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USING RETRIEVAL-AUGMENTED GENERATION TO ELEVATE LOW-

CODE DEVELOPER SKILLS 

 
Abstract. This article proposes applying retrieval-augmented generation (RAG) to improve the skills of low-code 

developers by augmenting large language models with up-to-date domain-specific knowledge. As low-code development 

requires combining multiple systems into a final product, developers must consult several sources of documentation and 

various articles, videos, and forum threads. Such a process may be time-consuming, prompting the use of an LLM for the 

authoritative answer. However, LLMs often lack knowledge of low-code platforms, leading to hallucinations and 

superficial responses. RAG utilizes the benefits of LLMs on relevant information, suggesting a presumption that it may 

be effectively applied in low-code development. Heterogeneous data sources concerning low-code systems are converted 

to a text representation, split into logical chunks, and stored in a vector database. During the exploitation of the model, 

cosine similarity is used to retrieve top-K documents and concatenate them with user query, using the produced text as a 

prompt to an LLM. The results support the hypothesis that RAG models outperform standard LLMs in knowledge 

retrieval in this domain. 
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Introduction 

Low-code development refers to 

building software using specialized tools and 

solutions that streamline the development 

process. Such ease is facilitated by pre-built 

components that combine everyday 

programming tasks into distinct entities. These 

entities can then be extensively tested to ensure 

the high quality of developed software across 

all companies that utilize the low-code 

paradigm. 

However, the providers of low-code 

tools often leave the customers with little 

guidance on using those tools. Admittedly, 

most low-code platforms host up-to-date 

documentation that covers the potential 

questions and describes the provided tools in 

great detail. Nevertheless, adopters of low-

code solutions frequently encounter stagnation 

while solving their problems due to the 

inevitability of previously uncovered questions 

arising. There is also a possibility that the 

provided knowledge platform is hard to 

navigate or query for the required information. 

Finally, developers that utilize low-code 

platforms often try to integrate multiple 

solutions and thus must consult numerous 

sources simultaneously. 

Perhaps the first resort the developers 

turn to when confronted with a problem is a 

search engine like Google. Unfortunately, even 

though search engines try to provide the most 

relevant information, they can overwhelm the 

user with the number of links and potential 

solutions. Additionally, many developing low-

code platforms lack extensive forum threads, 

articles, and discussions concerning every 

possible issue that can arise while creating a 

product. 

The next possible solution for a problem 

is a large language model (LLM) like ChatGPT 

that uses transformer [1] architecture. It 

utilizes the knowledge from the data it has 

been trained on to give a single answer to a 

prompt; thus, there is no longer the 

oversaturation of proposed solutions. 

Nevertheless, such models also have their 

limitations. First, they are trained on the data 

only up to a certain point in time, which causes 

the models to ignore current events. Moreover, 

they frequently “hallucinate” — make up the 

response without backing evidence. Finally, 

they provide no sources for their claims even 
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in the event of a correct answer, leaving the 

user in doubt of the legitimacy of the LLM’s 

statements. 

A potential solution can be found by 

combining the advantages of natural language 

processing from LLMs, vast domain 

knowledge of structured resources like product 

documentation, and practical search 

algorithms. One such approach is retrieval-

augmented generation (RAG) [2], which aims 

to augment the processing done by a language 

model with external knowledge from a 

document database. 

 

Related Work 

The concept of RAG [2] has been 

introduced in the context of open-domain 

question answering, abstractive question 

answering, Jeopardy question generation, and 

fact verification. It has been shown that a 

unified architecture can achieve state-of-the-

art performance across many tasks. 

RAG has been applied in the software 

development process to gain a deeper 

understanding of the produced code [3]. Such 

insights were achieved by combining the 

benefits of Graph Neural Networks (GNNs) 

with a novel retrieval-augmented mechanism. 

The applications of RAG in coding were 

extended to code generation via REDCODER 

[4] – a retrieval-augmented framework that 

uses state-of-the-art dense retrieval to provide 

context to a generative model. 

The efficiency of the RAG pipeline has 

been considerably improved using 

Hierarchical Selection and Dense Knowledge 

Retrieval [5], reducing the computation time 

by a factor of 100 in a task-oriented dialog 

system. 

Several methods have been proposed to 

adapt RAG to heterogeneous knowledge [6]. 

One such approach is homogenizing 

knowledge from different domains to unified 

unstructured text. We can also utilize graph 

databases to facilitate multi-hop reasoning 

over heterogeneous structured sources. 

Another promising modification is a 

forward-looking active retrieval-augmented 

generation (FLARE) [7], which retrieves the 

documents based not only on the user’s input 

but also on the model’s prediction of the 

following statement and regenerates the 

sentence in the event of low-confidence 

tokens. 

It has also been demonstrated that it is 

not necessary to modify the model architecture 

to incorporate external knowledge for the RAG 

process [8]. A simple concatenation of the 

retrieved documents to the input (in-context 

model) produces satisfactory results in 

language modeling and open-domain question 

answering. 

The following metrics have been 

suggested to evaluate the performance of 

different LLMs in RAG: noise robustness, 

negative rejection, information integration, 

and counterfactual robustness [9]. It was 

shown that the introduction of RAG has posed 

several challenges, even for state-of-the-art 

LLMs. 

The advantages of using an external 

knowledge source in RAG models and storing 

knowledge in parametric models were 

combined into a key-value memory [10] to 

improve the accuracy and execution time of 

question answering. 

The widespread interest in RAG has led 

to dedicated discussions on recent 

developments in this area [11]. They attract an 

audience interested in natural language 

generation and information retrieval, covering 

the topics of dialogue response generation, 

machine translation, text style transfer, etc. 

RAG has been utilized in multimodal 

models, resulting in a Multimodal Retrieval-

Augmented Transformer (MuRAG), which 

employs external non-parametric memory to 

improve language generation [12]. MuRAG 

has achieved state-of-the-art accuracy on 

WebQA and Multimodal QA. 

Other sources consider using RAG in 

multimodal models as a way to integrate 

knowledge in a more scalable and modular 

way [13]. It has been shown that the resulting 

model outperforms DALL-E and CM3 on 

image and caption generation tasks while 

requiring much less compute resources for 

training. 

Particular attention has been given to 

constructing a valuable representation of the 

documents in the database. One such structure 

is a knowledge graph, which can be built using 

the accomplishments in a related task – slot 

filling [14]. An approach called KGI has been 
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shown to improve dense passage retrieval in 

the KILT benchmark. 

 

Suggested Method 

Let us examine the RAG model in 

greater detail. The process of RAG [2] is split 

into multiple steps. First, a query is received, 

and the model retrieves the best matches from 

the database using dense passage retrieval 

(DPR) [15]. Next, each match is used as 

context to an LLM [16], which produces a 

distribution for every output token. Finally, the 

distributions are marginalized based on the 

contribution of each document. This process is 

illustrated in Fig. 1. 

RAG can provide low-code developers 

with relevant, up-to-date, evidence-driven 

responses. Consider the following example 

that demonstrates the advantages of RAG. 

A developer might need to combine two 

low-code platforms, Caspio (a database 

solution) and Power Automate (an automation 

solution). A potential question may be: “How 

do you get Caspio tables in Power Automate?” 

Such an experiment at the time of writing 

using gpt-3.5-turbo produces a response with 

numerous flaws. 

 

Fig. 1. Illustration of RAG algorithm 

 

For instance, the model provides an 

outdated Caspio API endpoint (“The base URL 

usually follows the format: 

`https://caspio.com/rest/v1/tables/{table_nam

e}`”), does not elaborate on specific steps to 

get a Caspio API key (“You may need to 

include an API key or credentials in the 

headers to authenticate.”), and fails to mention 

detailed actions to create a corresponding flow 

in Power Automate (“Open the Power 

Automate platform and create a new flow”). 

To eliminate the shortcomings of the 

standard model, the author proposes to 

construct a RAG model in the following way. 

First, a retrieval structure is chosen. 

Word embeddings [17] provide the advantage 

of quick queries to find phrases with similar 

meanings, so that is the approach taken in this 

article. OpenAI Embeddings API 

provides text-embedding-ada-002 for creating 

the embeddings, while Pinecone API stores 

them in a database with subsequent querying. 

Second, a generation model is 

established. OpenAI Chat Completion API 

gives access to state-of-the-art gpt-3.5-turbo, 

justifying its selection for this task. 

Third, official Caspio and Power 

Automate documentation data is downloaded 

and split into chunks, each representing a 

logical piece of information. An embedding 

algorithm processes the data segments, and the 

resulting embeddings are inserted into a vector 

database. One segment is depicted in Fig. 2. 

Score represents the cosine similarity between 

the queried and the stored vector on a scale 

from -1 if vectors are pointing in opposite 

directions to 1 when vectors are pointing in the 

same direction. The vector is in an n-

dimensional space and is represented by 
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values. Text is a key in the metadata 

dictionary. 

 

 
Fig. 2. An example of a typical vector stored in Pinecone 

 

When a query is received, its embedding is computed, and the cosine similarity [17] between 

the user’s question vector and each database vector is calculated using the following formula: 

 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos 𝜃 =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 ∙ √∑ 𝐵𝑖
2𝑛

𝑖=1

 

 

 An example of two such vectors is presented in Fig. 3. 

 

 

Fig. 3. An illustration of two vectors, denoted as 𝐴 and 𝐵, with an angle 𝜃 included between them 

 

The top five scoring vectors are returned 

as containing the most relevant text. These 

vectors form the context for the subsequent 

input to an LLM in the form of “Use all the 

information: {context} and answer this user’s 

query in detail: {query}.” The LLM generates 

the corresponding response. 

 

Results 

The resulting output of the model is up-

to-date, relevant, and detailed, providing 

sufficient information to answer the user’s 

query. In the example considered, RAG model: 

• elaborates on the necessary actions to get 

a Caspio API token (“Here are the steps: … 

This token is generated using the Client 

ID/Secret pair that can be found on your 

Caspio REST API profile page…  

Body:grant_type=client_credentials&client_i

d=<Your_Client_ID>&client_secret=<Your_

Client_Secret>…”); 

• provides the correct endpoint 

(“/v2/tables/{tableName}”); 

• gives advice on handling the response in 

Power Automate (“Parse the response: The 

response will be in JSON format…”). 

 

Conclusion 

In summary, using RAG has 

demonstrated considerable improvement in 
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output compared to a standard LLM. Such a 

solution will allow low-code developers to 

solve the arising issues during product 

development and free their time for further 

iteration. Although this work was conducted 

with low-code developers in mind, the results 

can apply to people without a technical 

background or professionals who use 

proprietary knowledge systems and require 

effortless search and summarization 

capabilities. The model may be enhanced by 

using a different way of storing and retrieving 

information, perhaps in a graph database [18], 

on which further research efforts will be 

focused. 
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