
ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

32

UDC: 004.8:004.93 https://doi.org/10.15407/jai2024.02.032

L. Korotka1, D. Klevzhyts2, D. Shvydko3
1,2,3Ukrainian State University of Science and Technology, Ukraine

 2, Academik Lazaryan st., Dnipro, 49010
1larysakorotka@gmail.com
2dimaklevzhts8@gmail.com
3shvydkodan@gmail.com
1https://orcid.org/0000-0003-0780-7571
2https://orcid.org/0009-0007-2739-6286
3https://orcid.org/0009-0008-6988-2597

USE OF GENERATIVE-ADVERSARIAL NETWORKS

WHEN CREATING CONTENT

Abstract. The application of generative-adversarial networks in the creation of content is studied. Monitoring of

training, analysis of architectures, determination of internal processes at the level of layers, research of properties of

latent space, and interaction with it are carried out. Variants of using the specified networks in image generation are

considered. Special attention is paid to practical implementation aspects, including selecting optimal parameters and

data processing. The difference between a classifier and a discriminator is formulated. The principles of generative-

adversarial networks and their influence on the efficiency and quality of generated images are studied. The advantages

and limitations of using GANs in content creation are considered.

Keywords: generative adversarial networks, discriminator, generator, image generation, TensorFlow 2.

Introduction

A popular tool in the modern

technology industry for content creation is the

use of generative-adversarial networks (GAN)

[1]. Algorithms based on machine learning

principles are capable of generating high-

quality visual, text and audio content that is

difficult to distinguish from human-made

content.

Analysis of recent research and

publications

GANs are used in various fields, from

art and entertainment to marketing and

scientific research, opening new horizons for

creativity. Some of the models can be called

“creative”. That is why one of the most

promising areas for generative adversarial

networks is art and fashion. Well-trained

GANs can be used to create paintings, songs,

clothes, and even poems [2].

Generative-adversarial networks can be

used to improve the clarity of images based

on statistical distributions: they are able to

predict missing fragments, and generate the

corresponding pixel values, which will

improve the quality of photos taken by

telescopes or microscopes where missing,

lost, damaged fragments are present [3-5].

GANs can be used to predict computational

bottlenecks in scientific research projects as

well as in industrial applications. Obviously,

this is far from a complete list of applications

of these networks. Despite the interest and

progress in generative image modeling, the

successful creation of various high-resolution

samples from complex datasets is far from

complete [6, 7].

The goal and task of the research: to

investigate the generative-adversarial

network, and its internal behavior during

generation.

The task of the work is to generate

content using GAN. It is necessary to find

architectures and recommendations that will

improve the quality of the received data.

Investigate the processes of learning

models and generating images, and consider

their internal behavior. Need to: find and test

different ways to monitor GAN training; find

out what latent/hidden space is, what its

properties are, and how to interact with it;

determine the processes that take place inside

the obtained neural networks at the level of

layers; establish and describe the features of

the mathematical basis of the discriminator;

formulate the difference between a classifier

and a discriminator; collect experimental data

and conduct their analysis.

mailto:1larysakorotka@gmail.com
mailto:dimaklevzhts8@gmail.com

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

 33

Research materials and methods

Any learning of neural networks,

including deep learning, is not a simple task

for a personal computer (PC). Especially if

you do not configure the use of GPU

(Graphics Processing Unit) for this process.

The work uses the Python programming

language. The TensorFlow framework [7, 8]

can work in both modes: if there are no

settings for the use of a graphics card, then

the calculations are performed on the

processor.

For small networks, the CPU (Central

Processing Unit) will suffice, but due to its

operational characteristics, it may take

significantly longer. It is still recommended to

make an effort to install the appropriate

programs and drivers required for the

TensorFlow framework [7, 8]. It is worth

noting that since version 2.11 TensorFlow is

not supported by the Windows operating

system, so further use requires additional

settings or switching to another system.

There are two options for solving the

problem: using your PC or an online service,

for example, Google Colab [9]. The latter

approach does not require additional settings,

has free access to graphics processors, and

allows you to distribute documents to other

people. Proposed technical characteristics of

the free version: T4 GPU, 16 GB of GDDR6

memory at 10 GHz; 12 GB of RAM; CPU, 2

cores.

Presenting main material

As is well known, Generative

Adversarial Networks are a type of deep

learning model that consists of two competing

neural networks: a generator (G) and a

discriminator (D). Random noise is applied to

the input of the generator, and either the

output G or real data is supplied to the

discriminator [10]. The output D is the label

(probability value) of the class - the data is

real or artificial. The utility function is

maximized:

 U(D,G) = Ex~Px(x)[logD(x)] + EZ~Pz(z)[log(1-G(z))]. (1)

Various training data are used for

experimental research, including the MNIST

(Modified National Institute of Standards and

Technology) dataset [11].

By definition, the input to GAN

networks is a vector or other form of array of

random data, on the basis of which images are

generated (Fig. 1).

Fig. 1. Scheme of the process of recording features in the hidden space

GAN research will begin with the

architecture selection process. In the work,

experiments were conducted with various

models, let's focus on some of them. The

peculiarity of the architecture of the network

generator (Fig. 2) is the size of the input

noise: the dimensionality of the input data is

equal to two, which corresponds to two-

dimensional coordinates. A size of one

hundred or more is usually specified, which

may simplify the training of the model, but

complicate further study due to the

dimensionality problem.

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

34

Fig. 2. Architecture of the 2D generator

The output value of the generator is

equal to the data size of the MNIST dataset –

28 x 28 x 1, which corresponds to the input

value of the discriminator (Fig. 3).

As for architectures of generators for

3D, 4D noises, their changes concern only the

input layer to the values “?x3” and “?x4”,

respectively. The discriminators, in turn, do

not change.

Training any model can be done using

the same approach. Only the input-output

data, the structure of the models, the method

of storing intermediate results, or their very

type are changed.

The latter allows you to have a single

template, a set of your libraries or packages,

with which you can reduce code duplication.

Therefore, 2D GAN training approaches are

described below, which will work for other

models as well, but with their modifications.

Here are the main stages.

The work process begins with the

preparation of input data: normalization or

standardization. The formation of the

generator and discriminator, the function of

calculating their errors, takes place. The

module is responsible for the direct training of

models, updating their weights with the help

of optimizers.

An important point is to save the state

of the model to be able to pause the training

and continue it later. The last template

component will be the training launch block.

Individual changes and settings are

made for each type of model [12].

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

 35

Fig. 3. Architecture of 2D, 3D, 4D discriminator

Results of experiments

The following results were obtained

during direct GAN training:

− training was conducted for 15 hours,

where one epoch accounted for approximately

10 seconds;

− a total of 500 iterations of 10 epochs

were passed, from each iteration 16 photo

numbers with the same set of noise from 16

vectors were saved (images from the first and

last iteration are shown in Fig. 4 a and 4 b,

respectively), maps of areas obtained by

classification of 10,000 generated images by a

combination of a hundred points in the range

from -1 to 1 along the abscissa and ordinate

axes (therefore, in a combination of 10,000

noise values). The initial and final state of the

class map is shown in Figure 5a and Figure

5b, respectively;

− the accuracy of the strong independent

classifier (ІC) at the thousandth epoch was

0.49% on the training set and 0.55% on the

test set, at the end of training (five thousandth

epoch) the values were 0.73% and 1.54%,

respectively. ІC is essentially a trained

discriminator, but it is an independent model

whose task is to distinguish the generated

images from the real ones with the maximum

percentage. The latter distinguishes him from

a discriminator who does not learn to the end.

The training schedule of the last strong ІC

(Fig. 6);

− the accuracy value of a small network

of an independent classifier (Fig. 7);

− the history of generator and

discriminator errors separately (Fig. 8);

− the result of the generation of the

trained model (Fig. 9).

a) b)

Fig. 4. Generated images on the first and last iteration

It is not difficult to notice that the

quality of the numbers has become better over

time (Fig. 4). From epoch to epoch, the

generator improved its output step by step,

until it reached a stable version, although

some numbers look rather imprecise, unclear,

have extra pixels.

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

36

a) b)

Fig. 5. Maps of class areas on the first and last iteration

Analysis of the obtained results makes it

possible to note an interesting fact regarding

the map of class regions: the number “1” was

often found in the center between different 2D

GAN models. This is what was discovered

during the restart of training and the process

of preparing for the final version of the

network. The explanation may be that this

figure has the greatest connection with others,

and its shape easily transforms into most

others.

It can be concluded that in the center of

the map of the hidden space of the model, the

most common version of the image is most

often found, which is the carrier of most of

the characteristics and features inherent in all

other objects.

Fig. 6. The process of strong learning independent classifier

After the hundredth epoch, weak ІCs

stopped rapidly increasing in value, as shown

by the graph in Fig. 7.

One would assume that the training is

complete, but this is a misleading impression.

The ideal variant of the error value in such a

problem is equal to 50%, so that it can mean

“guessing” by the classifier: where is one

class and where is the other.

The classifier quickly learns to

recognize which image is real and which is

artificial (Fig. 6).

After the two thousandth epoch, the

errors gradually move away from each other

(Fig. 8), which indicates the stabilization of

learning. The model of a weak independent

classifier gradually deteriorates the ability to

separate real images from generated ones,

therefore, the model has learned (Fig. 7).

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

 37

Fig. 7. Accuracy of independent classifiers every ten epochs

Fig. 8. History of generator and discriminator errors

Testing on the validation set with a

strong classifier showed an error of 0.55% at

1000 epochs and 1.54% at 5000 epochs,

which may indicate an improvement in

generation. The learning stop occurred due to

a decrease in the intensity of changes in the

last epochs, which are visible in the sixteen

image generations from each epoch and in the

class regions.

The description of the 3D GAN training

process now does not require such detail, but

only requires specific key changes. Thus, the

convenient view of a rectangular map of class

areas in 2D space is replaced by a 3D cube,

which makes it much more difficult to view.

Such a figure is not easy to visualize;

therefore, the concept of sections is

introduced: 16 “sections” are made along all

axes of the cube (16 points from -1 to 1 with

the corresponding step) forming three

projections. With such images at each epoch

or iteration, the process of changing the map

of class areas can be displayed.

The results of the experiments make it

possible to draw the following conclusions:

training the model took less time compared to

the 2D version, while the quality of the

generated images improved. The numbers

have become clearer with neat shapes and a

realistic look. The errors of weak independent

classifiers have grown in the same way as in

the previous model.

As for the errors of strong classifiers,

the values are quite different. The 2D

generator was able to achieve a result of

1.54%, and the 3D - 3.2%.

Fig. 9. An example of generating numbers by

the GAN model using two-dimensional noise

(five thousand epochs)

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

38

The dynamics of errors directly of the

generator and discriminator models does not

show any problems.

The increase in the noise dimension had

a positive effect on the quality of the models,

while there was a decrease in the time spent

and the number of epochs (the latter would

reduce the number of photos if they were

stored at each epoch).

We present the results of experiments

investigating various properties of the

resulting networks. Without further delay,

let's start with two-dimensional space.

A point can be added to the resulting

map of the class areas of the two-dimensional

GAN model, the movement of which allows

you to explore the hidden space (Fig. 10).

There are several areas in the program

interface: directly generated image

“Generated image”; a sequence of images

“Activations for each layer (average values)”

showing intermediate generation results

starting from the first layer of the neural

network to the last; map of class areas “Map

of class areas”; slider for “x” and “y”, which

can be used to change the coordinates of the

point.

Fig. 10. Interface for exploring 2D hidden space

The state of the system is updated when the sliders move (Fig. 11): the point with coordinates

(-0,84; 0,54) occupied a new area on the map corresponding to the number “9”; coordinates (0; 0)

correspond to the number “1”.

Fig. 11. New system status

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

 39

Other areas, taking into account the black and white version (Fig. 12).

Fig. 12. Text designation of class areas

The work implements the so-called “smooth flow” from one point “A” to another point “B”

(Fig. 13).

Fig. 13. “Smooth flow” of images between two points

The logic of working with three-

dimensional space is similar to working with

two-dimensional space. The proposed

software interface is presented in fig. 14. As

in the previous approaches, there are regions

of the generated image in the space,

sequences of generation by network layers, a

cube map of class regions, sliders for

changing the coordinates of a point, the

location of which is now tracked not only by

rotating the cube, but also by using three

projections on the corresponding planes.

If you change the coordinates of the

point, the state of the system will change and

a new one will be obtained (Fig. 15). The

point now occupies the corner of the cube

corresponding to the number eight.

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

40

Fig. 14. Program interface for working with one point of three-dimensional space

Fig. 15. Changing the position of a point in space

A “smooth flow” between two points is

also implemented (Fig. 16).

In the work, a study of CGAN networks

(Conditional Generative Adversarial

Networks) is carried out – a type of

generative-adversarial networks, which during

generation receive not only noise as input but

also a condition in the form of a class label of

the image to be obtained.

The resulting universal model, which

can generate more different images per unit of

noise, theoretically increases the generation

options several times.

In a regular GAN, the number of points

is equal to 10,000, in which all classes are

distributed, in CGAN – 10,000 for each class

separately.

As disadvantages, one can note: that a

significant number of images are not unique

or do not look natural, but this is more a

matter of the process, learning methods, and

the structure of the neural network model

itself.

As part of the continuation of the

research topic, the issue of choosing the

activation function (FA) was considered [13].

A series of experiments with the same model

architecture, but the different most widely

used FAs, in particular: ReLU, LeakyReLU,

PReLU, and ELU, were conducted and

analyzed.

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

 41

Fig. 16. An interface for studying the 3D “flow” of an image between two points

Testing was performed on 500 epochs

for each model with the same MNIST dataset

(Table 1).

Note that the data in the table are

obtained using a strong independent classifier.

Obviously, during training, the results of all

models grow (the best value is 0.1561), which

corresponds to a classifier error of 15.61% on

the test set (Fig. 17).

Table 1. Results of the experiment with activation

functions

Epoch ReLU
Leaky

ReLU
PReLU ELU

100 0,0064 0,0065 0,0068 0,0186

200 0,0198 0,0538 0,0473 0,0369

300 0,0810 0,0502 0,0670 0,0967

400 0,0631 0,0821 0,0263 0,0706

500 0,1561 0,1428 0,0789 0,0526

Fig. 17. Chart of results

At the end of training, the ReLU

activation function achieved the best result

compared to the others. Thus, the choice of

FA depends on the problem to be solved and

the designer of the neural network.

In the work, experiments were

conducted with different FAs in Landscape

GAN when generating landscape images.

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

42

Before that, the model was trained using the

LeakyReLU activation function, with a

maximum error of an independent classifier

of approximately 8%.

Before the experiment, its architecture

was taken as a basis and improved, the

number of convolution filters was increased.

Table 2 shows some of the experimental

results obtained.

With the best result is the ReLU

activation function, which has 11.45%

independent classifier error, the result is

achieved at the four hundred and fiftieth

epoch. ELU and LeakyReLU are next with

respective results.

Each model learned about 20% longer

than the previous version (100 hours). In

general, a total of 480 hours were spent on the

experiment (under the condition of parallel

training).

Table 2. Results of the experiment

Epoch ReLU
Leaky

ReLU
ReLU ELU

10 0,0010 0,0036 9,86E-04 0,0019

50 0,0288 0,0189 0,0057 0,0233

100 0,0541 0,0626 0,003 0,052

300 0,0689 0,0593 0,0063 0,067

400 0,0967 0,0725 0,0052 0,0587

450 0,1145 0,0636 0,0062 0,084

500 0,1086 0,0654 0,0035 0,0795

800 0,0853 0,0458 0,0036 0,099

1000 0,0397 0,0718 0,0059 0,0825

Further, the paper investigates the

behavior of the internal system of models: the

type of activation between layers in the best

photo-landscape models with the

corresponding functions.

The result is that all activation functions

try to strongly “cancel” the inputs to the

neurons.

Black means the activation value is

close to zero, and white means strong

response.

It turns out that the final image

generated by the model is created by a large

number of “dot-sticks”, which are then

grouped into a photo as the last layer.

It can be concluded that when changing,

for example, the value of activations after the

penultimate layer, you can generate separate

areas of the photo to improve it (remove

defects or other artifacts).

Table 3 contains information about the

training time of the models, the number of

epochs, the size of the dataset and images, the

quality of generation according to the

assessment of the independent classifier, the

number of parameters of the models.

Table 4 summarizes information about

testing with various activation functions.

Obviously, the ReLU activation

function ranks first in both types of generation

problems.

For a better understanding of the

operation of the generator and the hidden

space, the variational autoencoder (VAE) is

considered, which, with the help of root mean

square error and Kullback-Leibler (KL)

divergence, distributes vertices in the space

next to each other in order of similarity.

Table 3. Results of experiments with models regarding the quality of generation,

which were evaluated by independent classifiers

Generator
Numbers (noise)

2D 3D, CGAN 4D

t learning, hours 15 10 5.5 3
tavg to 1 epoch, s 10 20 0.125 10

n epoch, thousands 5 2 60 1
Dataset, thousands, shape 60, 28 х 28 х 1

Memory, GB 0,18

IC, , % 1,5 3,2 0,084 8,29

params
G

Total 1 101 632 1 114 176 1 114 206 1 126 720

Trainable
1 076 16

0
1 088 704 1 088 734 1 101 248

Non-trainable 25 472

D Total 212 865 212 865 220 705 212 865

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

 43

Table 4. Results of testing models with different activation functions

Numbers

Activation function ReLU LeakyReLU PReLU ELU

The biggest error, % 15,61 14,28 7,89 9,67

Study time: one epoch, s – total

time, hours

9 s – 1 hours

15 min 06 s

10 s – 1 hours

22 min 37 s

10 s – 1 hours

15 min 14 s

9 s – 1 hours

19 min 32 s

Generator parameters 1 126 720

Discriminator parameters 212 865

Landscapes

The biggest error, % 11,45 9,74 0,92 10,61

Study time: one epoch, s 410 s 410 s 430 s 420 s

Generator parameters 10 729 344

Discriminator parameters 2 563 713

Assume that the GAN implements this

behavior without direct instructions.

Kullback-Leibler divergence [14]:

DKL[N(µ,σ||N(0,1)=0,5∑(1+log(σ2)-µ2).

The online service of the Kaggle

platform was used to search for datasets and

train networks.

The architecture of the U-Net network

was used as an experiment. The latter is done

to get the “noise” to deep levels.

Special attention is paid to the selection

of the dataset. As already noted, the MNIST

dataset is quite clear and easy to use, but not

only it was used in the work.

The Kaggle platform is known to

contain a sufficient number of available

datasets for various machine-learning tasks.

Of course, there are other online services, for

example, the possibility of using GitHub

repositories or Alibaba's Tianchi platform for

this.

Six thousand images of ships with a size

of 32x32 pixels were used as a dataset. An

independent classifier can indicate the quality

of the generation: the worse the division into

two classes is, the better the trained GAN

model.

An experiment on the convolution

kernels showed that the best result, with a

13% IC error, was the value of the

convolution kernels “5-5”. Therefore, the

following U-Net-2 model was trained over

twenty thousand epochs, which had erratic

errors, low-quality signal generation, and a

test with an independent classifier showing a

low 8%.

For further experiments, it is suggested

to consider a linear model and drawings of

landscapes with a size of 64x64 pixels. To

improve the quality of training, it is proposed

to increase the volume of the dataset from five

to twenty thousand.

The following model is trained on

ninety thousand real 64x64 landscape photos.

The generated color images have

visually clear images and clearer boundaries

of objects (Fig. 18).

As a result, an image with sufficient

detail and image clarity was obtained. During

testing with an independent classifier, an error

of 11% was obtained (Fig. 19), which is quite

good compared to past experiments.

Note that the following layers are used

in the generator model: Dense,

BatchNormalization, LeakyReLU, Reshape,

and Conv2DTranspose.

As already mentioned earlier, as part of

the work, tests were conducted with various

functions of activations in the models.

The best version of the model has ReLU as

the main FA, and the hyperbolic tangent

(tanh) on the last layer. Diagram of errors

(Fig. 20).

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

44

Fig. 18. Generated Images

Fig. 19. IC test

The intermediate state of the model at

the four-hundred-and-fiftieth epoch (Fig. 21)

and the final state of the model (Fig. 22) are

given below.

When visually comparing (Figs. 21 and

22) the intermediate and final state of the

network, it can be stated that at the time of the

four hundred and fiftieth epoch, the images

have a better display of images than the final

result.

The results of experiments conducted

on training neural networks are given in [7].

Note that different network

architectures, their parameters and layers,

activation functions and datasets are used.

The resulting data can be used to train

networks to generate images larger than

64x64x3.

Conclusions

The work included: the behavior of

generative-adversarial networks was

investigated, the hidden space and interaction

with it were considered.

The template architecture of the

generator and discriminator is given. The

learning processes of 2D, 3D and 4D GAN

networks are described.

The behavior of the final versions of the

models after their training is considered and

investigated. The features of the generative-

adversarial network with the CGAN condition

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

45

are given, and the representation of their

hidden spaces is considered.

Experiments were carried out with

activation functions when solving the problem

of generating images of handwritten numbers

and photos of real landscapes.

Fig. 20. Graph of errors by epoch

Fig. 21. Intermediate state of the model

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

46

Fig. 22. Final state of the network

References

1. Ian J. Goodfellow et al. Generative Adversarial

Networks. Advances in Neural Information Processing

Systems. 2014. 3(11). Р. 1-9 (DOI: 10.1145/3422622)

2. Course Goggle “Machine Learning”. GAN

Variations. URL:

https://developers.google.com/machine-

learning/gan/applications?hl=ru (Date of application

05.02.2024).

3. Stratehiia rozvytku shtuchnoho intelektu v

Ukraini. Za zahalnoiu redaktsiieiu A. I. Shevchenka.

Vydavnytstvo «Torpeda». Kyiv. – 2023 r. S 305.

(DOI: 10.15407/ development_strategy_2023).

4. Tero Karras, Samuli Laine, Timo Aila. A Style-

Based Generator Architecture for Generative

Adversarial Networks. Conference: 2019 IEEE/CVF

Conference on Computer Vision and Pattern

Recognition (CVPR). 2019. – P. 4396-4406. (DOI:

10.1109/CVPR.2019.00453)

5. Ian Goodfellow, Yoshua Bengio, Aaron

Courville. Deep Learning (Adaptive Computation and

Machine Learning series). The MIT Press. 2016. 800р.

6. Andrew Brock, Jeff Donahue, Karen Simonyan.

«Large Scale GAN Training for High Fidelity Natural

Image Synthesis». Published as a conference paper at

ICLR. 2018. Р. 1-35.

(https://doi.org/10.48550/arXiv.1809.11096)

7. Pyvovar S.S., Korotka L.I. Mashynne

navchannia dlia heneratsii hrafichnykh danykh z

vykorystanniam bibliotek TensorFlow ta Keras.

Materialy VIII Mizhnarodnoi naukovo-tekhnichnoi

konferentsii kompiuterne modeliuvannia ta

optymizatsiia skladnykh system (1-3 lystopada 2023

roku m. Dnipro, Ukraina). 2019. S. 128-130.

8. Prykladne mashynne navchannia za

dopomohoiu Scikit-Learn ta TensorFlow: kontseptsii,

instrumenty ta tekhniky stvorennia intelektualnykh

system. Orelen Zheron. Kyiv: «Dyalektyka», 2020. –

688s.

9. Online development service Google Colab. url:

https://colab.research.google.com (Date of application

05.02.2024).

10. Klevzhyts D.D., Shvydko D.O., Korotka L.I.

Heneratyvno-zmahalni merezhi u sferi stvorennia

kontentu. Shtuchnyi intelekt: dosiahnennia, vyklyky ta

ryzyky. Mizhnarodna naukova konferentsiia (15-16

bereznia 2024 r., m. Kyiv). 2024. S. 89-94.

11. Liangqu Long, Xiangming Zeng. Beginning

Deep Learning with TensorFlow: Work with Keras,

MNIST Data Sets, and Advanced Neural Networks. 1st

ed. Edition. 2022. 740 р.

https://doi.org/10.48550/arXiv.1809.11096

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

47

12. Aurelien Geron. Hands-On Machine Learning

with Scikit-Learn and TensorFlow. O’Reilly Media,

Inc. 2017. 684 с.

13. RELU activation function. Official Tensorflow

documentation. url:

https://www.tensorflow.org/api_docs/python/tf/keras/la

yers/ReLU (Date of application 05.02.2024).

14. David Foster. Generative Deep Learning.

O’Reilly Media. 2019. 327 с.

The article has been sent to the editors 03.06.24.

After processing 15.06.24.

Submitted for printing 28.06.24.

Copyright under license CCBY-SA 4.0.

