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ENCRYPTION OF MESSAGES BY THE SUM OF A REAL VARIABLE 

FUNCTIONS 
 

Abstract. The article proposes a cryptosystem with symmetric keys, where the keys are functions of a real 

variable. These functions can be either continuous or discrete and must satisfy certain constraints. The number of key 

functions is determined by the number of binary digits that encode a character in the ASCII table. Each binary digit has 

its own key function. The cipher of a character is represented by a one-dimensional array of real numbers. These 

numbers are obtained by summing the key functions, which correspond to “1” in the ASCII code of the character. The 

amplitudes of these functions are random and unknown to the receiving party. Decryption is a multi-level process, in 

which integral disproportion functions are calculated at each level. To increase the cryptographic strength, the 

encryption/decryption process involves a permutation of the key-functions according to a secret scheme agreed upon by 

both parties. Computer simulation has demonstrated the high cryptographic resistance of the proposed system to the 

determination of the coefficients within the key functions, as well as to the rearrangement of the key functions 

themselves. It is shown that adjacent identical symbols in an encrypted message have different ciphers, which also 

complicates hacking the system.  

Keywords: cryptosystems, disproportion functions, functions of real variables, key functions, encryption, 

decryption, text messages. 

 

Introduction  

Currently, symmetric and asymmetric 

cryptosystems are widely used. The most 

well-known symmetric systems are AES [1] 

and GOST 28147-89 [2]. Asymmetric 

systems employ algorithms such as RSA and 

ElGamal [3]. Both types of systems are based 

on a set of integers. This fact allows for 

various methods of cryptanalysis, including 

straightforward key-guessing approaches. The 

complexity of a brute-force attack is estimated 

as O(2k), where k is the key length in bits. 

For breaking asymmetric 

cryptosystems, there are cryptanalysis 

methods that operate faster than brute force, 

necessitating the use of longer keys compared 

to those in symmetric systems. To enhance 

the strength of cryptosystems, it is essential to 

continually increase key lengths. However, 

this approach may not be sustainable due to 

the continuous advancement in computing 

capabilities. Particularly, the rapid 

development of quantum computers [4] is 

expected to significantly affect the resilience 

of existing cryptosystems [5]. This is evident 

from the example of recovering the key of a 

symmetric encryption algorithm from the 

plaintext and ciphertext. Grover's quantum 

algorithm reduces the complexity by half [6]. 

As a result, the effectiveness of the key length 

is reduced by 2 times. 

The application of quantum algorithms 

will also reduce the stability of asymmetric 

systems. Indeed, the RSA algorithm is based 

on the computational complexity of the 

integer factorization problem. At the same 

time, there is a quantum algorithm whose 

complexity is polynomial O(n3) [7]. Also, the 

stability of asymmetric systems can be 

reduced as a result of the implementation of 

Shor's quantum algorithm for calculating the 

discrete logarithm. In [8], Shor's algorithm is 

presented for a group of points of an elliptic 

curve over the field GF(p), with complexity 

O(n3). 

From the above analysis, it is clear that 

we should look for alternative ways to create 

cryptosystems. In particular, in order 

to complicate the selection of keys using a 

simple brute force method, it is proposed to 

switch from using integers to real numbers. It 

is known [9] that the set of real numbers has 

greater cardinality compared to the set of 

natural numbers, thus it can be expected that 
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the security of a cryptosystem based on real 

numbers will be higher. 

The possibilities of creating 

cryptosystems using one or more functions of 

a real variable as keys are considered in [10-

13, 15]. This work proposes a cryptosystem 

variant that uses the sum of several key 

functions of a real variable. In contrast to 

[15], to increase cryptographic strength, the 

permutation of key functions during the 

encryption and decryption process is 

considered. 

 

Problem Statement  

The objective is to develop encryption 

and decryption algorithms that utilize multiple 

keys simultaneously. These keys are to be 

functions of a real variable. To increase the 

cryptographic strength of the system, it is 

essential to incorporate a mechanism that 

permutes the positions of the key functions 

during both the encryption and the decryption 

processes. 

 

Literature Review  

The most known symmetric system 

AES implements a Substitution Permutation 

Network (SPN) [1].  Based on the Feistel 

network, the symmetric encryption algorithm 

GOST 28147-89 was developed [2, 3]. In 

1978, the public key algorithm RSA was 

proposed [3]. Beyond cryptosystems that use 

integers as keys, other approaches to 

cryptosystem creation are known. For 

instance, in [14, Zhytomyr], a Fredholm 

integral cryptosystem of the first kind is 

proposed, illustrating that the essence of the 

encryption and decryption procedures is 

reduced to solving the direct and inverse 

problem described by the first kind Fredholm 

integral equations. Systems based on 

functions of real variables are also known 

[10-13]. For example, encryption of ASCII 

code table characters using the sum of 10 

functions of real variables is considered in 

[10]. The sum of the function-key values 

obtained during the encryption of a character 

is transmitted over the communication 

channel. At the receiving end, fragments of 

the function-keys present in the received 

encrypted signal are recognized using 

disproportion functions [16-19]. Based on the 

recognition results, the symbol being 

transmitted at that moment is decrypted. 

In [11, 12], the transmission of binary 

codes using three function-keys of real 

variables is examined. "1", "0", "space", and 

"newline" are encoded, with any other symbol 

recognized as a newline. To gain 

unauthorized access to an intercepted 

message, one must determine the form and 

parameters of the key-functions. 

In [13], a principle of encryption using 

only one function of a real variable is 

proposed. The text to be encrypted is 

represented as a process of sequential 

transmission of numerical character codes. A 

disproportion function of the numerical 

representation of the encrypting process by 

the key function is calculated. The obtained 

disproportion function values constitute the 

encrypted message and are transmitted over 

the communication channel. In [15], attempts 

were made to determine the parameters of the 

key-functions, assuming their form is known. 

The results of computer modeling [10-13] 

showed high cryptographic resilience of these 

systems. 

 

Mathematical Formulation of the 

Problem 

The encrypted message consists of a 

sequence of T numerical codes of characters 

from the ASCII table. Each code is associated 

with a one-dimensional array of N elements. 

These arrays are generated by tabulating with 

a consistent step h in the argument change of 

m key-functions of a real variable. Each 

binary digit of the character code corresponds 

to its own key-function. The number m 

depends on the bit length of the code. The 

value of the element y(j,i) in the matrix 

y(T,N) is given as: 

 

 =
=

m

1q qqj ),i(fk)i,j(y              (1) 

 

where j is the index of the character in the 

transmitted message;  

fq(i) are the array values of the q-th key-

function. Here fq(i) = fq(ih), where i = 1,2,...N, 

q=1,2,...m, and N > m;  

kqi are the coefficients generated during the 

encryption of the j-th element.  
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The functions corresponding to a "1" in 

the character code are included in sum (1) 

with random coefficients. These coefficients 

are unknown to the recipient. For functions 

corresponding to a "0", the coefficients are 

equal to zero. 

The key-functions can be either 

continuous or discrete. They must be identical 

for both the transmitting and receiving parties 

and have the same numbering. To increase 

cryptographic strength, a secret scheme for 

automatically changing this numbering should 

be implemented directly during the encryption 

or decryption process. Additionally, the step h 

of the argument change for the key-functions 

must be the same on both the transmitting and 

receiving sides. 

The encrypted message is represented 

by a matrix y(T,N), whose elements are 

sequentially transmitted over an open 

communication channel. The task involves 

decrypting the message from the received 

matrix.  To achieve this, the receiving side 

utilizes an integral disproportion function of 

the first order [20] to identify fragments of the 

key-functions present in the encrypted signal. 

If a fragment of a key-function is detected in 

the received signal, the corresponding bit is 

set to "1". For bits where key-functions are 

absent, the bit is set to "0". In this way, the 

transmitted symbol is decrypted. 

 

Disproportion Functions 

The following is a brief overview of 

disproportion functions. There are several 

disproportion functions. Let's consider one of 

them - the n-th order disproportion of the 

function y(x) with respect to x [17]. It is 

described by the expression: 

 

,
dx

yd

!n

1

x

y
yd@

n

n

n

)n(
x −=              (2) 

 

Here, the symbol "@" is chosen to 

denote the operation of computing 

disproportion. The symbol “d” stands for 

“derivative”. The order is indicated in 

parentheses. The left side of (2) reads “et d n 

y with respect to x.” Order n ≥ 1 is an integer. 

If, for any value of x, the function y(x) takes 

the form y = kxn, then the disproportion for 

equation (2) is zero regardless of the value of 

the coefficient k. 

For the case when n=1, 

 

,
dx

dy

x

y
yd@ )1(

x −=                 (3) 

  

If functions x(t) and y(t) depending on 

the parameter t are considered, then 

disproportion (3) is described by the 

expression: 

 

,
dt/dx

dt/dy

)t(x

)t(y
)t(yd@

)1(
)t(x −=         (4)  

 

For y(t) = kx(t), the disproportion (4) is 

equal to zero in the entire area of existence 

x(t) regardless of the value of k. 

In practice, problems often arise when 

y(x) has the form: 

 

),x(fk)x(fk)x(fk)x(y mm2211 +++=    (5) 

 

where f1(x), f2(x), … fm(x) are known 

functions; k1, k2, … km are coefficients which 

values are unknown. 

It has been shown that 

disproportionality functions make it possible 

to calculate the values of unknown 

coefficients in (5) using data obtained for the 

current value of the argument [17]. This 

feature is used to decrypt messages [13-15]. 

Functions are often considered for 

which the first derivative does not exist or 

equals zero over some interval. This precludes 

the use of disproportion based on derivatives 

in (2-4). In such cases, the first-order integral 

disproportion can be employed [20]. This 

disproportion of the function y(x) with respect 

to f(x) is described by the following 

expression: 

 

,
)x(f

)x(y

dx)x(f

dx)x(y
)x(yI@

x

hx

x

hx)1(
)x(f

−=





−

−       (6) 

 

where h - is the preset time interval. In the 

discrete representation of signals, this is a 

time quantization step. 

The functions y(x) and f(x) are 

represented by the elements of one-

dimensional arrays x(ih) and y(ih), where i = 



ISSN 2710 - 1673   Artificial Intelligence   2024  № 2 
 

13 

 

0, 1, 2, ..., N. If the approximate values of the 

integrals in equation (6) are calculated using 

the trapezoidal rule, then the disproportion (6) 

takes the following form: 

 

,
f

y

ff

yy
yI@

i

i

i1i

i1i
i

)1(
f i

−
+

+
=

−

−             (7) 

 

Encryption and Decryption of 

Messages  

Initially, it is essential to ensure that 

both the transmitting and receiving sides 

possess the same set of m key-functions of a 

real variable and their numbering. The 

interval for changing the argument of these 

functions is determined by the step h of its 

change and the number of elements N>m of 

the one-dimensional array corresponding to 

the encrypted symbol. The step h is defined 

by the requirements for the accuracy of 

reproducing the key-functions.  This ensures 

that all conditions are met for the arrays of 

key function values to be identical for both 

parties. 

 

Message Encryption  

1. Calculate the elements of arrays from 

N > m values of key functions fq(x), where q 

= 1, 2, …, m. 

2. Input the j-th character to be 

encrypted and calculate its cipher as values of 

the one-dimensional array y(j, i), where i =1, 

2, …, N, following equation (1). Repeat this 

step for all characters in the message of length 

T. During this process, the key functions are 

permuted according to a specific scheme 

based on the number of cycles. 

3. The encrypted message, consisting of 

a sequence of T arrays, is transmitted over an 

open communication channel. 

 

Message Decryption 

Calculate the arrays fq(i) = fq(ih), where 

i = 1, 2, ... N (>m), and q = 1, 2, ... m, for the 

key functions and receive T one-dimensional 

arrays y(j, i) via a communication channel, 

where j = 1, 2, ... T, and i = 1, 2, ... N. 

Let's consider the decryption process 

using an example in which only four key 

functions are used in the cryptosystem: f1(x), 

f2(x), f3(x), f4(x), meaning that m = 4. 

Consequently, the cipher for the j-th character 

appears as follows: 

 

 ),i(fk)i(fk)i(fk)i(fk)i,j(y 4j43j32j21j1 +++=   (8) 

 

where i =1, 2, …, N > 4. 

To decrypt it, it is necessary to 

determine the values of the unknown 

coefficients k1, k2, …, km in equation (8). The 

process consists of m = 4 levels, 

corresponding to the number of key functions. 

At each level, the disproportion (7) Fl,n(j,i) is 

calculated, where l is the level, and n is the 

index of the disproportion calculation at that 

level. 

 

First Level  

It is necessary to calculate the 

disproportion (7) of y(j, i) using any of the 

key functions, for example, using f1(i): 

 

,
)i(f

)i,j(y

)i(f)1i(f

)i,j(y)1i,j(y
)i,j(yI@)1i,j(F

111

)1(
)i(f1,1

1
−

+−

+−
==−                              (9) 

 

where j = 1, ... N. 

Also, calculate the disproportions (7) for the remaining key functions in equation (8) with 

respect to f1(i): 

,
)i(f

)i,j(f

)i(f)1i(f

)i,j(f)1i,j(f
)i,j(fI@)i,j(F

1

r

11

rr
r

)1(
)i(fr,1

1
−

+−

+−
==                           (10) 

 

where j = 1, …N; r = 2, 3, 4. 

By substituting y(j,i) from equation (8) into equation (9) and considering that the 

disproportion (7) of the function f1(i) with respect to itself is zero, we obtain: 
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),i,j(Fk)i,j(Fk)i,j(Fk)i,j(F 4,1j43,1j32,1j21,1 ++=                             (11) 

 

Second Level 

From the right-hand side of equation (11), select any component, for example, F1,2(j,i). Based 

on this, calculate the disproportions: 

 

,
)i(F

)i,j(F

)i,j(F)1i,j(F

)i,j(F)1i,j(F
)i,j(F)i,j(I@)i,j(F

2,1

1,1

2,12,1

1,11,1
1,1

)1(
F1,2

2,1
−

+−

+−
==                   (12) 

 

,
)i(F

)i,j(F

)i,j(F)1i,j(F

)i,j(F)1i,j(F
)i,j(F)i,j(I@)i,j(F

2,1

r,1

2,12,1

r,1r,1
r,1

)1(
Fr,2

2,1
−

+−

+−
==                     (13) 

 

where j = 1, …N; r = 3, 4. 

Considering that the disproportion of F1,2(j,i) with respect to F1,2(j,i) is zero: 

 

),i,j(Fk)i,j(Fk)i,j(F 4,2j43,2j31,2 +=                                              (14) 

 

Third Level 

From the right-hand side of equation (14), select F2,3(j,i). Calculate the disproportions: 

 

,
)i(F

)i,j(F

)i,j(F)1i,j(F

)i,j(F)1i,j(F
)i,j(FI@)i,j(F

3,2

1,2

3,23,2

1,21,2
1,2

)1(
F1,3

)i,j(3,2
−

+−

+−
==                      (15) 

 

,
)i(F

)i,j(F

)i,j(F)1i,j(F

)i,j(F)1i,j(F
)i,j(FI@)i,j(F

3,2

4,2

3,23,2

4,24,2
4,2

)1(
F2,3

)i,j(3,2
−

+−

+−
==                   (16) 

 
Given that the disproportion of F2,3(j,i) with respect to itself is zero: 

 

),i,j(Fk)i,j(F 2,3j41,3 =                                                            (17) 

 

Fourth Level 

Calculate the disproportion (7) of F3,1(j,i) with respect to F3,2(j,i):  
 

,0)
)i(F

)i,j(F

)i,j(F)1i,j(F

)i,j(F)1i,j(F
(k)i,j(FI@)i,j(F

2,3

2,3

2,32,3

2,32,3
j41,3

)1(
F1,4

)i,j(2,3
=−

+−

+−
==         (18) 

 

The reason for equation (18) equating to zero is that, as evident from equation (17), there 

exists a proportional relationship between F3,1(j,i) and F3,2(j,i). 

From equation (17), find k4j: 

 

,
)i,j(F

)i,j(F
k

2,3

1,3
j4 =                                                                (19) 

 

From equations (14), (11), and (8), calculate the remaining coefficients: 
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,
)i,j(F

)i,j(Fk)i,j(F
k

3,2

4,2j41,2
j3

−
=                                                         (20) 

 

,
)i,j(F

)i,j(Fk)i,j(Fk)i,j(F
k

2,1

4,1j43,1j31,1
j2

−−
=                                               (21) 

 

,
)i(f

)i(fk)i(fk)i(fk)i,j(y
k

1

4j43j32j2
j1

−−−
=                                              (22) 

 

Decryption of the j-th character in the 

message depends on which of these 

coefficients are non-zero and which are zero. 

If a coefficient associated with a key function 

is non-zero, the corresponding bit in the 

character code is set to "1." Bits for which the 

coefficients are zero are set to "0." In this 

way, the decryption of the character currently 

being transmitted is carried out. 

However, it is important to consider the 

presence of computational errors. Therefore, 

the disproportion calculated at the final level 

may not be exactly zero, but may differ from 

zero by a small number ε. For instance, if 

|F4,1(j,i)| < ε = 10-4, then it should be 

considered as zero. The specific value of ε 

can be determined during the testing of the 

cryptosystem. 

It should also be noted that 

theoretically, the disproportion at the final 

level is zero for all i = 2, 3, ... N. In practice, 

taking into account calculation errors, it is 

recommended to do calculations using 

formulas (17-19) for the array element 

number i, at which the disproportion module 

(16) is minimal. 

 

An example of encryption and 

decryption of characters from the ASCII 

code table 

An eight-bit character code requires 

m=8 functions - keys: 

 

))),xcos()xsin(wcos()((1000)x(f

))),x()xwcos()x)(sin(xsin((1000)x(f

))),xcos(wsin()x20())xsin(exp()x100((1000)x(f

))),xsin(w)x)xcos(sin()x10((1000)x(f

))),xsin()))x03.0exp(wsin((1000)x(f

)),xsin(wsin())x01.0exp(cos((1000)x(f

)))),xcos(sin(exp(w))xsin(wcos((1000)x(f

)))),xcos(xexp(sin())xcos(sin())2),xw(cos(powsin((1000)x(f

2213318

2
322137

2211336

3131225

3213124

1223133

1322132

2
3322111

+=

−+=

++−=

++−=

−=

+=

+=

+++=

  (23) 

 

where ,101 = ,12.02 = ,5.03 = ,1.01 =

,122 = ,7.03 = ,500w =  - are constants. 

 

In the example, the symbol is encoded 

by the sum of functions – keys 

 

),x(fk)x(fk)x(fk)x(fk)x(fk)x(fk)x(fk)x(fk)x(y 8877665544332211 +++++++=   (24) 

 

where x = ih is an argument; h = 1 is a step of 

changing the argument; i is the serial number 

of the element of the one-dimensional array 

y0, y1, …, yN-1, as well as each of the 

functions - keys.  

N is the number of elements of each 

one-dimensional array. Given the condition N 

> m, in the example, N is taken to be 16. 

In Table 1, the transmitted characters 

are displayed in the top horizontal row. The 

corresponding ciphers are presented as 

vertically arranged arrays, y0, y1, ..., y15. The 
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decrypted characters are located in the bottom 

horizontal row. Table 1 shows the results of 

encrypting and decrypting the word "Hello." 

The transmitted characters are shown again in 

the top horizontal row, with their 

corresponding ciphers displayed as vertically 

arranged arrays. The decrypted characters are 

positioned in the bottom row, horizontally. 

 
Table 1. Encryption and decryption of the message “Hello” 

 

yi H e l l o 

y0 -3462.92 -464930 -1.94948e06 -1.67087e06 79665.1 

y1 -27945.8 -1.93085e06 2.32983e+06 -618047 -57354.2 

y2 48274.2 49597.3 -10053.6 -540688 -1.33456e06 

y3 -63910.1 -95844.5 -111907 714190 1.39113e+06 

y4 4843.91 -521719 -283149 -621670 -1.41922e06 

y5 180555 -530555 -397695 237254 396756 

y6 -547757 -115632 -69730.9 291654 563131 

y7 1.12602e+06 -1.12165e06 -486727 -388156 -958982 

y8 -1.84834e06 -1.20104e06 -1.29669e06 506483 1.32904e+06 

y9 2.62386e+06 405547 1.3986e+06 -513376 -1.74415e06 

y10 -3.23145e06 1.54594e06 -1.00874e06 -179453 794323 

y11 3.49927e+06 1.96214e+06 3.86163e+06 804064 724870 

y12 -3.20739e06 -1.57378e06 -4.31761e06 -637326 -368713 

y13 2.21232e+06 -820759 3.096e+06 1.40039e+06 1.05473e+06 

y14 -3462.92 2.23014e+06 -2.02298e06 -1.81204e06 -1.81368e06 

y15 -27945.8 -136888 2.17465e+06 774521 824983 

yi                     H e l l o 

 

The decrypted characters are the same 

as the encrypted ones. It is also clear that the 

ciphers of adjacent ‘l’ symbols differ from  

 

 

each other. In order to demonstrate that such a 

difference is natural, Table 2 shows the 

results of encryption/decryption of a sequence 

of identical symbols. 
 

Table 2. Encryption and decryption of the five identical characters ‘A’ 

 

yi A A A A A 

y0 44355.1 79061.9 50605.3 4.27791e+06 -358.087 

y1 14263.4 57186.5 37156.4 6.57533e+06 -5675.86 

y2 65693.3 52062.4 32191.3 6.13868e+06 -9857.87 

y3 -34604.5 30122.3 20878.8 4.57351e+06 -11894.1 

y4 16899.4 16660.3 10429.4 6.95281e+06 -7584.02 

y5 152282 17372.7 6696.34 4.03545e+06 4207.17 

y6 -451022 -20600 452.905 6.8154e+06 8004.11 

y7 946393 104883 39588.5 5.65589e+06 -10091.4 

y8 -1.51504e06 -92083 -13525.1 5.0007e+06 2564.52 

y9 2.20616e+06 246139 93365.8 6.97047e+06 5317.41 

y10 -2.66021e06 -170969 -29852.3 3.98658e+06 2912.24 

y11 2.95031e+06 329825 125294 6.968e+06 -1618.25 

y12 -2.62671e06 -159244 -23183.1 5.14571e+06 16031.9 

y13 1.87308e+06 227270 91296.6 5.46946e+06 10967.3 

y14 -360135 16120.2 21775.1 6.89191e+06 1641.11 

y15 -1.58311e06 -109592 -22924.5 4.02238e+06 -1348.6 

yi A A A A A 

 

The results indicate that the ciphers of 

identical symbols adjacent in a message differ 

from each other. Each time, the same symbol 

receives a completely different cipher. This 

significantly complicates the "cracking" of the 

cryptosystem. Additionally, to break the 

cryptosystem, it is not only necessary to 

somehow discover the expressions for the 

eight key functions but also to determine the 

values of the coefficients they contain. Below 

is an example illustrating the difficulty of 

determining these coefficients. Table 3 shows 
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the decryption results when the value of one 

of the seven coefficients is incorrectly 

selected. Instead of w = 500, the value 

499.9995 was selected during decryption. 

 
Table 3. Comparison of the decryption with correct and incorrect coefficient w 

 

Original  

message 

Decrypted message  

with a coefficient 

w = 500 

Decrypted message  

with a wrong coefficient 

w = 499.9995 

T T ... 

h h l 

e e ... 

(Whitespace) (Whitespace) ... 

i i i 

m m l 

p p s 

o o o 

r r r 

t t w 

a a a 

n n n 

t t w 

(Whitespace) (Whitespace) (Whitespace) 

m m э 

e e ... 

s s ... 

s s ... 

a a ... 

g g ... 

e e э 

 

When w = 500, the decryption result 

matches the encrypted message. However, 

even a deviation of 0.0005 makes decryption 

impossible. And this is just one of several 

coefficients. To further complicate the 

cracking of the cryptosystem, it is also 

proposed to perform a permutation of the key 

functions according to a specific scheme, 

which must be implemented by both parties 

and serves as an additional element of 

secrecy. 

The example involves a scheme of six 

permutations of key functions. Each 

permutation occurs after a certain number of 

encryption/decryption cycles. The number of 

cycles can be either consistent or vary. The 

scenario is modeled where a third party has 

become aware of the key functions, which 

they decided to use to intercept the message, 

however, the scheme of their permutations 

remained unknown. Table 4 shows the 

decryption results when encryption was 

performed with permutations and decryption 

was conducted without them. 

 
Table 4. Comparison of the decryption with and without permutations of functions 

 

Original 

message 

Decrypted 

with 

permutations 

of functions 

Decrypted 

without 

permutations of 

functions 

A A A 

B B B 

C C C 

D D € 

E E (Whitespace) 

F F (Whitespace) 

G G … 

H H (Whitespace) 

I I % 



ISSN 2710 - 1673   Artificial Intelligence   2024  № 2 
 

18 

 

J J % 

K K - 

L L 1 

M L 1 

N N 5 

O O v 

P P … 

Q Q ) 

R R (Whitespace) 

S S 9 

T T I 

U U Y 

V V Y 

W W № 

X X I 

Y Y Y 

Z Z ‡ 

 

The results indicate that in this case the 

secret scheme of permutations of key 

functions does not allow reading the 

encrypted message. 

 

Limitations on Key Functions 

In [15], the main requirements for key 

functions are outlined: 

1. The function must be defined over 

the set of real numbers. 

2. The function should not be constant 

and must not assume zero values. 

3. When using a key function, avoid 

situations where division by a number close to 

zero occurs, as this can lead to significant 

computational errors. To prevent this, it is 

advisable to thoroughly test the cryptosystem 

with all the characters that will be used in the 

messages. 

4. Ensure that the sum of two or more 

key functions does not coincide with any 

other key function. 

5. It is recommended to include all 

parameters in the expression for each key 

function. In this case, changing the value of 

any parameter leads to a change in all key 

functions, rather than just one or a few. 

6. Before sending an encrypted 

message, first check how the decrypted 

message appears to avoid errors that might 

arise from not adhering to the previous 

guidelines. 

 

Conclusions 

Encryption and decryption algorithms 

have been developed using functions of a real 

variable as keys. To increase cryptographic 

strength, a permutation of key functions is 

carried out during the encryption/decryption 

process. Computer simulation has shown that 

this permutation works effectively. The lack 

of information about the permutation prevents 

unauthorized decryption of messages, even 

when the key functions are known. 

Computer simulation has also 

demonstrated how difficult it is to determine 

the values of the coefficients within the key 

functions, not to mention the need to identify 

the form of each one. The complexity of 

cracking the system is further increased 

because identical symbols do not produce 

identical ciphers. 
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