
ISSN 2710 – 1673 Artificial Intelligence 2023 № 3

126

UDC: 004.89 https://doi.org/10.15407/jai2023.03.126

O. Nakhod
National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
Peremohy ave., 37, Kyiv, 03056
alexey.nakhod@gmail.com
https://orcid.org/0009-0000-4350-6376

USING RETRIEVAL-AUGMENTED GENERATION TO ELEVATE LOW-

CODE DEVELOPER SKILLS

Abstract. This article proposes applying retrieval-augmented generation (RAG) to improve the skills of low-code

developers by augmenting large language models with up-to-date domain-specific knowledge. As low-code development

requires combining multiple systems into a final product, developers must consult several sources of documentation and

various articles, videos, and forum threads. Such a process may be time-consuming, prompting the use of an LLM for the

authoritative answer. However, LLMs often lack knowledge of low-code platforms, leading to hallucinations and

superficial responses. RAG utilizes the benefits of LLMs on relevant information, suggesting a presumption that it may

be effectively applied in low-code development. Heterogeneous data sources concerning low-code systems are converted

to a text representation, split into logical chunks, and stored in a vector database. During the exploitation of the model,

cosine similarity is used to retrieve top-K documents and concatenate them with user query, using the produced text as a

prompt to an LLM. The results support the hypothesis that RAG models outperform standard LLMs in knowledge

retrieval in this domain.

Keywords: retrieval-augmented generation, low-code development, large language model, vector database,

knowledge retrieval

Introduction

Low-code development refers to

building software using specialized tools and

solutions that streamline the development

process. Such ease is facilitated by pre-built

components that combine everyday

programming tasks into distinct entities. These

entities can then be extensively tested to ensure

the high quality of developed software across

all companies that utilize the low-code

paradigm.

However, the providers of low-code

tools often leave the customers with little

guidance on using those tools. Admittedly,

most low-code platforms host up-to-date

documentation that covers the potential

questions and describes the provided tools in

great detail. Nevertheless, adopters of low-

code solutions frequently encounter stagnation

while solving their problems due to the

inevitability of previously uncovered questions

arising. There is also a possibility that the

provided knowledge platform is hard to

navigate or query for the required information.

Finally, developers that utilize low-code

platforms often try to integrate multiple

solutions and thus must consult numerous

sources simultaneously.

Perhaps the first resort the developers

turn to when confronted with a problem is a

search engine like Google. Unfortunately, even

though search engines try to provide the most

relevant information, they can overwhelm the

user with the number of links and potential

solutions. Additionally, many developing low-

code platforms lack extensive forum threads,

articles, and discussions concerning every

possible issue that can arise while creating a

product.

The next possible solution for a problem

is a large language model (LLM) like ChatGPT

that uses transformer [1] architecture. It

utilizes the knowledge from the data it has

been trained on to give a single answer to a

prompt; thus, there is no longer the

oversaturation of proposed solutions.

Nevertheless, such models also have their

limitations. First, they are trained on the data

only up to a certain point in time, which causes

the models to ignore current events. Moreover,

they frequently “hallucinate” — make up the

response without backing evidence. Finally,

they provide no sources for their claims even

ISSN 2710 – 1673 Artificial Intelligence 2023 № 3

127

in the event of a correct answer, leaving the

user in doubt of the legitimacy of the LLM’s

statements.

A potential solution can be found by

combining the advantages of natural language

processing from LLMs, vast domain

knowledge of structured resources like product

documentation, and practical search

algorithms. One such approach is retrieval-

augmented generation (RAG) [2], which aims

to augment the processing done by a language

model with external knowledge from a

document database.

Related Work

The concept of RAG [2] has been

introduced in the context of open-domain

question answering, abstractive question

answering, Jeopardy question generation, and

fact verification. It has been shown that a

unified architecture can achieve state-of-the-

art performance across many tasks.

RAG has been applied in the software

development process to gain a deeper

understanding of the produced code [3]. Such

insights were achieved by combining the

benefits of Graph Neural Networks (GNNs)

with a novel retrieval-augmented mechanism.

The applications of RAG in coding were

extended to code generation via REDCODER

[4] – a retrieval-augmented framework that

uses state-of-the-art dense retrieval to provide

context to a generative model.

The efficiency of the RAG pipeline has

been considerably improved using

Hierarchical Selection and Dense Knowledge

Retrieval [5], reducing the computation time

by a factor of 100 in a task-oriented dialog

system.

Several methods have been proposed to

adapt RAG to heterogeneous knowledge [6].

One such approach is homogenizing

knowledge from different domains to unified

unstructured text. We can also utilize graph

databases to facilitate multi-hop reasoning

over heterogeneous structured sources.

Another promising modification is a

forward-looking active retrieval-augmented

generation (FLARE) [7], which retrieves the

documents based not only on the user’s input

but also on the model’s prediction of the

following statement and regenerates the

sentence in the event of low-confidence

tokens.

It has also been demonstrated that it is

not necessary to modify the model architecture

to incorporate external knowledge for the RAG

process [8]. A simple concatenation of the

retrieved documents to the input (in-context

model) produces satisfactory results in

language modeling and open-domain question

answering.

The following metrics have been

suggested to evaluate the performance of

different LLMs in RAG: noise robustness,

negative rejection, information integration,

and counterfactual robustness [9]. It was

shown that the introduction of RAG has posed

several challenges, even for state-of-the-art

LLMs.

The advantages of using an external

knowledge source in RAG models and storing

knowledge in parametric models were

combined into a key-value memory [10] to

improve the accuracy and execution time of

question answering.

The widespread interest in RAG has led

to dedicated discussions on recent

developments in this area [11]. They attract an

audience interested in natural language

generation and information retrieval, covering

the topics of dialogue response generation,

machine translation, text style transfer, etc.

RAG has been utilized in multimodal

models, resulting in a Multimodal Retrieval-

Augmented Transformer (MuRAG), which

employs external non-parametric memory to

improve language generation [12]. MuRAG

has achieved state-of-the-art accuracy on

WebQA and Multimodal QA.

Other sources consider using RAG in

multimodal models as a way to integrate

knowledge in a more scalable and modular

way [13]. It has been shown that the resulting

model outperforms DALL-E and CM3 on

image and caption generation tasks while

requiring much less compute resources for

training.

Particular attention has been given to

constructing a valuable representation of the

documents in the database. One such structure

is a knowledge graph, which can be built using

the accomplishments in a related task – slot

filling [14]. An approach called KGI has been

ISSN 2710 – 1673 Artificial Intelligence 2023 № 3

128

shown to improve dense passage retrieval in

the KILT benchmark.

Suggested Method

Let us examine the RAG model in

greater detail. The process of RAG [2] is split

into multiple steps. First, a query is received,

and the model retrieves the best matches from

the database using dense passage retrieval

(DPR) [15]. Next, each match is used as

context to an LLM [16], which produces a

distribution for every output token. Finally, the

distributions are marginalized based on the

contribution of each document. This process is

illustrated in Fig. 1.

RAG can provide low-code developers

with relevant, up-to-date, evidence-driven

responses. Consider the following example

that demonstrates the advantages of RAG.

A developer might need to combine two

low-code platforms, Caspio (a database

solution) and Power Automate (an automation

solution). A potential question may be: “How

do you get Caspio tables in Power Automate?”

Such an experiment at the time of writing

using gpt-3.5-turbo produces a response with

numerous flaws.

Fig. 1. Illustration of RAG algorithm

For instance, the model provides an

outdated Caspio API endpoint (“The base URL

usually follows the format:

`https://caspio.com/rest/v1/tables/{table_nam

e}`”), does not elaborate on specific steps to

get a Caspio API key (“You may need to

include an API key or credentials in the

headers to authenticate.”), and fails to mention

detailed actions to create a corresponding flow

in Power Automate (“Open the Power

Automate platform and create a new flow”).

To eliminate the shortcomings of the

standard model, the author proposes to

construct a RAG model in the following way.

First, a retrieval structure is chosen.

Word embeddings [17] provide the advantage

of quick queries to find phrases with similar

meanings, so that is the approach taken in this

article. OpenAI Embeddings API

provides text-embedding-ada-002 for creating

the embeddings, while Pinecone API stores

them in a database with subsequent querying.

Second, a generation model is

established. OpenAI Chat Completion API

gives access to state-of-the-art gpt-3.5-turbo,

justifying its selection for this task.

Third, official Caspio and Power

Automate documentation data is downloaded

and split into chunks, each representing a

logical piece of information. An embedding

algorithm processes the data segments, and the

resulting embeddings are inserted into a vector

database. One segment is depicted in Fig. 2.

Score represents the cosine similarity between

the queried and the stored vector on a scale

from -1 if vectors are pointing in opposite

directions to 1 when vectors are pointing in the

same direction. The vector is in an n-

dimensional space and is represented by

ISSN 2710 – 1673 Artificial Intelligence 2023 № 3

129

values. Text is a key in the metadata

dictionary.

Fig. 2. An example of a typical vector stored in Pinecone

When a query is received, its embedding is computed, and the cosine similarity [17] between

the user’s question vector and each database vector is calculated using the following formula:

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos 𝜃 =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 ∙ √∑ 𝐵𝑖
2𝑛

𝑖=1

 An example of two such vectors is presented in Fig. 3.

Fig. 3. An illustration of two vectors, denoted as 𝐴 and 𝐵, with an angle 𝜃 included between them

The top five scoring vectors are returned

as containing the most relevant text. These

vectors form the context for the subsequent

input to an LLM in the form of “Use all the

information: {context} and answer this user’s

query in detail: {query}.” The LLM generates

the corresponding response.

Results

The resulting output of the model is up-

to-date, relevant, and detailed, providing

sufficient information to answer the user’s

query. In the example considered, RAG model:

• elaborates on the necessary actions to get

a Caspio API token (“Here are the steps: …

This token is generated using the Client

ID/Secret pair that can be found on your

Caspio REST API profile page…

Body:grant_type=client_credentials&client_i

d=<Your_Client_ID>&client_secret=<Your_

Client_Secret>…”);

• provides the correct endpoint

(“/v2/tables/{tableName}”);

• gives advice on handling the response in

Power Automate (“Parse the response: The

response will be in JSON format…”).

Conclusion

In summary, using RAG has

demonstrated considerable improvement in

ISSN 2710 – 1673 Artificial Intelligence 2023 № 3

130

output compared to a standard LLM. Such a

solution will allow low-code developers to

solve the arising issues during product

development and free their time for further

iteration. Although this work was conducted

with low-code developers in mind, the results

can apply to people without a technical

background or professionals who use

proprietary knowledge systems and require

effortless search and summarization

capabilities. The model may be enhanced by

using a different way of storing and retrieving

information, perhaps in a graph database [18],

on which further research efforts will be

focused.

References

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,

J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).

Attention is all you need. Advances in neural

information processing systems, 30.

2. Lewis, P., Perez, E., Piktus, A., Petroni, F.,

Karpukhin, V., Goyal, N., ... & Kiela, D. (2020).

Retrieval-augmented generation for knowledge-

intensive nlp tasks. Advances in Neural Information

Processing Systems, 33, 9459-9474.

3. Liu, S., Chen, Y., Xie, X., Siow, J., & Liu, Y.

(2020). Retrieval-augmented generation for code

summarization via hybrid gnn. arXiv preprint

arXiv:2006.05405.

4. Parvez, M. R., Ahmad, W. U., Chakraborty, S.,

Ray, B., & Chang, K. W. (2021). Retrieval augmented

code generation and summarization. arXiv preprint

arXiv:2108.11601.

5. Thulke, D., Daheim, N., Dugast, C., & Ney, H.

(2021). Efficient retrieval augmented generation from

unstructured knowledge for task-oriented dialog. arXiv

preprint arXiv:2102.04643.

6. Yu, W. (2022, July). Retrieval-augmented

generation across heterogeneous knowledge.

In Proceedings of the 2022 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies: Student

Research Workshop (pp.52-58).

7. Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q.,

Dwivedi-Yu, J., ... & Neubig, G. (2023). Active retrieval

augmented generation. arXiv preprint

arXiv:2305.06983.

8. Ram, O., Levine, Y., Dalmedigos, I., Muhlgay,

D., Shashua, A., Leyton-Brown, K., & Shoham, Y.

(2023). In-context retrieval-augmented language

models. arXiv preprint arXiv:2302.00083.

9. Chen, J., Lin, H., Han, X., & Sun, L. (2023).

Benchmarking Large Language Models in Retrieval-

Augmented Generation. arXiv preprint

arXiv:2309.01431.

10. Wu, Y., Zhao, Y., Hu, B., Minervini, P.,

Stenetorp, P., & Riedel, S. (2022). An efficient memory-

augmented transformer for knowledge-intensive nlp

tasks. arXiv preprint arXiv:2210.16773.

11. Cai, D., Wang, Y., Liu, L., & Shi, S. (2022, July).

Recent advances in retrieval-augmented text generation.

In Proceedings of the 45th International ACM SIGIR

Conference on Research and Development in

Information Retrieval (pp. 3417-3419).

12. Chen, W., Hu, H., Chen, X., Verga, P., & Cohen,

W. W. (2022). Murag: Multimodal retrieval-augmented

generator for open question answering over images and

text. arXiv preprint arXiv:2210.02928.

13. Yasunaga, M., Aghajanyan, A., Shi, W., James,

R., Leskovec, J., Liang, P., ... & Yih, W. T. (2023).

Retrieval-augmented multimodal language modeling.

14. Glass, M., Rossiello, G., Chowdhury, M. F. M.,

& Gliozzo, A. (2021). Robust retrieval augmented

generation for zero-shot slot filling. arXiv preprint

arXiv:2108.13934.

15. Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu,

L., Edunov, S., ... & Yih, W. T. (2020). Dense passage

retrieval for open-domain question answering. arXiv

preprint arXiv:2004.04906.

16. Brown, T., Mann, B., Ryder, N., Subbiah, M.,

Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020).

Language models are few-shot learners. Advances in

neural information processing systems, 33, 1877-1901.

17. Mikolov, T., Chen, K., Corrado, G., & Dean, J.

(2013). Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781.

18. Hogan, A., Blomqvist, E., Cochez, M., d’Amato,

C., Melo, G. D., Gutierrez, C., ... & Zimmermann, A.

(2021). Knowledge graphs. ACM Computing Surveys

(Csur), 54(4), 1-37.

The article has been sent to the editors 12.10.23.

After processing 22.10.23.

Submitted for printing 30.11.23.

Copyright under license CCBY-SA4.0.

