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Introduction. As is well known, in electroconducting bodies wich are in electromag-
netic field (EMF) electric currents are induced that accompany the heat release and
action of ponderomotive force, which in turn cause the body to warm up and initiation
of mechanical stresses. In addition, they can exceed the permissible value (melting
point or ultimate strength). To this end one has to develop the effective computational
models in order to determine the EMF, heat release, temperature and stresses depen-
ding on external factors.

The study of thermoelastic state of nonferromagnetic electroconductive bodies
in an external time harmonic EMF one can find in the fundamental monograph [1].
This paper presents a simplified method of determination the magnetoelectro elastic
state which is as follows. At the first stage from the equations of electrodynamics the EMF
is determined in a steady approximation. Then the averaged for a period of oscillations
of external EMF, corresponding expressions for the power of heat releases and density
of ponderomotive force are written. In addition their oscillatory (harmonic) compo-
nents are neglected. At the second stage from the heat releases (where heat releases,
determined at the first stage, are heat sources) the temperature field is determined. At
the third stage from equations of quasi-static thermoelasticity [1, 2] (the dynamic terms,
ponderomotive forces and connectedness of temperature and deformation fields are
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neglected) the displacements and stresses Hoycos (of)
are calculated. In the equations of thermo-

elasticity the expressions for the energy 0 ¢
density are taken from the first stage and

the expressions for the temperature are % (

taken from the second stage.

For practical purposes it is neces-
sary to develop a more refined computa-
tional model, which would take into
account the oscillating components of the
heat release and ponderomotive force and dynamic terms in quasi-static thermoelasti-
city problem as well. The criteria justification for the model is given in [3].

1

Yz

Fig. 1. Scheme of the electroconductive layer

1. Statement of the problem

We consider the electroconductive layer of thickness, related to a rectangular dimen-
sionless coordinate system (x,y,z) (Fig. 1). A tangent component of the external mag-
netic field #, on the upper surface influences the layer

H,(0;1) = Hycosor, H,(L;1)=0. (1)

here ®=2nv, v is the frequency, ¢ is time; H, is the amplitude of harmonic compo-
nent of the magnetic field intensity. Later on index «y» is omitted.

The magnetic field intensity H (z;t) in the layer region we find from Maxwell's
equation, which in this case is

0’H

oH OH
0z?

2
— )\ ’Z

where i, is permeability of free space, A is the electrical conductivity.

Knowing the magnetic field in the layer region, the Joule heat power O, the
energy density W of EMF stored in the body and the density of ponderomotive force F
we determine from

2
1 (oH L, W
Q_W(ﬁzj’ W=ghet® F==g75 3)

The last relation (3) allows us in this model instead of ponderomotive force F to
use the energy density of EMF W, what will be used in future.

Defining the thermoelastic state, assume that on the upper base of the layer a
convective heat transfer takes place with the environment, the temperature of which T7j is
equal to the temperature of the layer and the bottom one is insulated. Assume also that

the base z = 0 is power load-free, and z = 1 is fixed rigidly with a dielectric half-space.
Then the temperature field is found from the equation
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2
Lor_13T 0 @

ap o Pt o«
for initial condition

T(z0)=T, ®)
and boundary conditions

oT(05¢)
Oz

= Bi[ T(0;1)-T, ], 8T“ =0. (6)

Here x and a; are thermal conductivity and thermal diffusivity factors; Bi is Bio criterion.
In the system of thermoelasticity equations we will have a non-zero component
of displacements u, = u(z;t) and three diagonal components of tensor of mechanical

stresses ©,,, ©,, and o,,. The equation of motion is written as follows

0
6t = 75(0-22 - W) (7)

for initial conditions

u(z;O)zwzo, (®)
and boundary condition
u(bt)=0, o,.(0;2)=0. 9)

In formulas (4) and (7) in the classical theory [1] the values Q and W are averaged for
the period of oscillations of the external EMF.
From Hooke's law we obtain the relations

E vV, 10u
— — 4 rp_ -7 _ -
Ow =TTy prl&z o (T TO)}’ (10)
E 1-v,16u
— P P _ _
O-ZZ_I—ZVPL+V1]182 o (T 76)} (i

that allow you to express the components ,, and 6, interms of the normal component o,

1
Oy = O-yy :?[Vpo-zz _atEp (T_TO):'v (12)
P

where E,, v, is elasticity modulus and Poisson's ratio; o is the coefficient of linear

expansion.
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Substituting formula (11) in relations (7) and (9), we obtain the equations for
displacements

u >0 1+v, 8 1-2v,
g-gy—ql& (XTT+ w (13)

and the boundary conditions

10u(0;¢) 1+v
u(Le)=0, 5 gZ )=1_VjocT[T(0;t)—T0]. (14)

(1 Y )Ep
p(1+vp)(1+2vp)
We go to the solution of the problem stated (1)-(14).

Here ¢, =

is the velocity of longitudinal waves, p is the body density.

2. Methods of solving the electrodynamics problem

Solution of the problem of electrodynamics (1), (2) is presented in the form
) — H 0 iot | 7 —iot
H(z,t)—T[h(z)e +h(2)e ] (15)

Here tilde « ~ » over the value indicates its complex conjugate value; 7 is imaginary unit.
Substituting the presentation (15) in relations (1), (2) for function A(z) we

obtain the following ordinary differential equation and boundary conditions:

2
%—2#{2}1, h0)=1, h1)=0, (16)

7 =
yA

where y =1{/mlp,v, 8=1/y is the relative depth of penetration of the magnetic field

in the environment.
Solution of the problem (16) will be as follows:

h(z)=sh(1+i)y(1-z)[sh(1+i)z] . (17)

Based on the formula (3), for the heat release O and energy density of EMF W
stored in the body we will have

W(z30) = P(2)+ ¥, (2)eX™ + Pa(z)e 2™, (18)

where ¥ = {Q;W} , @(z) are the averaged values for the oscillation period of EMF;

¥, (z) are their second harmonics.
Write the specific expressions of these values
. averaged values:
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Hy dh(z) dh(z) y*Hg ch2y(1-2)+cos2y(1-z)

0(z) =

ong? dz dz & ch2y—cos2y ’
W(z)= #h(z)é(z) = Ofg ch ZY(; 2? — zzz;z(l ~2), (19)
. harmonic components:
0,() = ng [dh(z))z _ i HG ch2(1+Dy(l=2) +1
401 dz 2072 ch2(1+i)y-1
W (2 = BT o ) _ Hos ch2(1+i)y(1=2) -1 20)

8 8 ch2(1+i)y -1

The obtained expressions (19), (20), considering presentations (18), are included
in the heat conduction equation (4) and the equation for the displacements (13).

3. Solution of the problem of thermoelasticity

The temperature field we seek from the heat conduction problem (4)-(6) where the
expression for the heat release Q is given by the formulas (18)-(20). Using the Laplace

time transform # [4], for function T'(z;¢) we will have:
T(z;t) =Ty + T (2) + T, (2)e™ + T, (z)e ™ + Ti(z;1) , 1)

where T(z) is a component of the temperature caused by the averaged heat release
0(2); T,(z) is a harmonic component caused by oscillatory heat release Q,(z);
T.(z;t) is a component that describes the transition temperature regime.

Write down the specific expressions for them

T(z)= T, (ch 2y —cos 2y)_1 [ao —ch2y(1-z)+cos2y(1— z)] , (22)
(e—2)d, +&d, ch2(1+i)y(1 - z)— Bi, ch~/2e(1+i)y(1 - 2)
4g(e —2)d, sh* (1+i)y ’

hL(2) =1, (23)

T(zit) =T, T, cosp, (1 - 2)e " 4)
n=1

In formulas (21)-(24) we introduce the notations: T, = H; (41(7»)_1 — characte-

ristic temperature; € = (anTk)_l — dimensionless parameter; Bi; =(e—2)Bi+¢d,;

2y .
a, =ch2y—cos2y +Fi(sh2y +sin2y),
dy = Bich2(1+i)y +2(1+i)ysh2(1+i)y,
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d, = Bich\2e(1+ i)y +2e(1+i)ysh~2e (1 + i)y,
=874, {(ch2y —cos2y)"z, (v) w3 + Bi(Bi+1)Jeosm, |
4, =(ch2y—cos2y)(64y* +u3 ) (168y* + 1} )a, (v) + (167~} ) x
{un |26+ 20700 ()~ (3267 — 3 )& (v) | - Bi (64" + 113 ), (v)} :
2, (v)= (167" —uy )(64v* +nf )(1687* +13),
a,(7) (4y —un)(Bich2y+2ysh2y)—(4y2+uﬁ)(3icoszy—2ysin2y)
b (v)

=4 (1 ch2ycos 2y) ui sh2ysin2y,
&(v)= Bz(ch4y +cos4y —2ch2ycos2y)

+2y [sh 4y —sindy + 2 (ch 2ysin2y —sh2ycos 2y)]
&, ( ) Bish2ysin2y —y[sh4y +sindy — 2(sh2ycos2y+ ch2ysin2y)]
and p,, are the roots of the equation Bicosp, =u, sinp,
Note that in the case of simplified methods [1] the expression (22) for T'(z)
remains the same, 7,(z) =0, and for 7.(z;¢) we obtain
2 2
8y’T i cosp (1 —z)e !
Tg(z0) =~ % (Y)oost, U= 2e -
(ch2y—cos2y) i (16y* — uj )| ) + Bi(Bi+1) |cosn,

We turn to finding the displacements. Considering the presentations (18) for

energy density of EMF and (21) — for the temperature, in the same form can be
written also the form for the displacements

u(z;t) = (2) + 1y (2)e” + iy (2)e 2" +u.(z;31) . (26)

Note that each term in the representation (26) has the same interpretation as for
the temperature in the representation (21)

Solving the problem (13), (14), with this in mind, we obtain the following
expressions for the components of displacements (26)

i(z) = U =

) £, )[sh2y(1-2)=sin2y(1-2)] - 2ya,(1-2)}, (27)

- 2¢, (y)(x/gsTy)_l sindee;y’(1-z)— (1-i)c, (z;7)cosdee,y”
U, (z) =

u,, (28)
88}/[1 - 21’(88Ty)2 }[1 —digery? ]ZO cosdee )’ ;
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us(z;t) = u,, Zun (z)e_ar“it/ r , (29)
n=1
_ 2 2\! -1 .
u,(z)=T, (un +8n) [sn cosp,ch™ g,she, (1-2)+p, s1npn(1—z)] (30)

I+v
In formulas (27)-(30), the following notations are introduced: u,, = ﬁochTm

are characteristic displacements; /, = ayc;' is characteristic thermal size; &, = I3/,

P
parameter that characterizes the influence of power stresses compared to temperature
stresses on the thermoelastic state of the body.

-1
g, =&pu’ are characteristic thermal parameters; & = (1—2\/ p)uoKk((xTE ) is the

a = ay—¢&,(ch2y- COSZ'Y),ZOEZ\/_(S—Z)dISh2(1+i)'\{

(e—2)d, +ed, ch2(1+i)y - BijchN2e (1+i)y, x =&, (e-2),
cl(y)E o (1)~ 1-2i(eery)? [1-4isety* |21,
co(v) = e(1+)[1-4iesiy” |d, ch2(1+1)y = Bi,| 1-2i(serv)” |ehv2e (1+7)1,
¢y (z:7) = 628 (1+)| 1-4iss7y” |y sh2(1+i)y(1-2) -
2B 1-2i(sery)” |shf2e (1+1)y(1-z2). 31)

Note that in the case of simplified methods [1] the expression (27) remains
unchanged, and u,(z) =0 and wu.(z;¢)=0.

Substituting the presentations (21) and (26) in formulas (10)-(12), for stresses we
obtain the same representations as for the temperature and displacements with a similar
interpretation of terms. Write down the appropriate expressions

6.(2)=0,,(2) =0, (ch 2y —cos 21()_1 {[1 -V, (2 —&g )][ch 2y(1-2z)—
—ch2y —cos 2y(1 - z) + cos 2y] —(1 -2v, )2y(sh+ sin2y)Bi_1} ,

(1 v)ac

ch2y—cos2y
Oxx, Z(Z)_ Y ZZICxe( ) GZZ,Z(Z)z_(l_vp)cnglcxx,Z (Z7Y)a
zZ, = [1 —2i(eey) J[l 4icely ]48(8—2)611 COS(488T'\{2)Sl’12 (1+i)y,

Crn(z:y)= v, (y)cos 4eg,y (1-z)+ (1 -V, )[1 - 2i(88T'Y)2 } X

G..(2)= [ch2y(1-2z)—ch2y —cos2y(1-z)+cos2y];
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x(1- 4ige7y” )(s - 2)d, cosdee v’ + (1 —4iss§y2){(1 —Vp)[l—Zi(ssTy)z}x
xcosdes;y” —v, (1+1)|od, ch2(1+0)y(1-2)+ | 1-2i(eery)’ |

xBiy chf2e (1+7)y(1-2){v, — (1=, )(1- 4iee}y? Jcosdee, v |
Cooa(237) =i (1)cosdesy’ (1-2) + | 1-2i(eer 1)’ |

x(1-4ise7y* )(s—2)d, cosdeery” +(1—4iss7y” ) x
x{[l_zi(ggﬂ)z}mszxggﬂz-(1+X)}gdlch2(1+i)y(1_z)+

+[1 - 2i(88Ty)2 } {1 - (1 - 4i88%y2 )cos 488Ty2}3i1 ch\/i(l + i)y (1 - z) ,

O (Z;t) = Oypx (ZQt) = szcxxn (Z)e_af“il/l2 ,

n=1

_ S —aruﬁt/ﬁ
o (Z t —(1 v )Gchz ,
1

G (2) = Tn(ui+8i) l{vps cosp, ch'e, che, (1-z2)-
_[(1—2vp)pi+(1—vp)aﬂcosun(l—z)},

o, =T, (ui +e )_1 [cos n,ch'e, che, (1-z)-cosp, (l—z)} : (32)

=

1 -1
Here o, = E, 0,7, (1 v ) (1—2vp) . Formulas (15)-(32) will be used for specific

numerical studies in this problem.

4. Analysis of the solutions obtained

We estimate the effect of oscillating components of temperature, displacements and
mechanical stresses on the thermoelastic state of nonferromagnetic layer in a time har-
monic magnetic field compared to the relevant time-averaged components. Below the
calculations were performed for a copper layer, whose characteristics are such [5-7]:

p=8,92-10"kg/m*, E,=129-10"N/m>, v, =035, o,=118-10"m?/s,
k=406 W/(m-K), ay =1,72-10° /K, . =5,88-10" A/(V-m), py =4n-107 N/A?,
¢ =4,818-10°m/s.

Suppose also that 7;, =300 K and take Bi =0,2. Since the frequency v varies
within the limits (50 + IOIO)HZ , and the thickness /| — (10_6 + l)m , then the para-

meter y will vary within the limits 107 +10*.
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We estimate first the values that do not depend on the parameter y. Since
€y = 4,05-107 (is negligibly small compared with a unity), then we will always
ignore it. This means that in the formulas (27) and (31) it will be rejected [1].

For this case € = 114,75, [, =245- 10 m . Later on we well neglect the quanti-

ties less than 1% (0,01) compared with a unit. In this case the dimensionless parame-
ter &, =(Ir /l)2 <1072 for the thicknesses is / >2,45-10"°m, that is it can be ignored

always. In formulas (28) and (31) such dimensionless quantities as ss%yz i (saTy)2

are included, their maximum values are, respectively, 9,59-10~ and 1,10-107°. So
they also can be neglected always.

Further for convenience we will work with dimensionless temperature, displace-
ment and time, which we introduce so:

@(o;r)z—T(OQ;)_TO, v(o;r)z—”(f”), rz‘l‘—gt. (33)

One goal of this paper is to study the influence of amplitude of oscillatory com-

ponent of temperature Ag(z) =4/0, (z)@z(z) and displacements A4, (z)=./v,(2)V,(z)
on thermoelastic state of nonferromagnetic conductive bodies compared with their
established values — ©(z), V(z). This effect will be characterized by relations

Se(2) = A®(z)/ O(z) and S, (z)= A,(z)/¥(z). The oscillatory components of these
values will be considered under the condition:

Sg >1072, S, >1072. (34)
The Table 1 shows the values Sy(z) and S,(z) for different values v, z.

Table 1
Y 0.001/0.01, 0.1 1 10 100

Se(0) 0.990/0.97/4.09-1025.58:10 % 7.69-10 | 7.69-10°
S6(0.25) 10.990/0.97/4.09-10 %/4.55-10 %/ 5.91-10 7 |1.71-10 ¥
S(0.50) {0.990/0.97/4.08:10 %3.78:10 %/ 3.99-10 ?|3.29:-10 ¥
S(0.75) 10.990/0.97/4.07-10 %3.58-10 %2.69-10 "|6.36:10 "

Se() ]0.990(0.97/4.06:10 23.55-10*7.18:10 *|4.86:10

-S,(0) 0.990/0.97/4.08:10 */4.42:10 %/3.70-10 > |4.01-10 " °
-5,(0.25) |0.990/0.97|4.07-10 2|5.35-10 " *|4.00-10 ° |4.04-10 " °
—S,(0.50) [0.990/0.97|4.07-10 2|5.89-10* 4.00-10 °|4.05-10 " °
—5,(0.75) |0.990/0.97|4.06:10 2/6.17-10"*/4.01:10 ° |4.05:10 " °

-S,(1) 0.990/0.97/4.06:10 %6.25:10 % 4.01-10 °|4.05-10 ¢
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Note that S| (z) <0, since the displacement is #(z) <0 through the whole layer

thickness.
Analysis of the data presented in the Table 1 and formulas (22), (23) and (27),
(28) as well shows that for relatively small y (in the limiting case y — 0) these

relations are equal to a unit (minus unit), regardless of z. When y increases, they

decrease and at infinity vanish. From the definition (33) and conditions (34) it follows
that y < 0,1 must be considered as a constant component of temperature and displace-

ment, and their oscillating components also. At y>1 the values Sy(z) and S, (z) are

so negligible, that there is no need to explore them.
In the Table 2a the values of the frequencies v and thicknesses / are presented, which
must take into account the oscillating components of temperature and displacements.

Table 2a

v, Hz 50 102 103 104 103 10°
I, m 0.93:10°% | 6.57.10°* | 2.0810°* | 6.57-10°° | 2.0810°° | 6.57-10 ¢

Thus, for a very wide frequency range the condition (34) is suitable only for
a very small thickness (thin films).

Note that for frequencies v < 50Hz (see Table 2b), which exist, for example, in
biological systems [8, 9] the oscillating components of thermoelastic characteristics for
thicknesses in the range / = lmm +1m should be considered.

Table 2b
[, m 1 107! 102 1073
v, Hz 431-10°° 4311073 0.43 43.12

In the Figs. 2 and 3 are the graphs of dimensionless temperature ®(0;t) and
displacements v(0;T) versus dimensionless time t for the same values vy, that are

listed in the Table 1, on the upper surface z=0. The solid lines correspond to the
temperature ©(0;7) calculated according to formulas (21)-(24) (displacements v(0;7)

calculated according to formulas (26)-(30)), what corresponds to a refined calculation
model and the dotted lines correspond to the temperature in the case of the simplified

methods when ©(0) is calculated by the formula (22), ®,(0;t) =0, and ©.;,(0;7) —
by the formula (25) (displacement Vv(0) is calculated by the formula (27), and
v,(z)=0 and v.(z;7)=0).

For the parameter y =102 (Figs. 2a and 3q) the temperature and displacements
have a clearly oscillating nature. They oscillate relatively the equilibrium position, which
is the steady temperature ©(0;t) (displacement v(0)). For y=10"" it is seen that the
amplitude of oscillation is clearly reduced. For larger v (Figs. 2b, ¢ and 3b, c) oscillations
are practically absent. In these cases you can talk only about microoscillations.
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Fig. 2. Time dependence of temperature on the upper surface of the layer
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Fig. 3. Time dependence of displacements on the upper surface of the layer
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Table 3
Y 0.001 0.01 0.1 1 10 100
Ao 10.0 9.6 0.40 0.050 0.008 0.0080
A, 10.7 10.0 0.45 0.005 0.004 0.0004

The Table 3 presents the values of the amplitudes of oscillations (microoscilla-
tions) of temperature A4g and displacements A, for the case shown in Figs. 2 and 3.

Note that for low frequencies (y <1) the temperature and displacements in the
steady state mode do not dependent on y and are equal to +10, and for high
frequencies (y > 10) are proportional to v .

For all the considered cases achieving the steady thermal mode and mode of displa-
cements occurs at the same time of order T =20 and is independent of y . At the stable

mode microoscillations occur with amplitude 4 — temperature and 4, — displacement.
Distribution of dimensionless temperature ©(z) (solid line) in the steady thermal
mode and amplitude Ag(z) (dash line) of its oscillating component (Fig. 4) through the

coordinate of thickness is quite uniform. There is too weak quadratic dependence which
with increasing the parameter initially reduces and then disappears (is linear). For small

_ vy=0,01 — y=1
0.8 VAR —
11,0 10
) /"
// -=T - "
10,5 = 6
- - -
10,0 - > 5
a b
0 0,4 0,8 z 0 0,4 0,8 z
— =1
4,0 y=100
1000
600
200
c
0 0,4 0,8 z

Fig. 4. Distribution of temperature ©(z) (solid line) in the steady temperature mode and
amplitude 4g(z) (dash line) of its oscillatory component through the thickness coordinate
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Y (y < 10_3) the amplitude of oscillatory component A4g(z) is practically similar to the

constant component ©(z) distribution. At y =1072 it decreases by 2%, and at y = 0,1

the amplitude A4g(z) is only 4% of O(z) . Inthe case of y >1 it is almost negligible.

Note that the difference between the dimensionless stable temperature and the
amplitude of its oscillatory component on the upper z = 0 and the bottom z = 1 surfaces
is equal to one and does not depend on the value vy .

In contrast to the temperature, the distribution of displacement in the steady
mode V(z) (solid line) and amplitude of its oscillatory component A, (z) (dash line)

have completely uniform character through the thickness coordinate (Fig. 5). On the
upper surface z = 0 the displacements V(z) adopt minimum and are uniformly increase

with increasing z and according to the first boundary condition (9) take zero value on
the lower surface z = 0.

Similar is the behavior of the amplitude A4,(z) compared to V(z). So for small
values y=10" and y =107 they coincide up to the sign, at y =0,1 the difference
does not exceed 4% and with further increase of y the influence of the amplitude
A,(z) is negligibly small.

The graphics for mechanical stresses we will not give as they repeat the
temperature distribution up to a factor.
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Fig. 5. Distribution of displacement V(z) (solid line) and amplitude of its oscillatory component A4, (z)
(dash line) through the coordinate of the layer thickness in the steady thermal mode
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Conclusions. Thermoelastic state of nonferromagnetic conductive layer under the action
of time-harmonic magnetic field strongly depends on the parameter H, and the relative
depth of penetration of the magnetic field y. This value in turn depends on the layer

thickness /, the frequency of the external magnetic field v and electrophysical charac-
teristics of the material.

It is shown that the contribution of ponderomotive force in thermoelastic state of
nonferromagnetic electrically conducting bodies should always be neglected in
comparison with heat releases.

For small y (up to 1% for y <0,1) it is necessary to consider both the constant

part component of the temperature and its oscillating component. Then the temperature
and displacement are clearly of oscillating nature. In oscillatory components of displa-
cements a typical thermal size is included, which can always be ignored. Those fre-
quency values v and layer thickness / for which it is necessary to consider both cons-
tant component of the temperature and its fluctuating component are determined.

Temperature and displacement distribution are practically linear through the
thickness coordinate.
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MNMpo 3HaxomKeHHA TEPMOMNPYXXHOro CTaHy
eneKTponpoBiaHoro HecpepomMarHiTHOro wapy
B rapMOHi4YHOMY 3@ 4YaCOM MarHiTHOMy nofii

Onekcanap MNavkeBu4, Muxanno Conogsk, Mukona MaxopkiH

3anpononosano po3paxyHkosy mooeinb 3HAXOONHCEHHS MEPMONPYICHO20 CIMAHY el1eKMPONPOBIOHO20
HeghepoMacHImHO20 wapy 8 2apMOHIYHOMY 3a 4ACOM MacHimHOMY noai. Y yill modeni 6paxogy-
FOMbCsL KOMUBHI CKAAOHUKU TMENI08UOLIeHb | NOHOEPOMOMOPHOL CUll, A MAKONC OUHAMIYHI YieHU
3a0aui mepmonpysicHocmi. Busnaueno ymosu, 3a sKux He0OXIOHO KOPUCMYBAMUCS YMOYHEHOIO
PO3PAXYHKOBOI MOOEILIO.
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O HaxoXaeHue TepMOynpyroro COCTOSHUS
3NeKTPONpoBOAHOro HedheppPOMarHUTHOro crios
B rapMOHWYE€CKOM BO BP€MEHU MarHUTHOM norse

AnekcaHgp MNaykesud, Muxaun Conogsk, Hukonan MaxopkuH

IIpeonoaicerno pacuemmyio Mooenb HAXOHCOEH U MEPMOYNPY2020 COCMOAHUA NEKMPONPOBOOHO20
HepeppoMAZHUMHO20 CNIOSL 8 CAPMOHUYECKOM 80 8PEMEHU MASHUMHOM noie. B dannoii mooenu
VUUMBIBAIOMCS KOebamenbHble COCMAGIAIoWUe MeniogbloeneHull U NOHOEPOMOMOPHOU CUlbl, d
makoice OuHamuyeckue uienvl 3a0aqu mepmoynpyeocmu. OnpedeneHvl yCiogus, npu KOMOPbIX
HeoOX00UMO UCNONb308AMb YIMOUYHEHHYIO PACYEIMHYI0 MOOEb.

Otpumano 25.03.15
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