20
yacy nio yac npupooOHO20 OCYULEHHSL.

HanmeeHHoe COCTOAAHNE U YCTOVIHMBOCTb (bOprI
NMOPUCTLIX TeJ1 B npouecce CyLKun

BborgaHa ManBacbk, AgpwaH Topckui, EBrenunin Hanns
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Ha ocnosanuu pewenus 3a0aqu macconepenoca 8 npoyecce Cywku 0 Mooeneti YuiuHOPU4eCcKux
Kanuiiapos, a UMeHHO, MOOenu IKEUBANEHMHO20 paouycd U CIoXacmuieckol Mooenu YuiuHopu-
YeCKUX Kanwiispo8 pasiuyHbiX paouycos npu pagHoOMEpPHOM pacnpeoenenuu nop 3a pasmepami
¢ yuemom 3agucumocmu mooyns FOuwea u kospduyuenma Ilyaccona om omuocumenvholi HACbI-
WjeHHOCMU 671a20M, KOMOpble NPUHAMO 8 8UOe HENPEPLIGHLIX CHAAUHO8, ANNPOKCUMUPYIOUUX IKC-
nepumMeHmanbhvle UCCie008aHus O MAMEPUaNd YemeHmHo20 KAMHS, NPUGeOeHbl pe3yibmanmbl
pacyemos HanpsaNceHHo-0ehoOpMUPOBAHHO2O COCMOAHUA CNOSL 8 PA3IUYHBIX NAOCKOCHAX NO MOJ-
WuHe npu UsMEeHeHuu panuybl Pazoeoco nepexoda npu cummempuuHol cywike. Paccmompena
3a0a4a 0 OuUBepPeeHMHOU YCMOUYUBOCIU POPMbL OPMOMPONHOU NAACMUHBL HPU HEPABHOMEPHOM
pacnpeoenenuu 81a20CO0ePIHCAHUs U MeMNepamypul N0 MoauHe, 8 YacmHOCMU, pacnpeoeieHuu
KpUMU4eCcKux YCunuil U KpUmuieckoz2o pemenu 8 npoyecce eCmecmeeHHol CyuKi.
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