Power multiplier in the summation of trigonometric series
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In this article we review the methods of power summation of factors. The degree of factors which
are arbitrary powers of summation indices are considered. We show that using the Poisson-Abel
method only those series can be summarized the order of member increase of which is
proportional to the exponent depending on the summation index. At the same time the Gauss-
Weierstrass method and other power factors methods can be also applied to the series the terms of
which increase in proportion to the exponential dependence of the indices summation.
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Introduction. In the work [1] there were presented the methods of series summation
based on the mathematical apparatus of averaging integral operators. From the point of
view of summing up the series with the growing number of members, the power
multiplier methods and Gauss-Weierstrass [2-5] with the factors having the first and
the second degree of sequence numbers of the summation indeces are powerful
enough.

We review power multiplier methods of series summation, degrees of factors of
which are arbitrary powers of summation indices in this paper. It is shown that by
Poisson-Abel method can be summarized only the series the members of which have
the order of growth proportional to the exponent depending on the index. The Gauss-
Weierstrass method and other power factors methods can be also applied to the series
whose members grow in proportion to the exponential dependence of the index
summation.

1. Trigonometric series. Generalized sum.
Let us write the main characteristics of averaging operators [2].
a) Let the function f(x) such that the function f (x)(l +|x|)_k el'(E) be
integrated by Lebesgue where A >1;E = {x || < oo} ,and o(x)e L' (E)

1s the function that satisfies the conditions
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|0)(x)|(1+|x|)k£M<oo, Toa(x)dle. (1)

—0

Then, at each point of the continuity of the function f(x) the equality is true
. 1 (t—x
f(x)= lim j fO)—o| — |dt, 2)
c—+0 e o o

where {G} is positive numerical set with the point of condensation 6=0.

Let us consider trigonometric series of periodical function f(x)e L'[-m;n],

f(x)~a—0+2an cosnx+b, sinnx, 3)

n=1
17 17 .
where a, =— I f(x)cosnxdx; b, =—If(x)s1nnxdx.
T[—T( TE—T(

Applying the averaging operator to the function f(x) and developing it into the
series with the fixed value ¢ =0, we’ll get the series

fo(x)= _]; f(t)ém(%)dt _ %°+ 3" 0, (0)(a, cosnx+ b, sinnx), )

n=1

where ¢,(c) = I o(x)cos(onx)dx .
If the conditions of statement a) are true, then at each point of continuity of the
function f(x) marginal equation (2) is true, which with (4) takes the form

f(x)= lim {“—Mchn(c)(a,, cos(nx) + b, sin(nx)) | (5)
c—+0| 2 =1
b)The equality (5) defines a generalized sum, and the sequence {(pn (G)}

with o — +0 is the series summation method (3).
For theoretical and practical studies of convergence of series they use methods

of power factors { ¢, = p”v}, v>0,p—>1-0 traditionally. The Poisson-Abel method

(e}

. . 1 _
{(pn (0)= p”} with the kernel of averaging operator w(x)=———, where p=¢"°,

b
1+ x>

p—>1-0, and the method of Gauss-Weierstrass {(pn (G)=p”2} with the kernel
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o(x)= 5 \/, exp( /4) where p:e“’2 , p—>1-0 occupy prominent place in

mathematical analysis. Nuclear features of these methods are infinitely differentiated
functions which satisfy the conditions (1).
The similar limit equality to (5) for the derivative of the function is true.

¢) If the periodical function f(x)e L'[-m;n] has the derivative of k order in
the point x, then the next equality is true

f(k)(x)_pllmo{?+;p n {a cos(nx+k?)+b sm(nx+k7nﬂ}.

The averaging operators have a clear expressions only in these two cases.

2. Sequences of generalized partial sums of series

The limit equality (5) can be written as double limit equality

f(x)= lim lim {— + Zp (a, cosnx+b, sin nx)} (6)

p—1-0 N>

by entering generalized partial sum of the series (4).
Then, f(x) is generalized sum of the series (3) in the point x, if for any arbitrarily

small number &> 0 there exists number N and there exists number p,, lim py =1,
N—o

such that for all n> N andp=p, the following inequality is true

<eg. @)

70| 2 58 o conln) sk

k=1

So, approximate numerical value of the generalized sum (6) is the value of
variants of the corresponding sequence, which is dependent on two parameters at
sufficiently large value of number N and very close to one parameter p = p(N ) In
this regard, there appears the challenge of choosing the numerical values of the
parameters of the variant which provide the least error of the corresponding
approximate value of the series sum. Other important problem is the problem of the
choice of indicator v>1, defining the general factors of power summation method

{(pn = p”v } The choice of the values of these parameters depends on the order of

ascending of coefficients of the series (3) and the points in which the generalized sum
of series is determined.

According to Abel [2] we will transform the series in the formula (4) under the
condition 0 <p <1 and taking into consideration of the formulas

29



Halyna Ivasyk
Power multiplier in the summation of trigonometric series

s1n[ n+1 x/2]

Sc(x) kZOCOS WCOS ) 5
s1n[ n+1 /2]

S, (x)= kz(:)sm —sm(x/Z) >

We get

£ (%) =a?0+ >p" (a,cosx+b,sinx)= —a70+ > " (a,cosx+b,sinx)=

n=1 n=0
a < n' n c n' n+1)¥ s
—- a3 {ap” —ap™ " |si ()4 B b [si0) . ®
n=0

We will explore the convergence of the series (8) if for large values of the
indices of summing its coefficients have the estimates

a,=0(n"r"), b, =0(n"r"),r=1;m>0. ©9)

The estimates a, =O(n’”), b, =O(n’”) have the coefficients of the series

which are derivatives of any orders from trigonometric Fourier series, the estimates (9)
correspond to derivatives of the power series.
Let us estimate residual of series (8), considering its two parts

00

A;\/: Z|:nmrnpn _(n+1)m n+l (n+1) }S,j(x),

n=N
AS, = [nmr"p" —(n+1)mr”+1p(”+1)v}S,f(x). (10)
n=N
The sequence {(pn (p,r,m)zn’”r”p”v} is not monotonically decreasing.
n=0

Number of the largest member of the sequence is determined by the necessary
condition of extremum of the function that sets the general member of this sequence

nlnr+vn'Inp+m=0. (11)

Let us write the numbers of the largest members of the sequence separately for
cases r=1and m=0

1 —1/v 1 -1/(v-1
No =N, (p)= (lanWJ . No=N.(p)= (IHWJ
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Remark 1. In the case of estimates of series coefficients a, =O(n’”), b, =O(n’”)
sequence {(pn (p,l,m)} , starting from the number N, =N, (p), monotonically

decreases and tends to zero for all v>0, in the case of estimates a, =O(r”),

b,=0 (r” ) , starting from the number N, = N, (p) , monotonically decreases and tends

to zero only for v>1.
From the equality (11) we will find inverse relationship of the parameter p from
the number of the biggest variant of the sequence N,

Nylnr+m 1 m

p(N0)=e v Ny _r ngfle VN(;" (12)

The parameters N and p or according to (12) N and Ny, N > N,, are chosen in the
expression (10) independently. By entering variable coefficient o — oo using formula

N =a N, and (20), we will find the estimate for the remains

‘AIN‘ _ i |:nmrnpnv _(n N l)m rn+1p(n+1)v :lS[ (X) <
n=N
< i [nmr”p'zv —(n+1)" r”“p(”H)V }|S[ (x)| <
n=N

<A x) z |:nmrnpnV _(n +1)m rn+1p(n+l)v }S[ — A(x)NmerNv _
n=N
oa'N, ma’ ma’ Ny

= A(x)(aN,y)" rNop v e v = A(x)Né"ame_Tr v (o7-vo)

(13)
Remark 2. 1f for the coefficients of the series (3) the estimates a, =O(n’”),

b, = O(n’”) are true, then remainder (13) tends to zero when o — oo . If the estimates

(9) are true, then remainder (13) tends to zero when o — oo under the condition

o' —va>0 or v>1.

Based on the estimate of the remainder (13) we have necessary condition for
existing of generalized sum of the series.

Theorem. Let generalized sum of series exist (3), ie the limit equality (5) be true.
Then implementation of the inequality (7) is provided by the choice of values N,
N >aN,, at the same time, if for the coefficients of series (3) the estimates are true
a, = O(n’”) , b, = O(n’” ) , then we put v>0, a>1 and parameter p is calculated by
the formula (12) when » =1; if the estimates (9) are true, then we put v>1, a>v"'"
and parameter p is calculated by the formula (12).
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significantly

0
n=0

increases with parameter p approaching one. Therefore we can not reach sufficient

Remark 3. The maximum value of sequence variants {(pn (p,r,m)}

precision of calculations of generalized sum with parameter p approaching one.
Example 1. Let us consider trigonometric Fourier series of the function f'(x)=x/2,
(_ l)i’l +1

n

f(x)= z sin(nx) , |x| <T.
n=1
The derivative of this function of k-th (k>2) order is equal to zero. We will

find approximate value of generalized sum of derivative of the sixth order from the
considered series

SO~ £ x) = i(—l)”“ 0" n® sin(nx) .
n=1

If p=0,999, N =200, then £©(0,5)~1-1071°, 7©®3)~1-1071°.
Example 2. Trigonometric series of the function

1 rsin @ S ;
r,0)=Im = = 21" sin(ne)
f( (p) 11—z 1+r2—2rCOS(P ; ( (p)

where z = re™® | converges (in the classic sense of the sum) in the circle » <1, 0< ¢ <2n
and diverges in the point (r=1,1; ¢=m/4). The function f(r,¢)=Im[l/(1-2)] in
this point takes the value f(1,1;7/4)=1,188. We will find approximate value of the

generalized sum of series in this point using formula f(r,0)~ f, y(r,0)=

N 2
=D r"p" sin(ng). If p=0,9999 and N =1500, then f, \ (11;7/4)=1,189.
n=l1

Conclusions. Since the coefficients of the divergent (in the classic sense) series incre-
ase with increasing values of their serial numbers, it is important to find effective
methods of finding the generalized sum of this series. Adding smaller units of multip-
liers to the expression of coefficients (by which methods of power factors are realized)
and implementating sufficient conditions for the existence of the generalized sums of
series provide construction algorithm for finding numerical value of this sum. Given
examples confirm the possibility of calculating the generalized sum with the precision
large enough. However, all numerical algorithms are not stable enough since the
computation of generalized sum of series is accompanied with performing arithmetic
operations with big numbers (coefficients values).
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CTeneHeBi MHOXHUWKM Yy NiACYMOBYBaHHi
TPUroHOMETPUYHUX pSAAIB

["anuHa IBacuk

YV yiv cmammi euxopucmosyemo memoou cmenenesux MHONMCHUKIE 01 NiOCYMOBYB8AHHS PO30Idic-
HUX mpuconomempuunux psoie. Iloxaszano, wo memodom Ilyaccona-Abens modicna niocymosamu
MInbKU psaou, NOPSOOK 3POCMAHHA YINeHI68 AKUX NPONOPYIUHUL CMENneHesill 3aNeHCHOCMI 6i0
Homepa niocymosysans. Memoo Belicpwumpacca-I'aycca ma inwi memoou cmenenegux MHOIC-
HUKI@ MOJICHA 3ACMOCYBAMU MAKONC 00 pAdi8, YNeHU AKUX 3pOCMAIOmb HPONOPYILIHO NOKA3HU-
KOGl 3a1eAHCHOCMI 810 HOMEPA NIOCYMOBYBAHHSL.

CTeneHHble MHOXWUTENU B CyMMMNUpoBaHUU
TPUTrOHOMeTPpU4eCKunx panoB

["anunHa MBacblk

Hccnedosano cymmuposanue pacxooaujuxcst mpueoHoMempuiecKux psoos Memooamu CmeneHHoix
muodxcumenei. Iloxkasano, umo memooom Ilyaccona-Abenss moeym 6bimb NpoCyMMUpOSaHbvl
MONLKO Pk, NOPAOOK 803PACMANUS YIEHO8 KOMOPbIX NPONOPYUOHATLHYIN CIMENeHHOU 3a8UCU-
Mocmu om Homepa cymmuposanus. Memoo Betiepwmpacca-Iaycca u opyeue memoouvt cmenen-
HbIX MHOJICUMeENell MO2ym UCHOAb308AMbCA MAKJCce 05l PSO08, 4leHbl KOMOPLIX 803DACMAlOm
NPONOPYUOHATLHO NOKA3AMENbHOU 3A8UCUMOCIIU O HOMEPA CYMMUPYEMOCMU.

Otpumano 08.12.16
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