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USE OF GENERATIVE-ADVERSARIAL NETWORKS  

WHEN CREATING CONTENT 
 

Abstract. The application of generative-adversarial networks in the creation of content is studied. Monitoring of 

training, analysis of architectures, determination of internal processes at the level of layers, research of properties of 

latent space, and interaction with it are carried out. Variants of using the specified networks in image generation are 

considered. Special attention is paid to practical implementation aspects, including selecting optimal parameters and 

data processing. The difference between a classifier and a discriminator is formulated. The principles of generative-

adversarial networks and their influence on the efficiency and quality of generated images are studied. The advantages 

and limitations of using GANs in content creation are considered. 

Keywords: generative adversarial networks, discriminator, generator, image generation, TensorFlow 2. 

 

Introduction  

A popular tool in the modern 

technology industry for content creation is the 

use of generative-adversarial networks (GAN) 

[1]. Algorithms based on machine learning 

principles are capable of generating high-

quality visual, text and audio content that is 

difficult to distinguish from human-made 

content. 

 

Analysis of recent research and 

publications 

GANs are used in various fields, from 

art and entertainment to marketing and 

scientific research, opening new horizons for 

creativity. Some of the models can be called 

“creative”. That is why one of the most 

promising areas for generative adversarial 

networks is art and fashion. Well-trained 

GANs can be used to create paintings, songs, 

clothes, and even poems [2]. 

Generative-adversarial networks can be 

used to improve the clarity of images based 

on statistical distributions: they are able to 

predict missing fragments, and generate the 

corresponding pixel values, which will 

improve the quality of photos taken by 

telescopes or microscopes where missing, 

lost, damaged fragments are present [3-5]. 

GANs can be used to predict computational 

bottlenecks in scientific research projects as 

well as in industrial applications. Obviously, 

this is far from a complete list of applications 

of these networks. Despite the interest and 

progress in generative image modeling, the 

successful creation of various high-resolution 

samples from complex datasets is far from 

complete [6, 7]. 

 

The goal and task of the research: to 

investigate the generative-adversarial 

network, and its internal behavior during 

generation. 

The task of the work is to generate 

content using GAN. It is necessary to find 

architectures and recommendations that will 

improve the quality of the received data. 

Investigate the processes of learning 

models and generating images, and consider 

their internal behavior. Need to: find and test 

different ways to monitor GAN training; find 

out what latent/hidden space is, what its 

properties are, and how to interact with it; 

determine the processes that take place inside 

the obtained neural networks at the level of 

layers; establish and describe the features of 

the mathematical basis of the discriminator; 

formulate the difference between a classifier 

and a discriminator; collect experimental data 

and conduct their analysis. 
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Research materials and methods  

Any learning of neural networks, 

including deep learning, is not a simple task 

for a personal computer (PC). Especially if 

you do not configure the use of GPU 

(Graphics Processing Unit) for this process. 

The work uses the Python programming 

language. The TensorFlow framework [7, 8] 

can work in both modes: if there are no 

settings for the use of a graphics card, then 

the calculations are performed on the 

processor. 

For small networks, the CPU (Central 

Processing Unit) will suffice, but due to its 

operational characteristics, it may take 

significantly longer. It is still recommended to 

make an effort to install the appropriate 

programs and drivers required for the 

TensorFlow framework [7, 8]. It is worth 

noting that since version 2.11 TensorFlow is 

not supported by the Windows operating 

system, so further use requires additional 

settings or switching to another system. 

There are two options for solving the 

problem: using your PC or an online service, 

for example, Google Colab [9]. The latter 

approach does not require additional settings, 

has free access to graphics processors, and 

allows you to distribute documents to other 

people. Proposed technical characteristics of 

the free version: T4 GPU, 16 GB of GDDR6 

memory at 10 GHz; 12 GB of RAM; CPU, 2 

cores. 

 

Presenting main material  

As is well known, Generative 

Adversarial Networks are a type of deep 

learning model that consists of two competing 

neural networks: a generator (G) and a 

discriminator (D). Random noise is applied to 

the input of the generator, and either the 

output G or real data is supplied to the 

discriminator [10]. The output D is the label 

(probability value) of the class - the data is 

real or artificial. The utility function is 

maximized:  

                                    U(D,G) = Ex~Px(x)[logD(x)] + EZ~Pz(z)[log(1-G(z))].                          (1) 

 

Various training data are used for 

experimental research, including the MNIST 

(Modified National Institute of Standards and 

Technology) dataset [11]. 

By definition, the input to GAN 

networks is a vector or other form of array of 

random data, on the basis of which images are 

generated (Fig. 1). 

 

 
 

Fig. 1. Scheme of the process of recording features in the hidden space 

 

GAN research will begin with the 

architecture selection process. In the work, 

experiments were conducted with various 

models, let's focus on some of them. The 

peculiarity of the architecture of the network 

generator (Fig. 2) is the size of the input 

noise: the dimensionality of the input data is 

equal to two, which corresponds to two-

dimensional coordinates. A size of one 

hundred or more is usually specified, which 

may simplify the training of the model, but 

complicate further study due to the 

dimensionality problem. 
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Fig. 2. Architecture of the 2D generator 

 

The output value of the generator is 

equal to the data size of the MNIST dataset – 

28 x 28 x 1, which corresponds to the input 

value of the discriminator (Fig. 3). 

As for architectures of generators for 

3D, 4D noises, their changes concern only the 

input layer to the values “?x3” and “?x4”, 

respectively. The discriminators, in turn, do 

not change. 

Training any model can be done using 

the same approach. Only the input-output 

data, the structure of the models, the method 

of storing intermediate results, or their very 

type are changed. 

The latter allows you to have a single 

template, a set of your libraries or packages, 

with which you can reduce code duplication. 

Therefore, 2D GAN training approaches are 

described below, which will work for other 

models as well, but with their modifications. 

Here are the main stages. 

The work process begins with the 

preparation of input data: normalization or 

standardization. The formation of the 

generator and discriminator, the function of 

calculating their errors, takes place. The 

module is responsible for the direct training of 

models, updating their weights with the help 

of optimizers. 

An important point is to save the state 

of the model to be able to pause the training 

and continue it later. The last template 

component will be the training launch block. 

Individual changes and settings are 

made for each type of model [12]. 
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Fig. 3. Architecture of 2D, 3D, 4D discriminator 

 

Results of experiments  

The following results were obtained 

during direct GAN training: 

− training was conducted for 15 hours, 

where one epoch accounted for approximately 

10 seconds; 

− a total of 500 iterations of 10 epochs 

were passed, from each iteration 16 photo 

numbers with the same set of noise from 16 

vectors were saved (images from the first and 

last iteration are shown in Fig. 4 a and 4 b, 

respectively), maps of areas obtained by 

classification of 10,000 generated images by a 

combination of a hundred points in the range 

from -1 to 1 along the abscissa and ordinate 

axes (therefore, in a combination of 10,000 

noise values). The initial and final state of the 

class map is shown in Figure 5a and Figure 

5b, respectively; 

− the accuracy of the strong independent 

classifier (ІC) at the thousandth epoch was 

0.49% on the training set and 0.55% on the 

test set, at the end of training (five thousandth 

epoch) the values were 0.73% and 1.54%, 

respectively. ІC is essentially a trained 

discriminator, but it is an independent model 

whose task is to distinguish the generated 

images from the real ones with the maximum 

percentage. The latter distinguishes him from 

a discriminator who does not learn to the end. 

The training schedule of the last strong ІC 

(Fig. 6); 

− the accuracy value of a small network 

of an independent classifier (Fig. 7); 

− the history of generator and 

discriminator errors separately (Fig. 8); 

− the result of the generation of the 

trained model (Fig. 9).  

 

   

a) b) 
 

Fig. 4. Generated images on the first and last iteration 

 

It is not difficult to notice that the 

quality of the numbers has become better over 

time (Fig. 4). From epoch to epoch, the 

generator improved its output step by step, 

until it reached a stable version, although 

some numbers look rather imprecise, unclear, 

have extra pixels. 
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a) b) 

 

Fig. 5. Maps of class areas on the first and last iteration 

 

Analysis of the obtained results makes it 

possible to note an interesting fact regarding 

the map of class regions: the number “1” was 

often found in the center between different 2D 

GAN models. This is what was discovered 

during the restart of training and the process 

of preparing for the final version of the 

network. The explanation may be that this 

figure has the greatest connection with others, 

and its shape easily transforms into most 

others. 

It can be concluded that in the center of 

the map of the hidden space of the model, the 

most common version of the image is most 

often found, which is the carrier of most of 

the characteristics and features inherent in all 

other objects. 

 

 
 

Fig. 6. The process of strong learning independent classifier 

 

After the hundredth epoch, weak ІCs 

stopped rapidly increasing in value, as shown 

by the graph in Fig. 7. 

One would assume that the training is 

complete, but this is a misleading impression. 

The ideal variant of the error value in such a 

problem is equal to 50%, so that it can mean 

“guessing” by the classifier: where is one 

class and where is the other. 

The classifier quickly learns to 

recognize which image is real and which is 

artificial (Fig. 6). 

After the two thousandth epoch, the 

errors gradually move away from each other 

(Fig. 8), which indicates the stabilization of 

learning. The model of a weak independent 

classifier gradually deteriorates the ability to 

separate real images from generated ones, 

therefore, the model has learned (Fig. 7). 
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Fig. 7. Accuracy of independent classifiers every ten epochs 

 

 
 

Fig. 8. History of generator and discriminator errors 

 

Testing on the validation set with a 

strong classifier showed an error of 0.55% at 

1000 epochs and 1.54% at 5000 epochs, 

which may indicate an improvement in 

generation. The learning stop occurred due to 

a decrease in the intensity of changes in the 

last epochs, which are visible in the sixteen 

image generations from each epoch and in the 

class regions. 

The description of the 3D GAN training 

process now does not require such detail, but 

only requires specific key changes. Thus, the 

convenient view of a rectangular map of class 

areas in 2D space is replaced by a 3D cube, 

which makes it much more difficult to view. 

Such a figure is not easy to visualize; 

therefore, the concept of sections is 

introduced: 16 “sections” are made along all 

axes of the cube (16 points from -1 to 1 with 

the corresponding step) forming three 

projections. With such images at each epoch 

or iteration, the process of changing the map 

of class areas can be displayed.  

The results of the experiments make it 

possible to draw the following conclusions: 

training the model took less time compared to 

the 2D version, while the quality of the 

generated images improved. The numbers 

have become clearer with neat shapes and a 

realistic look. The errors of weak independent 

classifiers have grown in the same way as in 

the previous model. 

As for the errors of strong classifiers, 

the values are quite different. The 2D 

generator was able to achieve a result of 

1.54%, and the 3D - 3.2%. 

 

 
 

Fig. 9. An example of generating numbers by  

the GAN model using two-dimensional noise  

(five thousand epochs) 
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The dynamics of errors directly of the 

generator and discriminator models does not 

show any problems. 

The increase in the noise dimension had 

a positive effect on the quality of the models, 

while there was a decrease in the time spent 

and the number of epochs (the latter would 

reduce the number of photos if they were 

stored at each epoch). 

We present the results of experiments 

investigating various properties of the 

resulting networks. Without further delay, 

let's start with two-dimensional space. 

A point can be added to the resulting 

map of the class areas of the two-dimensional 

GAN model, the movement of which allows 

you to explore the hidden space (Fig. 10). 

There are several areas in the program 

interface: directly generated image 

“Generated image”; a sequence of images 

“Activations for each layer (average values)” 

showing intermediate generation results 

starting from the first layer of the neural 

network to the last; map of class areas “Map 

of class areas”; slider for “x” and “y”, which 

can be used to change the coordinates of the 

point. 

 
 

Fig. 10. Interface for exploring 2D hidden space 

 

The state of the system is updated when the sliders move (Fig. 11): the point with coordinates 

(-0,84; 0,54) occupied a new area on the map corresponding to the number “9”; coordinates (0; 0) 

correspond to the number “1”. 

 

 
 

Fig. 11. New system status 
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Other areas, taking into account the black and white version (Fig. 12). 

 

 
 

Fig. 12. Text designation of class areas 

 

The work implements the so-called “smooth flow” from one point “A” to another point “B” 

(Fig. 13). 

 

 
 

Fig. 13. “Smooth flow” of images between two points 

 

The logic of working with three-

dimensional space is similar to working with 

two-dimensional space. The proposed 

software interface is presented in fig. 14. As 

in the previous approaches, there are regions 

of the generated image in the space, 

sequences of generation by network layers, a 

cube map of class regions, sliders for 

changing the coordinates of a point, the 

location of which is now tracked not only by 

rotating the cube, but also by using three 

projections on the corresponding planes. 

If you change the coordinates of the 

point, the state of the system will change and 

a new one will be obtained (Fig. 15). The 

point now occupies the corner of the cube 

corresponding to the number eight. 
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Fig. 14. Program interface for working with one point of three-dimensional space 

 

 
 

Fig. 15. Changing the position of a point in space 

 

A “smooth flow” between two points is 

also implemented (Fig. 16). 

In the work, a study of CGAN networks 

(Conditional Generative Adversarial 

Networks) is carried out – a type of 

generative-adversarial networks, which during 

generation receive not only noise as input but 

also a condition in the form of a class label of 

the image to be obtained. 

The resulting universal model, which 

can generate more different images per unit of 

noise, theoretically increases the generation 

options several times. 

In a regular GAN, the number of points 

is equal to 10,000, in which all classes are 

distributed, in CGAN – 10,000 for each class 

separately. 

As disadvantages, one can note: that a 

significant number of images are not unique 

or do not look natural, but this is more a 

matter of the process, learning methods, and 

the structure of the neural network model 

itself. 

As part of the continuation of the 

research topic, the issue of choosing the 

activation function (FA) was considered [13]. 

A series of experiments with the same model 

architecture, but the different most widely 

used FAs, in particular: ReLU, LeakyReLU, 

PReLU, and ELU, were conducted and 

analyzed. 
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Fig. 16. An interface for studying the 3D “flow” of an image between two points 

 

Testing was performed on 500 epochs 

for each model with the same MNIST dataset 

(Table 1). 

Note that the data in the table are 

obtained using a strong independent classifier. 

Obviously, during training, the results of all 

models grow (the best value is 0.1561), which 

corresponds to a classifier error of 15.61% on 

the test set (Fig. 17). 
 

 

Table 1. Results of the experiment with activation 

functions 

 

Epoch ReLU 
Leaky 

ReLU 
PReLU ELU 

100 0,0064 0,0065 0,0068 0,0186 

200 0,0198 0,0538 0,0473 0,0369 

300 0,0810 0,0502 0,0670 0,0967 

400 0,0631 0,0821 0,0263 0,0706 

500 0,1561 0,1428 0,0789 0,0526 

 
 

Fig. 17. Chart of results 

 

At the end of training, the ReLU 

activation function achieved the best result 

compared to the others. Thus, the choice of 

FA depends on the problem to be solved and 

the designer of the neural network. 

In the work, experiments were 

conducted with different FAs in Landscape 

GAN when generating landscape images. 
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Before that, the model was trained using the 

LeakyReLU activation function, with a 

maximum error of an independent classifier 

of approximately 8%. 

Before the experiment, its architecture 

was taken as a basis and improved, the 

number of convolution filters was increased. 

Table 2 shows some of the experimental 

results obtained. 

With the best result is the ReLU 

activation function, which has 11.45% 

independent classifier error, the result is 

achieved at the four hundred and fiftieth 

epoch. ELU and LeakyReLU are next with 

respective results. 

Each model learned about 20% longer 

than the previous version (100 hours). In 

general, a total of 480 hours were spent on the 

experiment (under the condition of parallel 

training). 

 
Table 2. Results of the experiment 

 

Epoch ReLU 
Leaky 

ReLU 
ReLU ELU 

10 0,0010 0,0036 9,86E-04 0,0019 

50 0,0288 0,0189 0,0057 0,0233 

100 0,0541 0,0626 0,003 0,052 

300 0,0689 0,0593 0,0063 0,067 

400 0,0967 0,0725 0,0052 0,0587 

450 0,1145 0,0636 0,0062 0,084 

500 0,1086 0,0654 0,0035 0,0795 

800 0,0853 0,0458 0,0036 0,099 

1000 0,0397 0,0718 0,0059 0,0825 

 

Further, the paper investigates the 

behavior of the internal system of models: the 

type of activation between layers in the best 

photo-landscape models with the 

corresponding functions. 

The result is that all activation functions 

try to strongly “cancel” the inputs to the 

neurons. 

Black means the activation value is 

close to zero, and white means strong 

response. 

It turns out that the final image 

generated by the model is created by a large 

number of “dot-sticks”, which are then 

grouped into a photo as the last layer. 

It can be concluded that when changing, 

for example, the value of activations after the 

penultimate layer, you can generate separate 

areas of the photo to improve it (remove 

defects or other artifacts). 

Table 3 contains information about the 

training time of the models, the number of 

epochs, the size of the dataset and images, the 

quality of generation according to the 

assessment of the independent classifier, the 

number of parameters of the models. 

Table 4 summarizes information about 

testing with various activation functions. 

Obviously, the ReLU activation 

function ranks first in both types of generation 

problems. 

For a better understanding of the 

operation of the generator and the hidden 

space, the variational autoencoder (VAE) is 

considered, which, with the help of root mean 

square error and Kullback-Leibler (KL) 

divergence, distributes vertices in the space 

next to each other in order of similarity. 

 
Table 3. Results of experiments with models regarding the quality of generation,  

which were evaluated by independent classifiers 

 

Generator 
Numbers (noise) 

2D 3D, CGAN 4D 

t learning, hours 15 10 5.5 3 
tavg to 1 epoch, s 10 20 0.125 10 

n epoch, thousands 5 2 60 1 
Dataset, thousands, shape 60, 28 х 28 х 1 

Memory, GB 0,18 

IC, , % 1,5 3,2 0,084 8,29 

params 
G 

Total 1 101 632 1 114 176 1 114 206 1 126 720 

Trainable 
1 076 16

0 
1 088 704 1 088 734 1 101 248 

Non-trainable 25 472 

D Total 212 865 212 865 220 705 212 865 
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Table 4. Results of testing models with different activation functions 

 

Numbers 

Activation function ReLU LeakyReLU PReLU ELU 

The biggest error, % 15,61 14,28 7,89 9,67 

Study time: one epoch, s – total 

time, hours 

9 s – 1 hours 

15 min 06 s 

10 s – 1 hours 

22 min 37 s 

10 s – 1 hours 

15 min 14 s 

9 s – 1 hours 

19 min 32 s 

Generator parameters 1 126 720 

Discriminator parameters 212 865 

Landscapes 

The biggest error, % 11,45 9,74 0,92 10,61 

Study time: one epoch, s 410 s 410 s 430 s 420 s 

Generator parameters 10 729 344 

Discriminator parameters 2 563 713 

Assume that the GAN implements this 

behavior without direct instructions. 

Kullback-Leibler divergence [14]: 

 

DKL[N(µ,σ||N(0,1)=0,5∑(1+log(σ2)-µ2). 

 

The online service of the Kaggle 

platform was used to search for datasets and 

train networks. 

The architecture of the U-Net network 

was used as an experiment. The latter is done 

to get the “noise” to deep levels. 

Special attention is paid to the selection 

of the dataset. As already noted, the MNIST 

dataset is quite clear and easy to use, but not 

only it was used in the work. 

The Kaggle platform is known to 

contain a sufficient number of available 

datasets for various machine-learning tasks. 

Of course, there are other online services, for 

example, the possibility of using GitHub 

repositories or Alibaba's Tianchi platform for 

this. 

Six thousand images of ships with a size 

of 32x32 pixels were used as a dataset. An 

independent classifier can indicate the quality 

of the generation: the worse the division into 

two classes is, the better the trained GAN 

model. 

An experiment on the convolution 

kernels showed that the best result, with a 

13% IC error, was the value of the 

convolution kernels “5-5”. Therefore, the 

following U-Net-2 model was trained over 

twenty thousand epochs, which had erratic 

errors, low-quality signal generation, and a 

test with an independent classifier showing a 

low 8%. 

For further experiments, it is suggested 

to consider a linear model and drawings of 

landscapes with a size of 64x64 pixels. To 

improve the quality of training, it is proposed 

to increase the volume of the dataset from five 

to twenty thousand. 

The following model is trained on 

ninety thousand real 64x64 landscape photos. 

The generated color images have 

visually clear images and clearer boundaries 

of objects (Fig. 18). 

As a result, an image with sufficient 

detail and image clarity was obtained. During 

testing with an independent classifier, an error 

of 11% was obtained (Fig. 19), which is quite 

good compared to past experiments. 

Note that the following layers are used 

in the generator model: Dense, 

BatchNormalization, LeakyReLU, Reshape, 

and Conv2DTranspose. 

As already mentioned earlier, as part of 

the work, tests were conducted with various 

functions of activations in the models. 

The best version of the model has ReLU as 

the main FA, and the hyperbolic tangent 

(tanh) on the last layer. Diagram of errors 

(Fig. 20). 
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Fig. 18. Generated Images 

 

 
 

Fig. 19. IC test 

 

The intermediate state of the model at 

the four-hundred-and-fiftieth epoch (Fig. 21) 

and the final state of the model (Fig. 22) are 

given below. 

When visually comparing (Figs. 21 and 

22) the intermediate and final state of the 

network, it can be stated that at the time of the 

four hundred and fiftieth epoch, the images 

have a better display of images than the final 

result. 

The results of experiments conducted 

on training neural networks are given in [7]. 

Note that different network 

architectures, their parameters and layers, 

activation functions and datasets are used. 

The resulting data can be used to train 

networks to generate images larger than 

64x64x3. 

 

Conclusions  

The work included: the behavior of 

generative-adversarial networks was 

investigated, the hidden space and interaction 

with it were considered. 

The template architecture of the 

generator and discriminator is given. The 

learning processes of 2D, 3D and 4D GAN 

networks are described. 

The behavior of the final versions of the 

models after their training is considered and 

investigated. The features of the generative-

adversarial network with the CGAN condition 
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are given, and the representation of their 

hidden spaces is considered. 

Experiments were carried out with 

activation functions when solving the problem 

of generating images of handwritten numbers 

and photos of real landscapes. 

 

 
 

Fig. 20. Graph of errors by epoch 

 

 
 

Fig. 21. Intermediate state of the model 
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Fig. 22. Final state of the network 
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