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Abstract. In areas such as landmine detection, where obtaining large volumes of labeled data is challenging, data 

augmentation stands out as a key method. This paper investigates the role and impact of different data augmentation 

methods, and evaluates their effectiveness in improving the performance of deep learning models adapted to landmine 

detection. 

Landmine detection is governed by international security requirements on the one hand, and urgent humanitarian 

needs on the other. This field, characterized by its urgency and the requirement for meticulous accuracy, is key against 

the explosive ordnance. The hidden dangers of these munitions go beyond direct physical damage, leaving their mark on 

the socio-economic structures of the affected regions. They hinder agricultural activities, impede the restoration of 

infrastructure and create obstacles to the return and resettlement of displaced populations. The mission to detect and 

neutralize these hidden hazards combines advanced technology with an unwavering commitment to humanitarian 

principles to leave future generations with a land cleared of the heavy legacy of past wars. 

The effectiveness of machine learning models in detecting landmines is inextricably linked to the diversity, volume 

and reliability of the data they are trained on. The effort to collect a diverse and representative dataset is fraught with 

challenges, given limitations related to accessibility, ethical considerations and security issues. The lack of comprehensive 

data poses significant obstacles to the development and refinement of machine learning algorithms, potentially limiting 

their ability to operate effectively in diverse and unpredictable areas. 

In response to these limitations, data augmentation has become an important method. It is a way to circumvent 

data limitations by supplementing existing datasets with synthesized variations. Augmentation strategies include spatial 

alignment, pixel intensity manipulation, geometric transformations, and compositing, each of which is designed to give 

the dataset a semblance of real-world variability.  

This study explores the various applications of data augmentation in the field of landmine detection. It emphasizes 

the importance of augmentation as a means of overcoming data limitations.  

 

Keywords: Landmine Detection, Data Augmentation, Machine Learning, Dataset Enhancement, Computer 

Vision, Deep Learning Architectures. 

 

1.Introduction 

Landmine detection plays a key role in 

global security and humanitarian efforts, 

ensuring the safety of people in war-torn areas. 

Detecting these often invisible threats is a 

process accompanied by many challenges, one 

of the most important of which is the lack of 

reliable and diverse data suitable for training 

pattern recognition systems. This article 

discusses the importance of landmine 

detection, the challenges associated with 

limited datasets, and explores an innovative 

solution for data augmentation to improve 

detection capabilities. 

Landmine detection is not only a 

technical challenge; it has profound 

humanitarian implications. Undetected 

landmines continue to pose risks that result in 

casualties, hindering socio-economic 

development and impeding post-war recovery 

and the return of people to their homes. For 

example, the de-occupied territories of 

Ukraine are a continuous zone of 

contamination by landmines and other 

explosive hazards [1]. Therefore, effective 

landmine detection systems are becoming 

essential to ensure both human safety and the 

rapid recovery of the affected areas. 
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Modern landmine detection relies 

heavily on algorithmic approaches, such as 

machine learning models, which require 

diverse and comprehensive datasets to perform 

optimally [2], [3]. However, obtaining such 

datasets is challenging. Conflict zones, which 

are often prime locations for data collection, 

pose logistical, ethical, and geopolitical 

obstacles that make data collection limited and 

difficult. This scarcity impedes the 

development of robust algorithms, leading to 

the risk that models will not generalize and will 

not be effective across different territories. 

To address the challenges posed by data 

scarcity, data augmentation emerges as a 

promising approach. This technique amplifies 

both the volume and diversity of datasets 

through artificial means. Employing a range of 

transformations, such as spatial, pixel-based, 

and temporal (spanning day-night shifts), data 

augmentation enriches the quality and scope of 

training data. This not only curtails the 

potential for model overfitting but also equips 

models to adapt to real-world variability, 

enhancing the accuracy of landmine detection. 

In the realm of pattern recognition, 

augmentation serves as a pivotal instrument to 

enhance data utilized in machine learning, 

especially deep learning. Through diverse 

transformations, including rotation, scaling, 

cropping, flipping, and noise addition, it 

bolsters data diversity and quality. These 

modifications are vital for elevating model 

precision and recall rates. This manuscript 

offers an overview of augmentation 

methodologies employed within a broader 

project dedicated to constructing an explosive 

ordnance detection system [4]. 

 

2.Related Work 

Different types of images and tasks 

require specialized augmentation methods. To 

this end, many studies have developed 

frameworks and libraries to provide a wide 

range of image augmentation methodologies. 

Paper [5] made a significant contribution to a 

broad overview of image data augmentation 

methods, assessing their impact on the main 

tasks of computer vision, namely semantic 

segmentation, image classification, and object 

detection. 

The imgaug library [6] contains many 

methods, such as flipping, rotation, noise 

addition, contrast change, and others, which 

are used in the study. Also, in [7], the "Keras 

preprocessing layers" were introduced, a 

module integrated into TensorFlow that 

facilitates image resizing, scaling, rotation, 

flipping, and other augmentation processes. 

This paper also includes a practical guide that 

explains how to use these layers to process 

datasets and train models. 

Among recent developments, the 

"albumentations" library [8] deserves special 

attention. This library offers an efficient and 

flexible tool for image augmentation, 

presenting a variety of methods optimized for 

various computer vision tasks. The flexibility 

and extensibility of "albumentations" position 

it as an essential asset for researchers and 

practitioners in this field. 

 

3.The need to supplement the 

detection of landmines: Overcoming dataset 

limitations and issues of overfitting 

In the complex field of landmine 

detection, collecting comprehensive datasets is 

a huge challenge, which emphasizes the 

indispensable role of data augmentation. The 

foundation of effective landmine detection 

models is a dataset that reflects the diverse 

typologies of landmines scattered across a 

range of terrains, atmospheric conditions and 

types of emplacements. However, the effort to 

assemble such a comprehensive collection 

faces pragmatic obstacles. The search for 

authentic, multifaceted images of landmines 

faces many logistical, ethical and security 

challenges. The lack of diverse images of 

landmines poses a huge obstacle, making it 

difficult to develop models that are universally 

adaptable. 

Against this backdrop, augmentation is a 

reasonable solution. By skillfully applying a 

variety of transformations to existing images, 

augmentation artificially increases the 

diversity in a dataset. This careful process 

produces a dataset that, while based on a 

limited set of authentic samples, resonates with 

the unpredictability and complexity of real-

world landmine encounters. 

Limited datasets invariably raise the 

spectre of overfitting, a phenomenon where 
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models, in their quest for accuracy, become 

constrained by the specifics of the training 

data, decreasing their effectiveness in new 

scenarios. The lack of real landmine imagery 

exacerbates this problem. Without sufficient 

variability, models tend to memorize the 

features of the dataset, which makes them 

poorly adapted to real-world conditions. 

This is where augmentation comes in. By 

generating many synthetic variations based on 

a base set, it effectively expands the variability 

of the model. This augmentation reduces the 

risks associated with overfitting the model, 

contributing to models that, although based on 

limited real-world data, are able to recognize 

the diverse environmental combinations 

associated with landmines. 

 

4.Common augmentation methods: 

Exploring the complexities of data 

augmentation in landmine detection 

 

4.1. Basic augmentation techniques 

Landmine detection benefits greatly 

from data augmentation, which uses a set of 

techniques to enhance and diversify the 

dataset. This section focuses on the main types 

of augmentation techniques relevant to this 

field: spatial transformations, pixel-level 

variations and geometric changes. The impact 

of different techniques on different objects 

may vary. Determining which algorithm to 

apply to an object is learned through 

experience and experimentation. For example, 

grayscale for some types of mines (round 

MON-100 and MON-200) (Fig.1.c) 

significantly reduces the accuracy of the 

models, while for others, such as PFM-1 

(petal) (Fig.1.a), it increases it. This is because 

the former, when grayscaled, becomes simple 

round objects, while for the petal, which has a 

wide range of colors, this, on the contrary, 

helps to improve accuracy. For MON-50 

grayscale is an option - it can be different 

colors (Fig.1.b). 

 

4.1.1. Spatial transformations 

Spatial transformations change the 

overall arrangement of an image without 

changing its content. The most common 

methods include rotation, scaling, cropping, 

and flipping. Rotation provides different 

angles of the same image (Fig. 2). Zooming 

allows you to get a close-up or wide view. 

Cropping focuses on specific parts, and 

flipping creates mirror images, adding variety 

to the dataset. 

 

 

(a)              (b)                    (c) 

 

Fig. 1. Grayscale: PFM-1 (a), MON-50 (b),  

MON-100 (c) 

 

 

Fig. 2. Rotate PFM-1 

 

4.1.2. Variations at the pixel level 

Pixel-level adjustments adjust 

brightness, contrast, saturation, and even 

introduce noise (Fig. 3). These adjustments 

help models train on images that simulate 

different lighting conditions and minor 

imperfections that are common in the real 

world. 

 

 

Fig. 3. Noise 25% PFM-1 (left),  

MON-100 (right) 
4.1.3. Geometric and morphological 

transformations 
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Geometric alterations involve 

manipulating an image to distort its structure, 

such as stretching or curving it. Morphological 

techniques, such as dilation and erosion, shear 

(pic. 4), change the contours and features of an 

image. Both types help models to recognize 

landmines in different terrains and under 

different conditions. 

 

 
 

Fig. 4. Shear PFM-1 (left), MON-100 (right) 

 

Thus, these augmentation techniques 

expand and diversify the training data. By 

simulating different conditions and scenarios, 

they prepare models for real-world challenges 

in landmine detection, increasing accuracy and 

reliability. 

 

4.2. Advanced Augmentation Techniques 

In the study, advanced data 

augmentation holds a pivotal position. These 

techniques are integrated into the YOLOv8 

training process, enhancing the data's variety 

and subsequently the model's performance. 

Let’s introduce definitions of some metrics. 

In machine learning, the term "loss" 

refers to a measure of how well a model's 

predictions match the true values. There are 

many different loss functions, such as Mean 

Absolute Error (MAE), Mean Squared Errors 

(MSE), Sum of Squared Errors, etc. The latter 

is mathematically expressed by the formula: 

 

𝐿𝑆𝑆𝐸(𝑦, �̂�) = ∑(𝑦𝑖 −  𝑦�̂�)
2,

𝑛

𝑖=1

 

 

where y is the true value and  �̂� - is the 

predicted value. A larger loss, or also error, 

indicates a larger discrepancy between the 

predictions and the true values. 

The Box loss is the specific metric that 

measures how close the predicted bounding 

box is to the actual labels on the image in the 

dataset. In YOLO the Mean Square Error loss 

function is used to calculate the Box loss [15]: 

 

𝐿𝑀𝑆𝐸(𝑦, �̂�) =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

, 

 

where y is the true value and  �̂� - is the 

predicted value. 

The Class loss is calculated on the 

Binary cross-entropy loss (or Log-loss) 

function for the confidence values of each 

bounding box between predicted and ground 

truth ones: 

 

 

𝐿𝐵𝐶𝐸(𝑦, �̂�) = −
1

𝑛
∑(𝑦𝑖 log 𝑦�̂� + (1 − 𝑦𝑖) log(1 − 𝑦�̂�))

𝑛

𝑖=1

, 

 

where y is the true value and  �̂� - is the 

predicted value.  

Box loss is usually understood as the 

difference between the predicted coordinates 

of the object's bounding box and the actual 

coordinates of the bounding box. In contrast, 

cls_loss quantifies the difference between the 

predicted class labels and the true class labels.  

With mosaic and mix-up augmentations 

activated during YOLOv8 training, we have 

noted elevated values for `box_loss` and 

`cls_loss`. This is due to the nature of the 

Mosaic method – it combines 16 images from 

a dataset, and Mix-up makes these pictures 

merged from several files [9]. That is why the 

box loss and the class loss in these 

augmentation methods becomes higher with 

increasing precision and, particularly, recall 

(Fig 5-6). However, when these parameters are 

turned off, their values are significantly 

reduced to less than 0.01. It should be noted 

that even with these loss values, the precision 

and recall remain very high – both exceed 

90%. 

Maintaining high precision (1) and recall 

(2) remains crucial so it is acceptable not to pay 

attention to high `box_loss` and `cls_loss` 

metrics. 
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Fig. 5. Box loss for training with Mosaic and Mix-up (top line) and without them (bottom line) 

 

Fig. 6. Class loss for training with Mosaic and Mix-up (top line) and without them (bottom line) 

 

 

Figures 5-6 show the last 10 epochs of 

the learning processes when Mosaic was 

disabled (the default YOLOv8 setting), the 

upper lines on Fig. 5-6 go down because there 

are no combined images in the training process 

(Fig. 8). 

Precision is an indicator of how often the 

model's predictions are correct, and recall 

indicates how many true alarms were 

identified by the model (Fig. 7 and formulas 

(1), (2)). 

Precision =
True Positives

True Positives+False Positives
 (1) 

 

 

Recall =
True Positives

True Positives+False Negatives        
 (2) 

 

 

 

Fig. 7. The Confusion Matrix 

 

Balancing these metrics, as well as 

managing box_loss and cls_loss, is vital to 

achieving optimal performance, especially in 

tasks such as object detection. 
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Here, some advanced strategies that add 

depth and adaptability to the data are explored. 

The current study uses algorithms from the 

YOLO family. So, one of the methods used by 

default is a Mosaic - a set of several images 

grouped into a single image. 

 

4.2.1. MixUp and CutMix 

MixUp and CutMix [9, 10] are the 

techniques that go beyond simple image 

modification. They combine parts of different 

images and their labels. This not only 

diversifies the labels, but also provides models 

with a wider selection of images to learn from. 

This approach helps the models understand 

different types of landmines and reduces the 

likelihood of false positives. In the study, we 

use Mix-Up together with Mosaic (Fig. 8). 

 

 

Fig. 8. The Part of the mosaic of mix-ups 

 

 

4.2.2. GAN-based Augmentation 

Generative adversarial networks 

(GANs) [11] have reshaped the perspective on 

data augmentation. They are adept at 

producing images closely resembling actual 

mines. A GAN is structured with two 

components: a generator, which crafts images, 

and a discriminator that evaluates their 

authenticity. This interplay aids models in 

deepening their understanding of landmine 

appearances. The inclusion of these synthetic 

images in the dataset enriched the training 

examples of the models. This approach is 

earmarked for implementation in upcoming 

study phases. 

 

4.2.3. Sim2Real augmentation 

Sim2Real [12] combines virtual 

simulations with real data. These simulations 

contain a diverse set of scenarios and 

challenges, allowing the models to learn from 

both simulated and real environments. The 

main benefit is the enhanced ability of the 

models to identify landmines under different 

conditions, surpassing the limitations of simple 

camera snapshots. Although we have 

considered this method, it has not yet been 

integrated into research.  

In summary, by applying these advanced 

techniques, it is possible to manage diverse and 

complex data sets for the models. This 

enriched data bolsters the precision and 

adaptability of the models. Such strategies 

redefine the potential in landmine detection, 

enhancing the efficacy and safety of the 

solutions. 

 

5.Experiment and results: Testing the 

preprocessing methods 

In this section, we will discuss the 

different data preprocessing methods we used 

and how they affected the performance of the 

model. 

While the primary focus of the study is 

on data augmentation, it's crucial to touch upon 

the initial steps of preprocessing. Although 

preprocessing doesn't increase the dataset size 

like augmentation, it remains a foundational 

phase in most machine learning processes. One 

such integral process is resizing all images to 

maintain consistency across the dataset. The 

study recognized and used numerous pre-

processing tools to improve data quality. 

Specifically: 

− Auto-Orient was used to standardize 

image orientation, ensuring uniformity in 

model input. 

− Resizing all images provided a 

consistent dimension, ensuring dataset 

consistency. 

− Leveraging the auto-adjust contrast 

ensured clearer, more discernible images, 

facilitating improved pattern detection by the 

models. 

− While it was initially considered 

converting all images to grayscale, later it was 

opted to augment only 30% of the dataset in 

this manner, as it yielded superior outcomes. 
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The repercussions of these preprocessing 

strategies on the model's effectiveness are 

elaborated upon in the provided Table 1. 

 

 

 

Table 1. Results of experiments with preprocessing 

 
Version 

ID 

mAP / Recall 

/Precision 
Preprocessing Augmentations 

6 94.4/82.4/93.6 Auto-Orient, Resize: Stretch to 640x640 No 

17 89.1/83.0/91.3 
Auto-Orient, Resize: Stretch to 640x640,  

Auto-Adjust Contrast 
Grayscale: Apply to 30% of images 

19 91.0/84.2/93.4 
Auto-Orient, Resize: Stretch to 640x640,  

Auto-Adjust Contrast 

Grayscale: Apply to 30% of images., 

Cutout: 3 boxes with 21% size each 

20 88.8/81.4%/91.2 
Auto-Orient, Resize: Stretch to 640x640,  

Auto-Adjust Contrast 
Grayscale: Apply to 40% of images 

21 89.6/81.1/92.1 
Auto-Orient, Resize: Stretch to 640x640,  

Auto-Adjust Contrast 

Grayscale: Apply to 40% of images., 

Cutout: 3 boxes with 21% size each 

26 88.7/84.6/89.0  
Auto-Orient, Resize: Fit (white edges) in 

640x640 

Grayscale: Apply to 30% of images. 

Cutout: 3 boxes with 21% size each 

27 89.5/82.1/91.7 
Auto-Orient, Resize: Fit (black edges) in 

640x640 

Grayscale: Apply to 30% of images. 

Cutout: 3 boxes with 21% size each 

29 91.3/85.9/90.3 Auto-Orient, Resize: Fit within 640x640 
Grayscale: Apply to 30% of images. 

Cutout: 3 boxes with 21% size each 

39 91.2/85.2/91.7 

Auto-Orient, Resize: Fit within 640x640,  

Auto-Adjust Contrast: Using Contrast 

Stretching 

Grayscale: Apply to 30% of images. 

Cutout: 3 boxes with 21% size each 

41 94.2/90.2/96.1 

Auto-Orient, Resize: Fit within 640x640,  

Auto-Adjust Contrast: Using Contrast 

Stretching 

Grayscale: Apply to 30% of images. 

Cutout: 3 boxes with 21% size each 

42 93.7/89.4/95.2 

Auto-Orient, Resize: Fit within 640x640, 

Auto-Adjust Contrast: Using Contrast 

Stretching, Flip: Horizontal, Vertical 

Grayscale: Apply to 30% of images. 

Cutout: 3 boxes with 21% size each 

 

6.Dataset Overview: Utilizing 

YOLOv5 and Roboflow [13] 

We started with a diverse collection of 

landmine photographs. This collection of 

different types of landmines captured under 

different conditions laid the foundation for the 

experiments. Our initial modifications to the 

data were done on the Roboflow platform, 

where the model was also published [16]. 

Several augmentations were applied here, 

including grayscale, cutout, rotation, flip, shift, 

blur, and noise, adapted specifically for the 

YOLOv5 model. The best results were 

obtained with Cutout 21% and Grayscale 

(Table 1, Version Id 41). At this stage, we 

switched to the more modern YOLOv8 model 

and tested different augmentation techniques 

again. After testing different configurations, 

the following techniques were selected, as 

shown in the Table. 2. 

These methods were chosen based on the 

qualitative performance of each method 

applied to the same dataset, and the metrics of 

all experiments are shown in Table 3 (There 

are all experiments listed – for stages 1 and 2). 
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Table 2. The best methods of augmentation  

on the first stage 

 

# Augmentation 

1 Flip: Horizontal, Vertical 

2 90° Rotate: Clockwise, Counter-Clockwise, Upside Down 

3 Grayscale: Apply to 30% of images 

4 Noise: Up to 15% of pixels 

 
 

 

Table 3. The metrics of methods of augmentation on the 1 and 2 stages 

 
Augmentation 

Technique(s) 
Precision Recall mAP50 mAP50-95 Fitness 

No 1 stage and ALL 2nd 

stage(YOLO) aug 
99 89.2 95.3 76.7 78.6 

Grayscal, Rotate, Noise, 

Flip, ALL 2nd stage 

augment 

97.4 92.6 95.7 77.3 79.2 

Grayscal,Rotate, Noise, 

Flip. 

No 2nd st. 

96.6 79 89.1 68.1 70.2 

Grayscale 

No 2nd st. 
96.2 68.9 84.6 66.1 68 

Noise 

No 2nd st. 
93.3 74.9 86.4 64.7 66.9 

Rotate 

No 2nd st. 
90.8 73.3 86.6 65.7 67.8 

Flip 

No 2nd st. 
90.2 76.1 86.9 68.4 70.2 

Bounding Box Rotate 

No 2nd st. 
90.1 70.5 83.6 63.3 65.4 

Mosaic 

No 2nd st. 
91.6 71.8 82 61.3 63.4 

No augmentation 91.6 71.8 82 61.3 63.4 

Blur 

No 2nd st. 
87.6 75.1 83.8 61.6 63.8 

Bounding Box Rotate 

No 2nd st. 
88 75.8 85.3 59.6 62.2 

Cutout 

No 2nd st. 
86 63.2 80.2 61.5 63.3 

The second stage: Switching to YOLOv8 

 

When YOLOv8 was selected for 

training, the best practices from the first phase 

were used and additional augmentations were 

implemented, as shown in tab. 4. Results also 

could be found in the tab. 3. 
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Table 4. The YOLOv8 augmentation parameters 

 
Augmentation  Method YOLO Code Description 

Mosaic mosaic Create a mosaic of four images 

HSV Hue Shift hsv_h Shift hue in HSV color space 

HSV Saturation Shift hsv_s Shift saturation in HSV color space 

HSV Value Shift hsv_v Shift value in HSV color space 

Degrees Rotation degrees Rotate images by specified degrees 

Translate translate Translate images by specified values 

Scale scale Scale images by specified factors 

Shear shear Apply shear transformations 

Flip Vertical flipud Flip images vertically 

Flip Horizontal fliplr Flip images horizontally 

Mixup mixup Apply mixup to combine images 

At this point, it worth to mention the 

mixing and mosaic techniques. It is worth 

noting that mosaic gave the best results among 

all the methods that were tested. The Table 3 

shows that Blur and Bounding Box Rotate, 

although they give lower precision, increase 

the recall, the best methods applied together 

(Grayscale, Rotate, Noise, Flip) give the 

maximum result, and when paired with the 

above-mentioned techniques from stage 2 

(Tab. 4), the best result was achieved with an 

precision of 97.4 and a recall of 92.6. Although 

the experiment with only stage 2 augmentation 

is on the first place in the table, the recall is 

much lower, so the following methods were 

considered: Grayscale, Rotate, Noise, Flip, All 

2-nd stage augmentations set to be the best 

model.  

The following notations are worth 

noting: 

− Average Precision (AP) is a metric that 

calculates the precision of an object detection 

algorithm for a specific class. It is calculated as 

the mean of the precision at various recall 

levels, generally visualized using a precision-

recall curve. The formula is represented as the 

area under the precision-recall curve, typically 

computed as: 

𝐴𝑃 =  ∫ 𝑝(𝑟)𝑑𝑟
1

0

 

where p and r are precision and recall, which 

are calculated using formulas (1) and (2). 

− Mean Average Precision is calculated 

as follows: 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑛

𝑘=1

 

where 𝐴𝑃𝑘 is Average precision of a class k. 

− mAP50: Mean Average Precision at 

50% IoU (Intersection over Union). IoU 

measures the overlap between two bounding 

boxes. mAP50 is the mean of the average 

precision scores at IoU of 50%. 

− mAP50-95: This is the mean average 

precision calculated at different IoU thresholds 

from 50% to 95%. It's a more rigorous metric 

than mAP50 as it averages mAP over a range 

of IoU values. 

− Fitness: a value that YOLO defaults to a 

weighted combination of metrics: mAP@0.5 

with 10% weight, and mAP@0.5:0.95 with 

90%. In the Table 3  it can be observed that the 

Fitness metric is the highest for 2 row that we 

chose as the best. 
 

Model training and results 

Using the YOLOv5 model and later the 

YOLOv8 model for recognition, the models 

were trained on augmented data from both 

stages. The combination of different 

augmentations ensured that the models were 

exposed to a wide range of variations, which 

contributed to better generalization. As a 

result, it can be observed a big jump compared 

to the data without augmentation and with 

augmentation. 
  

6.1. Progressing to YOLOv8 

Transitioning to YOLOv8 for further 

training, we blended the top methods from the 

previous phase and introduced new 
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augmentation processes. In this phase, a strong 

reliance was placed on the mixing and mosaic 

techniques, with the latter demonstrating the 

most promising results in the evaluations 

conducted. 

For example, in Fig. 9 it can be observed 

that the lines are arranged in ascending order 

for the Precision of Cutout, Greyscale, and 

methods delineated in Table 2, as well as the 

combined methods from Tables 2 and 4 (the 

top line). 

The better difference for recall (same 

line order as in Fig. 9) in Fig. 10 is the main 

reason why we chose the 2nd set of 

augmentations from Table 3. Since the recall 

metric given in (2) plays a crucial role for 

landmine detection, the precision can be lower 

if the recall increases significantly. Simply put, 

it is acceptable that not all detected landmines 

are landmines (lower precision), but it is very 

important not to have objects that are 

landmines but were not detected as landmines 

at all. 
 

6.2. Training Process and Findings 

Our training kicked off with the 

YOLOv5 model, moving later to YOLOv8. 

We harnessed data enriched with variations 

from both the initial and advanced phases. This 

diverse exposure allowed the models to 

experience a vast array of data changes, 

resulting in more adaptable models. The stark 

improvement was evident when comparing the 

graphs from Figures 9-12. 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Precision of Cutout, Greyscale, Methods from Table 2 and Methods from the Tables 2 and 4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Recall graph Also the same order of lines for mAP@50 and mAP@50-95 given in Fig. 11-12 
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Fig. 11. mAP@50 graph 

 

 

 
 

Fig. 12. mAP@50-95 graph 

 

 

The experiments with different types of 

augmentation emphasized the importance of 

data diversity when training robust models. 

Mosaic, blending, and other methods from 

Phase 2 (Table 4) proved that augmentation 

can significantly improve important metrics 

such as recall. Our findings pave the way for 

further research into advanced augmentation 

techniques to improve landmine detection. 

 

7. Challenges and insights in landmine 

detection through data augmentation 

There are both benefits and challenges to 

using data augmentation for landmine 

detection. Appropriate application of these 

techniques is essential to ensure the accuracy 

of the model and its application in the field.  
 

7.1. Unnatural scenarios 

Data augmentation can inadvertently 

lead to the creation of images that do not reflect 

real-world mine risk scenarios. For example, 

converting images to grayscale may improve 

certain characteristics, but it may also prevent 

the model from distinguishing between 

different types of landmines. It is important to 

use augmentation methods that are appropriate 

for the real world. 

 

7.2. Achieving balance with 

augmentation 

While augmentation techniques can 

enrich a dataset and improve model 

performance, over-reliance on them can 

intuitively harm model performance. 

Excessive or inappropriate augmentation can 
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cause the model to prioritize irrelevant 

features. Regular performance evaluation is 

crucial for monitoring and adjusting 

augmentation strategies. 

 

7.3. Ensure consistency of the dataset 

across classes 

Some augmentation methods may 

disproportionately affect different classes in 

the dataset. This can lead to an unbalanced 

dataset where some classes are 

overrepresented (overfitted). It is very 

important to use augmentation methods that 

maintain a consistent representation of all 

classes. 
 

8.Conclusions and next steps: The role 

of augmentation in landmine detection 

Given the limited amount of data and the 

dangers of experimenting with explosive 

objects, augmentation provides important 

information to improve the quality of effective 

landmine detection models and expand the 

capabilities. 

Our research efforts clearly emphasize 

the effectiveness of data augmentation in 

enhancing the capabilities of the landmine 

detection model. Incorporating techniques 

such as Mix-up, Grayscale, among others, has 

enriched the datasets, encapsulating an 

expansive gamut of landmine detection 

scenarios. This enrichment has subsequently 

rendered the models more adaptable for 

diverse deployments. 

Harnessing the YOLOv5 [14] and 

YOLOv8 [15] frameworks has proffered 

profound insights, particularly elucidating the 

interplay between augmentation and detection 

precision. However, the use of augmentation 

for detecting landmines requires further 

development. We strive for innovative 

augmentation methodologies, potentially 

using state-of-the-art models, GANs, and real-

time data emulation. Nonetheless, armed with 

our current understanding, we are poised for 

further model optimization. In parallel, a 

mobile application project is being developed 

to expand the data set and classes of landmines 

to be recognized. 

A paramount forthcoming endeavor 

involves subjecting the models to rigorous 

testing in genuine conditions. The goal is to 

ascertain their competency across varied 

topographies and ambient conditions, 

transitioning from the confines of labs to on-

ground implementations. 

It is also planned to conduct a series of 

experiments to improve the model's response, 

as this indicator is of great importance in the 

case of searching for explosive objects. 

In conclusion, notwithstanding the 

substantial journey ahead, the steadfast 

commitment is evident: progressing towards 

outcomes that promise enhanced safety and 

preservation of human lives on a global scale. 

Saving lives is the cornerstone of the project, 

which gives us the strength to move forward 

with the implementation of the system for the 

future safe environment and happy life of 

future generations. 
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