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METHODS OF VIDEO QUALITY-IMPROVING  
 

 

Abstract. Video content has become integral to our daily lives, but poor video quality can significantly reduce 

viewers' experience and engagement. Various super-resolution methods are used to correct this, thereby reconstructing 

high-resolution videos from low-resolution ones. Two main categories of super-resolution methods exist traditional image 

processing and deep learning-based techniques. Deep learning-based techniques, such as Convolutional Neural Networks 

(CNNs), Generative Adversarial Networks (GANs), and Recurrent Neural Networks (RNNs), have shown great promise 

in enhancing video quality. The article discusses multiple adaptations of contemporary deep learning models to enhance 

video resolution. It also briefly explains the framework's design and implementation aspects. Lastly, the paper presents 

an overview and comparative analysis of the VSR techniques' efficiency on various benchmark datasets. At the same 

time, the paper describes potential challenges when choosing training sets; performance metrics, which can be used to 

compare different algorithms quantitatively. 

This work does not describe absolutely all existing VSR methods, but it is expected to contribute to the 

development of recent research in this field and potentially deepen our understanding of deep learning-based VSR 

methods, as well as stimulate further research in this area. In this work, new solutions for improving the performance of 

the methods are proposed, in particular, new quality metrics and datasets for model training. Overall, AI-based methods 

for VSR are becoming increasingly crucial with the rising demand for high-quality video content. 

 

Keywords: Video quality, super-resolution, deep learning, single-image super-resolution, multi-image super-

resolution. 

 

Introduction 

Video super-resolution technology is a 

crucial aspect of enhancing and repairing 

videos. Before the emergence of deep learning, 

traditional image processing methods such as 

up-conversion were used to attain video 

resolution. In the 1960s, Harris and Goodman 

7 developed a technique for restoring image 

information beyond the limit frequency of the 

optical system modulation transfer function 

(MTF) [2-4] through spectral extrapolation, 

which served as the foundation for image and 

video super-resolution algorithms. 

Today, commonly used restoration 

methods include bilinear interpolation, local 

adaptive amplification interpolation, and cubic 

spline interpolation. To use image processing 

techniques for video, the video must first be 

parsed into individual frames, then processed 

with an image super-resolution [2] algorithm. 

However, this basic image interpolation 

technique neglects the timing dimension of the 

video, and fails to account for the correlation 

between frames before and after the video or 

the blurring resulting [3] from video transitions 

and rapid movement. While this method is 

quick, the reconstructed high-resolution video 

may exhibit incoherent, fuzzy, or degraded 

effects, leading to an unsatisfactory subjective 

outcome. 

 

Problem statement 

Video content has become a crucial part 

of our daily lives, from entertainment to 

education and advertising communication. 

However, poor video quality can significantly 

reduce the viewers' experience and 

engagement with the content. Video quality 

refers to the image and sound quality of the 

video, including the resolution, frame rate, bit 

rate, color depth, contrast, and brightness. 

Low-quality videos with low resolution and 

frame rate can cause blurred images, choppy 

motion, and pixelation, making it difficult to 

see the details and follow the action. The sound 

quality also plays an essential role in the 

overall video quality, as poor sound can disrupt 

the viewers' immersion and comprehension. 

One of the most common problems with 

digital videos is poor quality and low 
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resolution. This can result in blurry images, 

distorted colors, and pixelated videos. Many 

factors contribute to this problem includes 

inadequate lighting, low-quality camera 

sensors, and compression techniques used 

during storage and transmission. 

Another issue is the loss of detail in dark 

or bright areas, commonly known as shadow or 

highlight clipping. This occurs when the 

camera's dynamic range, or the range of 

brightness levels that can be captured in a 

single image is insufficient to capture both the 

brightest and darkest areas of the scene. This 

leads to a loss of detail in these areas, resulting 

in an unnatural or unappealing look. 

Finally, motion blur can also be a 

significant problem in digital videos. This 

occurs when the scene has important 

movement, resulting in a loss of sharpness and 

detail. This can be particularly challenging 

when recording fast-moving objects or 

shooting handheld footage. 

Given these challenges, the purpose of 

this work is to explore methods for improving 

the quality and resolution of digital videos. The 

following sections will discuss the most 

effective techniques for achieving this goal. 

Super-resolution algorithms have 

become increasingly vital in contemporary 

times, owing to their usefulness in serving 

humanity. The execution time of these 

algorithms is crucial. These algorithms are 

utilized in a broad spectrum of humanitarian 

applications such as security, face detection, 

self-driving cars, computer-aided detection 

systems, and robot-assisted surgery systems, 

where image-, video-quality, low-cost, and 

real-time processing are crucial factors. 

However, improving video quality can 

be challenging, requiring advanced 

technologies and techniques to capture, 

process, and display high-quality video 

content. The following sections will explore 

methods to improve video quality and 

resolution, including upscaling, denoising [8], 

compression, and color grading. 

The following sections of this work 

consider improving the quality and increasing 

the resolution of video images. At the end of 

the work, the results of the research on super-

resolution methods based on neural networks, 

given in the previous sections, are described. 

Based on these studies, the criteria for 

selecting the super-resolution method for the 

video were formed. 

 

Analysis of recent research and 

publications  

First, we need to define what Super-

resolution is. The process of obtaining a high-

resolution image or series of pictures from a set 

of low-resolution observations is known as 

super-resolution. Figure 1 provides a visual 

representation of the super-resolution concept. 

By enhancing appearance or video quality, 

super-resolution offers greater scene detail, 

which is crucial for precise analysis. 

Two main categories of super-resolution 

methods exist traditional image processing and 

deep learning-based methods [10]. Traditional 

methods include interpolation-based 

techniques that estimate high-frequency details 

by interpolating the known low-frequency 

information and reconstruction-based methods 

that minimize an objective function to penalize 

the difference between the estimated high-

resolution image and the observed low-

resolution image. 

 

 
 

Fig. 1. A general representation of the super-resolution 

concept 

 

Deep learning-based methods use deep 

neural networks to learn a mapping between 

low-resolution and high-resolution image 

spaces. These methods have achieved state-of-

the-art performance in super-resolution and are 

widely used in practical applications. But deep 

learning-based methods will be discussed in 

the following sections. 

Video Super-resolution methods can be 

divided into two main categories (Figure 2): 

single-image super-resolution (SISR) and 

multiple-image super-resolution (MISR). 

SISR strategies [13] aim to enhance the 

resolution of a single image, while MISR 

methods [14] use multiple low-resolution 

photos to produce a higher-resolution output. 
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Fig. 2. Classification of Video Super-resolution methods by charts [15] 

 

Single-image Super-resolution 

Methods 

SISR methods can be further categorized 

into interpolation-based and reconstruction-

based [15]. Interpolation-based processes 

utilize pixel interpolation techniques, such as 

bicubic [5] or Lanczos interpolation [5], to 

estimate high-resolution image. On the other 

hand, reconstruction-based methods employ 

machine learning algorithms to learn the 

mapping between low-resolution and high-

resolution images. Some popular 

reconstruction-based methods are Sparse 

Coding-based Super-Resolution (SCSR) [9-

10] and Example-based Super-Resolution 

(ESR) [6]. SISR methods for video upscaling 

can be classified into spatial-domain and 

frequency-domain approaches. 

Spatial-domain approaches use pixel-

wise interpolation to estimate the high-

resolution frames in a video. These methods 

include bicubic interpolation, Lanczos 

interpolation [16], and nearest-neighbor 

interpolation. The most common spatial-

domain approach is bicubic interpolation [5], 

widely used in video upscaling applications 

due to its simplicity and computational 

efficiency. 

 

Frequency-domain Approaches of 

SISR Methods 

Frequency-domain approaches use the 

discrete Fourier transform (DFT) [17] or 

discrete cosine transform (DCT) to decompose 

the video frames into frequency components, 

which are then manipulated to increase the 

resolution. These methods include the 

Lanczos-windowed sinc function 

(LanczosSinc) [16], frequency domain super-

resolution (FDSR) [18], and non-local means 

(NLM) in the frequency domain [18]. 

They are first cropped into uniform-sized 

pixel blocks to obtain frequency-domain 

information from video images (Figure 3). 

These blocks are then passed through a 

Discrete Cosine Transform (DCT) module. 

The DCT module works by projecting the 

image block onto a collection of cosine 

components representing different frequencies 

of 2D signals. Essentially, it breaks down the 
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image block into its component frequencies. 

 
Fig. 3. Converting pixel blocks to DCT blocks 

 

A parameter determines the size of the 

image block being transformed called the 

block size, denoted by M. When a 2D image 

block of size M × M pixels, designated as P, is 

passed through the DCT module; it is 

transformed into an M × M DCT block. This 

DCT block contains information about the 

frequencies in the original image block, which 

can be used for super-resolution. 

One example of a spatial-domain 

approach for video upscaling is using bicubic 

interpolation followed by deblurring and 

sharpening techniques [7] to produce high-

quality upscaled videos. An example of a 

frequency-domain system is FDSR [18], which 

applies a convolutional neural network to high-

frequency components of the video frames to 

create a high-resolution output. 

 

 Multi-image Super-resolution 

Methods 

MISR methods can be classified into two 

types: fusion-based and reconstruction-based. 

Fusion-based methods combine multiple low-

resolution images into a single high-resolution 

image using averaging or weighted sum. 

Reconstruction-based methods, on the other 

hand, utilize machine learning algorithms to 

learn the mapping between low-resolution and 

high-resolution images using multiple input 

images. Some popular reconstruction-based 

methods include Multi-frame Super-

Resolution (MFSR) and Recursive Super-

Resolution (RSR) [12]. 

Multiple-image super-resolution (MISR) 

methods generate high-resolution images of 

the same scene by utilizing multiple low-

resolution images. These methods can be 

broadly classified into two categories: spatial 

domain approaches and frequency domain 

approaches. 

Spatial Domain Approaches of MISR 

Methods. 

Spatial domain approaches rely on the 

alignment of the input images to generate a 

high-resolution image. One popular approach 

is multi-frame super-resolution (MFSR), 

which aligns multiple low-resolution images to 

create a high-resolution image using 

interpolation or averaging (Figure 4). The 

alignment can be achieved through feature-

based registration or global motion estimation. 

The MFSR equation can be expressed as: 

 

𝐼ℎ𝑟 = ∑ 𝐼𝑙𝑟𝑘

𝑛

𝑘=0

 (1) 

 

where 𝐼ℎ𝑟 is the high-resolution image, and 

𝐼𝑙𝑟𝑘
are the low-resolution input frames [14]. 
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Fig. 4. General overview of variant of usage multi-frame super-resolution (MFSR) algorithm [19] - it takes a burst of 

raw images (a) as input 

 

The first step is to align every frame 

locally (d) to a reference frame, which we call 

the base frame. Kernel regression is used to 

estimate the contribution of each frame at each 

pixel. These contributions are accumulated 

separately for each color channel (g). To adapt 

the kernel shapes (c), utilize the estimated local 

gradients (b), and the sample contributions are 

weighted based on a robustness model (f). This 

model calculates a weight for every frame per 

pixel using the alignment field (d) and local 

statistics (e) from the surrounding area of each 

pixel. The merged RGB image (h) is the final 

result of normalizing the accumulated values 

per channel. As depicted in (b)-(g), the merge 

refers to combining the individual frames 

using these steps. 

 

 Frequency Domain Approaches of 

MISR Methods 

Frequency domain approaches transform 

the input images to the frequency domain, 

apply super-resolution techniques, and 

transform the output back to the spatial 

domain. Frequency domain approaches are 

typically more computationally efficient and 

can handle images with non-uniform motion 

blur or missing data. 

One popular frequency domain approach 

is Recursive Super Resolution (RSR) [21], 

which recursively applies a high-pass filter to 

the low-resolution images to estimate the high-

resolution image. The high-frequency details 

are then added to the previous estimation to 

produce a refined output [20-21].  

MISR methods have been utilized in 

various applications, such as medical imaging, 

satellite imaging, and video surveillance. For 

example, MISR methods have been used in 

medical imaging [22] to improve the resolution 

of magnetic resonance imaging (MRI) and 

computed tomography (CT) images. MISR 

methods have been used in satellite imaging to 

generate high-resolution images of the Earth's 

surface [14]. MISR methods have been used in 

video surveillance to enhance the resolution of 

low-quality surveillance videos [14]. 

In summary, MISR methods are 

powerful tools for generating high-resolution 

images by combining multiple low-resolution 

photos. Spatial domain approaches, such as 

MFSR, and frequency domain approaches, 

such as RSR, are two popular categories of 

MISR methods extensively studied and 

utilized in various applications. 

 

Artificial Intelligence-based Methods 

for Super-resolution 

Enhancing video quality using Artificial 

Intelligence (AI) has become increasingly 

crucial, given the growing demand for high-

quality video content, particularly with the 

rising popularity of high-resolution displays 

such as 4K and 8K. As a result, deep learning 

techniques, such as Convolutional Neural 

Networks (CNNs) [24], Generative 

Adversarial Networks (GANs) [25], and 

Recurrent Neural Networks (RNNs) [12, 23], 

have emerged as powerful tools for video 

super-resolution. These neural architectures 

have shown great promise in enhancing video 

quality by generating visually realistic and 

consistent high-resolution frames that align 

with the content of the original video. 
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When evaluating super-resolution deep 

learning methods, specific metrics can be used 

to assess their strengths and weaknesses. 

Metrics commonly used include Peak Signal-

to-Noise Ratio (PSNR) [27-29], Structural 

Similarity Index (SSIM) [27-29], Perceptual 

Index (PI), and Reconstruction Time [29]. 

Famous examples of each architecture, 

like SRCNN, VDSR, and EDSR [24] are 

widely used for super-resolution tasks because 

they can learn complex features from input 

images. These models typically achieve good 

PSNR and SSIM scores but may not perform 

as well in perceptual quality. However, newer 

architectures like SRGAN and ESRGAN [25] 

have addressed this issue by incorporating 

adversarial loss in the training process. 

On the other hand, GANs like SRGAN 

and ESRGAN have shown impressive results 

in generating visually appealing images with 

high perceptual quality. However, these 

models may be difficult to train and suffer 

from instability issues, resulting in higher 

reconstruction times than CNN-based models. 

RNNs like LRCN and RSDN have 

demonstrated promising results in video 

upscaling applications by modeling temporal 

dependencies in video sequences and 

generating smooth, high-quality frames. 

However, these models can be 

computationally expensive and require more 

extended training than CNNs. 

Another type of classification of deep 

learning methods is frame alignment. Methods 

for video upscaling can be divided into two 

main groups: those that involve frame 

alignment (Figure 5) and those that do not.  

Methods that involve frame alignment 

use techniques such as optical flow estimation 

(for example, Motion Estimation and Motion 

Compensation, MEMC [30]) or feature 

matching to align frames before super-

resolution. This results in improved super-

resolution by capturing the relationships 

between pixels across frames. Such methods 

include BasicVSR [26], MuCAN [36], EDVR 

[32] and others.  

On the other hand, ways that do not 

involve alignment rely on the relationships 

between pixels within each frame to perform 

super-resolution. Examples of these methods 

include the RSDN methodology. While 

techniques that involve alignment tend to serve 

better, ways that do not have alignment can 

still achieve good results and are more 

straightforward and faster to implement. 

It's worth noting that the performance of 

these architectures can vary depending on the 

dataset, task, and implementation details. 

Therefore, evaluating the models using 

multiple metrics and on different datasets is 

recommended to understand their strengths 

and weaknesses comprehensively. Next, we 

will analyze some specific methods of 

different architectures. 

 
  

 
 

Fig. 5. Creating a super-resolution frame from sibling frames with low resolution 
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BasicVSR/IconVSR Methods 

BasicVSR is a state-of-the-art deep 

learning-based super-resolution algorithm for 

video upscaling proposed by the Shanghai Jiao 

Tong University research team in 2020. It aims 

to generate high-quality and temporally 

coherent high-resolution video frames from 

low-resolution input frames. 

The proposed video super-resolution 

framework in Figure 6 is called BasicVSR 

[26]. It is a bidirectional recurrent network 

with three modules: the backward (B) module, 

the forward (F) module, and the upsampling 

(U) module. The B module takes the output of 

the following B module, current frame, and 

following frame, while the F module takes the 

output of the previous F module, current frame, 

and preceding frame. These modules' outputs 

are fused through the U module to generate the 

existing structure, which is repeated until all 

edges are super-resolved. The B/F module 

comprises generic components, including 

motion estimation, spatial warping, and 

residual blocks.  

The authors propose two processing 

mechanisms, information-refill and coupled 

propagation, to improve BasicVSR, which 

consists of the IconVSR [27] algorithm. The 

information-refill mechanism addresses 

misalignment issues by fusing frames in the 

selected keyframe set and sending aligned 

results directly to the residual block without 

fusion otherwise. The coupled propagation 

mechanism achieves information interaction 

between forward and backward processing by 

using the output of back propagation as input 

to forward propagation.  

While techniques with frame alignment 

MEMC [30] are commonly used for video 

super-resolution, including for BasicVSR, they 

cannot guarantee motion estimation accuracy 

when lighting changes dramatically or there 

are large motions in videos, resulting in 

performance degradation. In situations where 

videos contain complex motions and varying 

illumination, the accuracy of motion 

estimation based on optical flow methods may 

be compromised as it may violate the 

assumptions of brightness consistency, small 

motion, and spatial coherence. This results in 

inaccurate estimation and the emergence of 

errors, which can cause artifacts and blurring. 

The proposed solution uses the EDVR super-

resolution method based on Deformable 

Convolution Models to overcome this issue. 

Also, a new model of BasicVSR 

appeared relatively recently. It is BasicVSR++ 

[39], which consists of two effective 

modifications for improving propagation and 

alignment. The proposed second-order grid 

propagation and flow-guided deformable 

alignment allow BasicVSR++ to significantly 

outperform the existing state of the arts with 

comparable runtime. 

 
 

Fig. 6. The network architecture of BasicVSR [26] 
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Enhanced Deformable Video 

Restoration Method for Super-resolution 

Enhanced deformable video restoration 

(EDVR) [32] is a state-of-the-art video super-

resolution method based on deformable 

convolution methods.  

Deformable Convolution Networks 

(DCNs) are an extension of traditional 

convolutional neural networks (CNNs) that 

address spatial misalignment problems in 

image and video processing tasks. Unlike 

regular convolutional layers [32], which use 

fixed and regular sampling grids, DCNs learn 

a spatial transformation that adapts to the input 

data, allowing them to handle large spatial 

displacements and deformations. The 

deformable convolution operation involves a 

learnable offset vector that is added to the 

regular sampling grid to control the spatial 

sampling positions of the convolution filter. 

The offset vector is typically learned from data 

using backpropagation during training. 

EDVR method in Figure 7 uses the 

Pyramid, Cascading, and Deformable (PCD) 

alignment module and the Temporal-Spatial 

Attention (TSA) fusion module to address 

large motions in videos and to combine 

multiple frames effectively. The architecture 

of EDVR consists of four main parts: a PCD 

alignment module, a TSA fusion module, a 

reconstruction module, and an upsampling 

module that employs a sub-pixel convolutional 

layer. Initially, the input frames undergo 

alignment using the PCD alignment module. 

Subsequently, the aligned frames are fused 

through the TSA fusion module, refined by the 

reconstruction module, and then upsampled to 

produce a high-resolution residual image. The 

final output is attained by adding the residual 

image to a direct upsampling target frame. To 

enhance performance, EDVR implements a 

two-phase approach, where the second phase is 

comparable to the first phase but with a 

shallower network depth. 
 

 

 
 

Fig. 7. The network architecture of EDVR [32] 

 

Task-oriented Flow Method for 

Super-resolution 

The architecture of the task-oriented 

flow (TOFlow) [34] is shown in Figure 8. The 

TOFlow method is an architecture designed for 

optical flow estimation aimed at specific tasks 

such as video interpolation and video super-

resolution. It uses a flow field estimator based 

on a U-Net architecture [34] that predicts dense 

visual flow fields between two input frames. 

The U-Net architecture consists of an encoder 

and decoder network, where the encoder 

network extracts feature maps from input 

frames while the decoder network generates 

dense optical flow fields.  

A task-specific module that takes the 

extracted feature maps and predicts task-

specific output, such as interpolated or super-

resolved frames, is incorporated. The task-

specific module also uses the indicated flow 

field to warp the input frames for generating 

the output. The model is trained in a supervised 

manner using ground-truth data, including the 

flow field and the task-specific work. The 

TOFlow method has achieved state-of-the-art 

results in various video-related tasks, such as 

video interpolation and video super-resolution. 
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Fig. 8. The general overview of TOFlow [34] architecture, where STN is a spatial transformer network 

 

The Recurrent Structure-Detail 

Network (RSDN) for Super-resolution 

The Recurrent Structure-Detail Network 

(RSDN) [35] has two main parts: a spatial-

temporal recurrent network and a structure-

detail fusion module (Figure 9). The recurrent 

network, composed of three layers, is 

responsible for extracting features from the 

input video frames and capturing the temporal 

information. On the other hand, the structure-

detail fusion module is responsible for fusing 

the features' high-frequency details and low-

frequency structures. It consists of two sub-

modules: the structure refinement module and 

the detail refinement module. The structure 

refinement module is responsible for 

reconstructing the low-frequency structures of 

the input frames, while the detail refinement 

module focuses on rebuilding the high-

frequency details. 

One of the advantages of RSDN is its 

ability to capture long-term temporal 

dependencies by using a spatial-temporal 

recurrent network. This allows RSDN to 

generate high-quality super-resolved frames 

even for videos with complex motion. Another 

advantage is the structure-detail fusion 

module, which helps RSDN to produce sharp 

and detailed results. However, RSDN also has 

some limitations. It requires many 

computational resources due to its complex 

architecture, which can be a problem for real-

time applications. Additionally, the 

performance of RSDN may be limited when 

dealing with videos that have low-quality or 

noisy input frames. 

 

 
 

Fig. 9. Architecture overview of Recurrent Structure-Detail Network [35] 
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Multi-Correspondence Aggregation 

Network (MuCAN) for Super-resolution 

Multi-Correspondence Aggregation 

Network (MuCAN) [36] is a complete end-to-

end video super-resolution network consisting 

of three major modules (Figure 10): temporal 

multi-correspondence aggregation module 

(TM-CAM), cross-scale non-local-

correspondence aggregation module (CN-

CAM), and a reconstruction module. TM-

CAM encodes two adjacent LR frames to 

lower-resolution features to achieve stability 

and robustness to noise. An aggregation unit 

(AU) aggregates multiple patches using a 

patch-based matching strategy in LR feature 

space to compensate for significant motion 

while moving up progressively to low-

level/high-resolution stages for sub-pixel shift. 

In CN-CAM, a pyramid structure based on 

AvgPool is used for spatio-temporal non-local 

attention, and coarse-to-fine spatial awareness 

is executed. Finally, the results are aggregated 

and sent to the reconstruction module to yield 

the final HR result. 

MuCAN can handle significant motion 

while maintaining structural information due 

to the patch-based matching strategy compared 

to other video super-resolution methods. The 

pyramid structure based on AvgPool in CN-

CAM provides spatio-temporal non-local 

attention and coarse-to-fine spatial attention, 

improving the output's spatial resolution. 

However, the method is computationally 

expensive due to the multiple aggregation units 

used in TM-CAM, which can be a 

disadvantage in some scenarios. 

 

 
 

Fig. 10. Multi-Correspondence Aggregation Network Architecture 

 

Performance Metrics 
Peak Signal-to-Noise Ratio (PSNR) and  

Structural  Similarity Index (SSIM) were used to 

compare and evaluate the performance of super-

resolution techniques. 

 
Peak Signal-to-Noise Ratio 

PSNR - measures the difference between the 

original and predicted images in terms of the mean 

squared error (MSE), defined as: 
 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝑖

√𝑀𝑆𝐸
) (2) 

 

where 𝑀𝐴𝑋𝑖 represents the maximum range of 

color value, which is usually 255, and the mean 

squared error (MSE) is defined as: 

 

𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑|𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)|2

𝑛−1

𝑗−0

𝑚−1

𝑖−0

 (3) 

 

where 𝐼(𝑖, 𝑗) is original video frame,  𝐾(𝑖, 𝑗) is the 

super-resolution video frame. 

 

Structural Similarity Index 

The Structural Similarity Index (SSIM) is a 

widely used metric for evaluating image quality. It 

is based on the idea that human perception of image 

quality is related to the similarity between local 
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image structures. SSIM compares two images'  

luminance, contrast, and design to calculate a  

similarity score between 0 and 1. SSIM is defined 

as:

 

𝑆𝑆𝐼𝑀(𝐼, 𝑌) =
2𝑢𝐼𝑢𝑦 +  𝑘1

𝑢𝐼
2 +  𝑢𝑌

2 +  𝑘1

∗  
2𝜎𝐼𝑌 +  𝑘2

𝜎𝐼
2 +  𝜎𝑌

2 + 𝑘2

 (4) 

 
 

Model Training Datasets 

Vimeo-9K/Vimeo-9K-T, VID4, and 

REDs datasets were used for training and 

testing. The Vimeo-9K dataset and Vimeo-9K-

T dataset are two widely used benchmark 

datasets for video super-resolution, introduced 

in 2017 [37]. The Vimeo-9K dataset contains 

9,120 video sequences, divided into three 

subsets for training, validation, and testing, 

with different video content such as natural 

scenes, animation, and sports. The Vimeo-9K-

T dataset is a temporal super-resolution 

extension of Vimeo-9K, consisting of 2,933 

LR-HR video triplets of the same content. 

The REDS dataset is a recent benchmark 

introduced in 2019, consisting of a large-scale 

collection of diverse real-world video 

sequences. The dataset contains multiple 

resolutions and frame rates, providing a more 

challenging testbed for super-resolution 

algorithms. The VID4 dataset is another 

benchmark dataset, consisting of four video 

sequences with different content, resolutions, 

and frame rates, that is often used for 

evaluating the performance of video super-

resolution algorithms. 

Overall, these benchmark datasets are 

essential for evaluating the performance of 

video super-resolution algorithms, enabling 

researchers to compare and contrast different 

methods and identify areas for improvement. 

 

 Comparison 

The dataset contains two upscaling 

methods: BI and "BD". "BI" stands for bilinear 

interpolation, which involves averaging 

neighboring pixels to produce an upscaled 

image. On the other hand, "BD" stands for 

bicubic interpolation, a more advanced method 

that considers more neighboring pixels to 

produce a smoother upscaled image. Each 

video clip in the Vimeo-9K dataset is provided 

in three versions: the original low-resolution 

video, a bicubic upscaled version (BD), and a 

bilinear upscaled version (BI). 

 

Note: that part of the PSNR and SSIM 

are from their original works. And a simple 

comparison on the performance may not be 

fair, since the training data, the pre-processing, 

and the cropped area in videos are likely totally 

different in the methods. 

The dataset also uses the Y/RGB 

channels to represent the colors. In digital 

video, colors are typically represented in the 

RGB color space, which separates colors into 

red, green, and blue channels. However, many 

video super-resolution methods operate only 

on the luminance (Y) channel, representing the 

image's brightness. In the table, Vid4 and 

Vimeo-9K-T represent Y channel, REDs 

represent RGB color images. 

Table 1 shows the best results in video 

super-resolution Vimeo-9K-T datasets as 

follows. Best results on Vimeo-9K-T 

presented by PSNR (for both BI/BD metrics): 

EDVR(BI: 37.61, BD: 37.81), 

BasicVSR++(BI: 37.59, BD: 38.31), 

IconVSR(BI: 37.47, BD: 37.84), 

BasicVSR(BI: 37.20, BD: 37.55). EDVR has 

the best PSNR result with the bicubic 

degradation model, while IconVSR has a 

significant PSNR result in BD models. 

In Vid4 datasets, which are known to 

contain more high-frequency details, the best 

result from the point of view of PSNR value 

are the following methods: BasicVSR++( BI: 

27.79, BD: 29.04), IconVSR(BI: 27.39, BD: 

28.04), EDVR(BI: 27.35, BD: 27.85), 

BasicVSR(BI: 27.27, BD: 27.98). IconVSR 

has the best result in both BI/BD sections. 
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Table 1. Comparison of different video methods based on neural networks for different Test sets  

 

Method/ 

Test Set 

Params size 

(MB) 

BI 

PSNR/ 

SSIM 

BD 

PSNR/ 

SSIM 

BasicVSR/ REDs 8.7 31.41/0.8909 -/- 

BasicVSR/ Vimeo-9K-T 8.7 37.20/0.9451 37.55/0.9499 

BasicVSR/ Vid4 8.7 27.27/0.8248 27.98/0.8556 

IconVSR/ REDs 8.64 31.69/0.8951 -/- 

IconVSR/ 

Vimeo-9K-T 
8.65 37.47/0.9476 37.84/0.9524 

IconVSR/ Vid4 8.65 27.39/0.8279 28.04/0.8570 

BasicVSR++/ REDs 9.61 32.39/0.9069 -/- 

BasicVSR++/ 

Vimeo-9K-T 
9.61 37.59/0.9476 38.31/0.9550 

BasicVSR++/ Vid4 9.61 27.79/0.8401 29.04/0.8735 

MuCAN/ 

REDs 
25.7 30.98 0.8750 -/- 

MuCAN/ 

Vimeo-9K-T 
19.9 37.32/0.9465 -/- 

RSDN/  Vimeo-9K-T 6.19 -/- 37.23/0.9471 

RSDN/Vid4 6.19 -/- 27.92/0.8505 

TOFlow/  Vimeo-9K-T 1.37 33.08 0.9417 -/- 

TOFlow/Vid4 1.37 23.54/0.8070 -/- 

EDVR/ REDs 20.76 30.34/0.8664 28.88/0.8361 

EDVR/Vimeo-9K-T 18.23 37.61/0.9489 37.81/0.9523 

EDVR/Vid4 18.45 27.35/0.8264 27.85/0.8503 

In a single training dataset REDs, that 

corresponds to the RGB color specter, the best 

results are:  

BasicVSR++(32.39/0.9069), 

IconVSR(31.69/0.8951), 

BasicVSR(31.41/0.8909), 

MuCAN(30.98/0.8750). 

To summarize, the results provide 

readers with guidelines for selecting different 

models based on the results presented in Table 

1. To achieve super-resolution videos with 

realistic textures and rich details without large 

motions, we recommend using the following 

methods as prime candidates: BasicVSR++, 

IconVSR, BasicVSR, and EDVR. These 

methods are ordered based on their PSNR 

values on the Vid4 dataset. 

Another important indicator is the size of 

the input parameters for training the network. 

The parameter size of a training dataset in 

video super-resolution algorithms refers to the 

total number of learnable parameters, such as 

weights and biases, used in the neural network 

during training. It is an essential factor to 

consider when training deep learning models 

because it can impact the computational 

complexity and accuracy of the algorithm. If 

we go back to the results in Table 1, we can 

spectate, that EDVR and MuCAN(for both 

RGB and Y color channels) have almost 20MB 

or more of input parameter size, while others 

have less than 10MB. TOFlow methods accept 

only 1.37MB of input params for training, it 

could be advantageous in mobile or embedding 

systems with tight GPU Memory. 

On the three datasets, BasicVSR++ 

exhibits exceptional performance. IconVSR 

and EDVR also have great success in VSR 

tasks. BasicVSR++ leverages optical flow to 

align features, a bidirectional recurrent 

network for temporal feature propagation, and 

an information-refill mechanism for feature 

refinement, resulting in superior performance 

compared to other methods in some instances. 

Additionally, it achieves more significant 

performance gains with BD degradation than 
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BI degradation on Vimeo-90K-T and Vid4. On 

the other hand, EDVR employs cascaded 

multi-scale deformable convolutions for 

alignment and TSA to fuse multiple frames. 
 

Video Super-resolution solutions 

Unsupervised VSR methods 

Most state-of-the-art approaches to 

video super-resolution (VSR) rely on deep 

neural networks trained in a supervised 

manner, but these methods require large 

datasets of low-resolution (LR) and high-

resolution (HR) video frame pairs, which can 

be difficult and costly to acquire. Moreover, 

when input video frames have poor resolution, 

these super-resolution models may not perform 

well. Additionally, current VSR models 

trained on labeled datasets can only learn the 

inverse process of a predefined degradation, 

which may be too simplistic to represent real-

world scenarios. 

One potential solution is using 

unsupervised VSR methods, which work well 

on unpaired LR and HR video sets. Generative 

adversarial network (GAN) models [25], in 

particular, have shown promise for 

unsupervised VSR, as they can learn to 

generate realistic HR frames from LR inputs 

without the need for explicit training on paired 

LR-HR data. An excellent example of using 

this architecture is the GAN model with Edge 

Enhancement [40]. The authors propose the 

edge enhancement function, which uses the 

Laplacian edge module to perform edge 

enhancement on the intermediate result, which 

helps further improve the results. 

By exploring and developing 

unsupervised methods like GANs, it may be 

possible to overcome the limitations of 

supervised training on labeled datasets and 

improve the performance of VSR models on 

real-world video data. 

 

Outdated Evaluation Metrics 

While deep learning methods have 

shown great promise in improving VSR 

performance, traditional evaluation metrics 

such as peak signal-to-noise ratio (PSNR) and 

structural similarity index (SSIM) may not 

accurately capture the perceptual quality of the 

generated video. 

Therefore, new evaluation metrics are 

needed to better assess the perceptual quality 

of VSR methods based on deep learning. This 

is because PSNR and SSIM are based on pixel-

wise differences that may not correspond well 

to human perception, and deep learning-based 

VSR methods may introduce new artifacts that 

are not captured by these metrics. 

Examples of potential evaluation metrics 

that are better suited for VSR methods based 

on deep learning include the Perceptual Index 

(PI), Learned Perceptual Image Patch 

Similarity (LPIPS), and Fréchet Video 

Distance (FVD) [28]. These metrics are 

designed to measure the perceptual quality of 

the generated video by comparing it to the 

ground truth video using pre-trained deep 

neural networks. 

By developing and using more 

appropriate evaluation metrics, researchers and 

practitioners can more accurately evaluate and 

compare different VSR methods, leading to 

further improvements in VSR performance. 

 

Synthetic Datasets 

Another challenge in VSR methods is the 

availability of appropriate training datasets. 

Many current VSR models are trained on 

synthetic datasets, which may not accurately 

represent real-world scenarios. To overcome 

this, we need to explore new large-scale video 

datasets such as YouTube-8M [41] and 

Vimeo-90K-T to capture the natural variability 

of video content better. However, these 

datasets also present unique challenges, such 

as noisy and incomplete data and the need for 

scalable methods. 

 

Conclusions 

Many researchers are exploring the 

concept of super-resolution and devising 

possible solutions for its associated challenges. 

The spatial domain method, which uses pixels 

for processing, can lead to computational 

complexity and high memory requirements, 

reducing the feasibility of real-time systems. 

Therefore, developers increasingly consider 

image or frame features rather than the image 

itself, leading to more attraction toward 

frequency or wavelet domain techniques. With 

the emergence of a new generation of 

resolution enhancement techniques that 

reformulate spatial and frequency domain 
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techniques using neural networks, fast and 

parallel computation of features is now 

possible.  

Different methods based on neural 

networks were considered separately in this 

article, synthetic indicators of the quality of 

each algorithm were given, and the data were 

analyzed as result. IconVSR, BasicVSR, and 

EDVR achieve the best results. EDVR has the 

best PSNR result with the bicubic degradation 

model, while IconVSR has a significant PSNR 

result in BD models. IconVSR and EDVR 

exhibit exceptional performance on the three 

datasets. The parameter size of the training 

dataset is an essential factor to consider when 

training deep learning models, impacting the 

computational complexity and accuracy of the 

algorithm. The TOFlow method has a small 

input parameter size, which could be 

advantageous in mobile or embedding systems 

with tight GPU memory. 

Based on the conducted analysis, it can 

be concluded that it is expedient to conduct 

more detailed research using deep learning 

methods, especially with using a new deep 

learning technique based on BasicVSR++ 

model. There is a need to investigate the 

performance of these algorithms for each 

method separately or in combination with new 

datasets with different characteristics. The 

Vimeo-9K-T/Vid4 datasets used in this study 

are known to contain high-frequency details, 

but there are other datasets with different 

factors, such as the REDS dataset used for 

training the MuCAN algorithm. Evaluating 

these algorithms' performance on various 

datasets could provide more comprehensive 

insights into their effectiveness.  

And the same time, we should start using 

new evaluation metrics to better assess the 

perceptual quality of VSR methods based on 

deep learning. These metrics can help 

researchers and practitioners develop more 

effective VSR systems. 

Overall, while significant progress has 

been made in VSR using deep learning-based 

methods, challenges still need to be addressed. 

Improving training datasets to capture the 

natural variability of video content better is one 

potential solution, along with developing more 

effective methods for handling motion artifacts 

and avoiding introducing new artifacts. There 

is an opportunity to explore using more 

advanced techniques, such as adversarial 

training or attention mechanisms, in video 

super-resolution algorithms. These techniques 

have shown promising results in other 

computer vision tasks and could be applied to 

video super-resolution to further improve 

upscaled videos' quality. 
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