
ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

49

UDC: 004.738.5 https://doi.org/10.15407/jai2024.02.049

V. Falkevych1, A. Lisniak2

1,2 Zaporizhzhia National University, Ukraine

 66, Zhukovsky st., Zaporizhzhia, 69600
1vitaliifalkevich@gmail.com
1https://orcid.org/0000-0002-1114-7206
2https://orcid.org/0000-0001-9669-7858

CLIENT STATE MANAGEMENT USING BACKEND FOR FRONTEND

PATTERN ARCHITECTURE IN B2B SEGMENT

Abstract.The article considers an architectural pattern Backend for Frontend (BFF) for developing web systems

using microservice approaches. The main purpose of this article is to research aspects that existing solutions like

WunderGraph cannot provide and propose a solution that enables client state management using the backend for Frontend

pattern architecture specifically tailored for the B2B segment's requirements in Frontend development. During current

research, there is defined a concept of API Provider Factory, Public API Gateway, Client State Management and proposes

ways for their implementation. Methods of research are based on modeling, analysis, comparing, experiment, and

abstracting.

Keywords: BFF, Frontend architecture, Microservices, API Provider Factory, Public API Gateway, AP, Client

State Management.

I. Introduction

Backend for Frontend (BFF) is an

architectural pattern that provides a dedicated

backend for each specific client interface or

application. Widely spreading this pattern

appeared during the developing paradigm of

using microservices approaches in designing

backend independent systems. Microservices

allow the creation of different API endpoints

for use on the Frontend side. Frontend is

always a whole system with end user

interactions.

Splitting API microservices by entity

cannot be split so easily on the Frontend side.

Different components can be combined as

possible, are used in different cases and pages

of the Application, and should be exchanged by

shared data like state. So these Frontend

components use data from different API

Providers (Microservices).

To solve the problem of using Several

API Providers in one place there was developed

a pattern of design Backend for Frontend and

accompanying solutions like WunderGraph

[1]. WunderGraph allows developers to create

a config file for a special Frontend and build a

virtual Graph or API Gateway with combined

data from several API endpoints according to

the Backend for Frontend pattern. It is a good

solution out of the box, but some cases require

more specific decisions that the architecture of

existing solutions cannot offer.

The main purpose of this article is to

research aspects that existing solutions like

WunderGraph cannot provide and propose a

solution that enables client state management

using the backend for Frontend pattern

architecture specifically tailored for the B2B

segment's requirements in Frontend

development.

Methods of research are based on

modeling, analysis, comparing, experiment,

and abstracting.

II. Analysis of similar decisions

As an implementation of the BFF pattern

consider an existing decision WunderGraph. It

is a framework that supports many

technologies to implement this pattern. For

example, WunderGraph provides some

interface to create a Virtual graph from several

combined Graphql Services and can provide

one endpoint for the client that has all the

necessary information from different

microservices. After virtual graphs are defined,

they should be imported into the configuration

file for setting parameters for accessing the

services. WunderGraph builds a client code for

use from the Frontend. This code can include

types, queries, mutations, etc. Developers can

use it out of the box in their projects. Easy to

use has certain restrictions in specific cases

often faced in the b2b segment [2].

The first case is splitting public API and

private one (Figure 1). For instance, we have

mailto:vitaliifalkevich@gmail.com
https://orcid.org/0009-0003-4709-8693
https://orcid.org/

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

50

several specific microservices that provide

API. Also, we have several Frontend instances

that require using these microservices API.

Every instance of the new Frontend is a

separate project that should be worked in a

different namespace. As a new instance of the

Frontend is defined, we should generate new

credentials to access the common

microservices API within their respective

namespaces. Credentials for the project should

be added to the API microservices only on the

server side. Additionally, we would like to hide

the true API from public access. For instance,

we would like to make one request with a

POST method with a special body. This request

could be caught on the server side and be split

into several requests in GraphQL (or REST)

format to the specific microservices. Splitting

API into the Public API and Private API is an

additional layer of the security web system that

allows to filtering of some unexpected requests

and confuses potential cheaters [3].

Fig. 1. Splitting API to Public and Private

A mechanism of creating a virtual graph

can be difficult to support. Creating operations

with composing by type only, requires

searching changes and updating in every

operation after a specific microservice API is

changed. Considered solutions in this article

offer to create API Provider Factories for using

specific microservices and update only

necessary API instead of searching and

updating the virtual graphs in each place it

appeared (Figure 2).

Fig. 2. Comparing Virtual Graphs support with API Providers Factories

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

51

In the WunderGraph configuration is

offered to link a configuration to the one

Frontend instance [1]. It is acceptable in the

case when Frontend is only one instance. If we

have, for instance, 20 or more Similar

Frontends that use common microservices API

in their namespaces, it is better to create API

Provider Factories and use a simple API

Gateway configuration in each Frontend. Every

change in the API can be edited only in one

place instead of editing every Frontend

instance (Figure 3).

Fig. 3. Comparing Frontend scaling with WunderGraph solution

III. Defining entities and require-

ments
Before embarking on creating client-state

management using the Backend for Frontend
pattern architecture, it's crucial to define key
entities and establish requirements. Consider
Figure 4. There are three main entities of the
research: Microservices APIs, Frontend Server,
Frontend Client. The first component of the key
entities is the API microservices layer. To
interact with various Microservices APIs an
API Provider Factory should be created. The
next entity of this research is a Frontend Server.
It is a part of the system of providing
interaction with clients. The main
responsibilities of the Frontend Server are:

• Making requests to the API and

preparing results.

• Making prerender of UI layouts.

• Additional layer of security and

validation data between Client and

API.

• Additional logic of the system.
In the context of this research, we use

Frontend Server Entity like an API Gateway for
the Frontend Client.

The third component of the key entities is

the Frontend client is a system that can operate

on the user's device, such as a browser. In the

context of usage, it could be a Frontend built on

React (Angular, VueJS, or similar frameworks

and libraries).

The primary purpose of this layer in the

researched entities is to engage with the end

user by providing a User Interface (UI). This

entity should initiate requests to the API and

share the state with its components. And

implies a mechanism for managing the state in

this layer. In the context of the research

Frontend Client makes requests using Frontend

Server instead of making them directly to the

APIs of microservices [4].

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

52

Fig. 4. Key Entities of researching

IV. API provider factories develop-

ment
The first part of this research involves the

development of API Provider Factories for
working with the Microservices APIs. Let's
take an authorization service that uses the
GraphQL API and a service for working with a
user profile using a REST approach. We create
separate API Provider Factories for working
with the API for each service [5].

Use GraphQL Code Generator library
during the development of a package for
working with a service of authorization [6].
This library will generate a ready-for-using
GraphQL code and types. The algorithm for
creating a package for working with GraphQL
is as follows:

• Creation of a file of settings for code

generation.

• Creation of a description of queries,
and mutations.

• Generation of ready API and types for
further convenient work.

An example of configuring GraphQL
query generation and mutations is given in
Listing 1. As can be noticed, there are defined
locations of the graphql queries and mutations,
URL of the schema, set-up plugins for code
generation. Also, is defined output path for the
generated API, is described in the queries and
mutations [7].

const config = {

 schema: {

 [schemaUrl]: {

 },

 documents:

'./operations/**/*.graphql',

 generates: {

 [path.join(__dirname,

'src/index.ts')]: {

 plugins: [

 'typescript',

 'typescript-operations',

 'typescript-graphql-request'

],

 },

 },

 hooks: false,

 }

const output = await

cli.generate(config)

 output.forEach(({filename,

content}) => {

 fs.writeFileSync(filename,

content)

 })

Listing 1. Configuring the GraphQL API generation of
the authorization service

After setting up GraphQL generation

code that works as common HTTP POST

requests, it is possible to generate code and get

a ready-to-use package built for use via the

“graphql-request” client. Then will be

generated the getSdk function, which return an

object with functions that are wrappers over the

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

53

queries and mutations described above.

Generated interfaces are strictly typed;

complex data types can be imported into the

project and used when describing system

functionality [8].

Develop a Provider Factory for working

with the user profile through the REST API.

REST defines a set of constraints and principles

for designing distributed systems. The main

principles of the RESTful API include the

following [9]:

• Resources (objects or data, for
example, users, orders, books, etc).

• HTTP methods (REST uses HTTP
methods to perform operations on
resources).

• Presentation (resources must be
available in different formats (e.g.
JSON, XML) for client interaction).

Each request to the server must contain
all the necessary information for processing the
request. The server should not save a client
state between requests. This helps ensure
system scalability. REST uses a common
interface that includes standardized HTTP
methods and status codes, which simplifies
interaction between different systems. Each
resource must have a unique identifier that
identifies that resource [10]. Information
exchange between the client and the server
proceeds through messages that contain
resources and information about what to do
with those resources.

Use the Swagger or OpenAPI tool
(depending on the version of Swagger - version
2, OpenAPI - version 3) for describing and
generating RESTful API [11].

An important advantage of using
OpenAPI is the declarative approach in
programming, which allows the creation of
data types, and interfaces, and wraps all API
access functionality in generated functions that
are described in YAML format.

The process of creating an API Provider
Factory for working with a RESTful API
consists of the following steps:

• Creating an API description in a
YAML file.

• Setting up the code generator based on
the YAML file.

• Generation of output data and package
build.

The Yaml file consists of the following
mandatory elements: OpenAPI version,

general information, a list of tags for grouping
APIs, a path for defining API routes, and
components (where data types such as
arguments and API response are described). An
example of a YAML description for OpenAPI
is shown in Listing 2. The API description
should define the HTTP method for the request,
the name of the function to be called through
the generated client, the format of the
arguments, and the format of the response [12].

The data format can be described both
directly in a certain route and be a reference to
the scheme (in Listing 2 $ref:
'#/components/schemas/ProfilePayload' is a
reference to the ProfilePayload scheme) [13].

openapi: 3.0.0

info:

 version: '1.0.0'

 title: Profile Frontend API

tags:

 - name: Profile

paths:

 /profile/user:

 patch:

 tags:

 - Profile

 operationId: updateProfile

 requestBody:

 content:

 application/json:

 schema:

 $ref:

'#/components/schemas/ProfilePayload

components:

 schemas:

 ProfilePayload:

 type: object

 properties:

 first_name:

 type: string

 last_name:

 type: string

Listing 2. An example of a YAML description for

OpenAPI.

The next step in creating a Provider API
Factory for working with a RESTful API is to
configure the code generator. OpenAPI
provides a tool written in Java that generates a
ready-to-use API client from a YAML file. It is
necessary to ensure the processing of source
data and, the creation of a build package for use
in a project. Write a BASH script, the algorithm
of which will be as follows:

• Generation of the source code based
on the prepared instruction in YAML
through OpenAPI.

• Copying the output-generated code
into a package.

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

54

• Creating a package build for further
import and use directly in the project
[14].

In the output data, we get classes whose
name matches the tags specified in the YAML
file above. Each class inherits from the
BaseAPI base class. The base class has the
ability to set the configuration (headers, URL
API, etc.) in the constructor. Classes for using
the API have methods whose name matches the
“operationId” parameter specified in the
YAML configuration. It is possible to use
several different API access points by
specifying different API URLs in the
configuration. A generated API via OpenAPI
makes calls through the Axios library. It is also
possible to create an interceptor for
preprocessing the data received from the API at
the OpenAPI client level, encapsulating the
area of responsibility from the main
development [15].

Developed API Providers Factories have
a similar interface - functions-wrappers that
can be called on the client of the web system.
In the case of code generation for the GraphQL
service, this is the “getSDK” function, which
returns an object with functions; in the
RESTful approach, these are classes with
methods for working with the API [16].

V. API gateway development
The second aspect of this research

involves developing an API Gateway through
which all API calls are routed. API Provider
Factories are used within the API Gateway on
the Frontend Server side.

To set up an API Gateway, there is a need
for a few requirements:

• Create instances of the client for using
API Provider Factories on the current
Frontend.

• Implement REST API.

export const getAuthApi = () => {

 const store = cookies()

const token = store.get('accessToken'

)?.value

 const client = new GraphQLClient(

 process.env.AUTH_API,

 setConfigApi({token}),

)

 return authApiSDK(client)

}

Listing 3. Configuring the client for working with the
authorization API

To create an instance of the client for
working with an authorization service, import
the API Provider Factory that contains the
“getSDK” function, which creates the object
with functions wrappers over the described
queries and mutations. An example of
configuring the client to work with the
authorization API is shown in Listing 3. The
example shows the creation of the
“getAuthApi” function, which configures the
GraphQL client for working with the API. Set
a URL of the API, add settings, and get a ready
client for using microservice API, which
contains a complete description of the API as a
returned result [12].

A similar way creates a client for
working with the profile service in REST
format. An example of the settings is shown in
the Listing 4. A “getProfileApi” function
configures the client for working with the user
profile microservice. Just as in the previous
case, the settings are set, and the authorization
token is transferred.

export const getProfileApi = () =>

{

 const store = cookies()

 const token =

store.get('accessToken')?.value

 return new

ProfileApi(setConfigApi({token}))

}

Listing 4. Configuring the client for working with the
user profile API

The ProfileApi class creates an object
with the methods described in the REST API
packages above. In both cases mentioned
above, we use the same working interface: a
function call with the next returning an object
containing methods for making requests to the
microservice API. This holds true irrespective
of the chosen approach for implementing the
API or the format used, be it REST or
GraphQL. Establishing a uniform interface for
interacting with both REST and GraphQL is
feasible owing to the inherent characteristics of
GraphQL, which involves standard HTTP
requests using the POST method and a
distinctive message format conveyed as strings.
These strings are then transformed into objects
(graphs) on the server side and vice versa,
provided there is an applicable conversion
mechanism [13]. Let's proceed to the next part
of this research.

Implementation of the REST API could
be different depending on the technology that

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

55

is used. For example, it can be the Server side
of the framework NextJS or framework
Laravel, etc. In any case, we create routes that
receive requests from the Frontend Client and
using prepared above instances of clients for
working with microservices APIs proceed
these requests like an API Gateway.

VI. Client state management
In this section, we will be developing a

state management system that operates on the
Frontend client side and makes requests to the
API Gateway on the Frontend Server side. This
system will be responsible for caching requests
and facilitating state sharing among
components. The presence of caching provides
fast access to data using a special key. In the
context of this research will take the SWR
library as a basis [17].

SWR is a library for data state
management in React applications, focused on
data caching and automatic validation. Has a
special interface for working with data coming
from the API, which simplifies updating data in
the system interface. The basic idea behind
SWR is to use cached data to display a web
page immediately and update it
asynchronously from the server. SWR is based
on two main principles - “caching of old data”
and “asynchronous update”. When data is
received for the first time, it is cached and
displayed on the page. Then data is updated
asynchronously without blocking the user
interface [18]. SWR allows applications to
display old data (from the cache) instantly.
Automatic and asynchronous updating of data
from the server after its change usually occurs
after a certain time or after events that signal
the need for updating. SWR has a built-in error
handling mechanism that allows correct
handling of errors during data updates. Also,
SWR can be configured for updating data, for
example, based on time or other factors.

Move ahead and define the main abstract
entities to be developed for using Client State
Management:

• Query.

• Lazy Query.

• Mutation.
Query will be used to create an

immediate query from the component. A lazy
query is a delayed query. It can be a call to a
certain action under a condition (for example, a
user click, callback, etc.). Mutation is similar to
a lazy query entity (deferred call of a certain

action). At the same time, it involves changing
the data on the server. It can be the creation,
update, or deletion of data) [19].

Since this research is closely related to
the React library, further code examples will be
provided in the typical React style: the use of
hooks, and functional programming. Let's
develop abstractions for useQuery queries.
This hook is the basis for writing specific
implementations of other hooks responsible for
working with components, calls to
microservices, and communication with the
SWR library. An example of the “useQuery”
code is shown in the Listing 5.

export const useQuery = ({

 key,

 request,

 payload = {},

 ...params

}: UseClientQueryPayload = {}) => {

 const { data, error, isLoading }

= useSWR(

 key,

 request(payload),

 {

 revalidateIfStale: false,

 revalidateOnFocus: false,

 revalidateOnReconnect: false,

 ...params,

 },

)

 return useMemo(

 () => ({

 data,

 isLoading,

 error,

 }),

 [data, isLoading, error],

)

}

Listing 5. Implementation of the useQuery abstraction
for working with data on the client side.

The request parameter contains a
function through which the microservice API is
called. Additionally, it is possible to set other
parameters of configuration inherent in the
SWR library [20].

Data contains the data that is returned in
response to a request to the microservice API
(or from the SWR cache). After being called
and before receiving data, loading has state
“true”, which allows to ensure a better user
experience and to display preloaders while data
is being loaded. When an error is received,
“error” acquires the error value, which can be
processed and, if necessary, displayed in the
user interface [21].

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

56

interface

UseQueryBaseResponse<Response = any> {

 isLoading: boolean

 error: string

 data?: Response

}

const useUser =

():UseQueryResponse<PlayerQuery> => {

 const { data, error, isLoading } =

useQuery({

 path: USER,

 })

 return useMemo(

 () => ({

 data: data?.data,

 isLoading,

 error,

 }),

 [data, isLoading, error],

)

Listing 6. Implementation of the useUser hook for
working with user’s data

After the implementation of the basic
abstract “useQuery” hook, consider the
implementation of the hook for working with
user data using the example of the “useUser”
hook. A code example is shown in Listing 6.
There is created a call of the base useQuery
hook with the “path” parameter which is a key
used to cache and update data using the SWR
library. useQuery also provides a
“UseQueryBaseResponse” interface that takes
a generic type to preserve data typing in
components. An important point is that the
“UseQueryBaseResponse” type is passed a
generated type, which was described in created
packages for working with authorization and
user profile microservices in GraphQL and
REST approaches. If the API is updated, it is
enough to modify the description in the
package. After making this change, generate a
ready-to-use build of the package, and all
interfaces will be updated automatically. This
approach is quite flexible in use and teamwork
and reduces the amount of manually written
code types and interfaces [22].

Move to lazy query and mutation. As in
the case of a query, it is necessary to develop a
basic abstract functionality through which
situational variations of specific entities will be
created (Listing 7).

const wrapRequest = func => (key:

string, { arg }) => func(arg)

const useMutation = ({

 request,

 successAction,

 errorAction,

 keysToUpdate,

 clearKeys,

 path,

}: UseClientMutationPayload = {}) => {

 const { mutate } = useSWRConfig()

 const { trigger, isMutating, error,

data } =

useSWRMutation(path,wrapRequest(reque

st),

 { onSuccess: res => {

 successAction?.(res)

 if (keysToUpdate &&

keysToUpdate.length > 0)

 keysToUpdate.forEach((key:

string) =>

 mutate(key)

)

 if (clearKeys &&

clearKeys.length > 0)

 clearKeys.forEach((key:

string) =>

 mutate(key, null))

 },

 onError: () => errorAction?.(),

 })

 return useMemo(

 () => ({

 mutate:

mutationWrapper(trigger),

 isSubmitting: isMutating,

 error: error?.response?.data,

 data,

 }),

 [error?.response?.data,

isMutating, trigger, data]

)}

Listing 7. Implementation of the base useMutation hook

Given the similarity in the nature of lazy
queries and mutations, the fundamental entity
used for handling mutations will also be
applied for managing deferred calls.
“useMutation” accepts arguments similar to
those of “useQuery”, as outlined in the
“UseClientMutationPayload” interface
described in Listing 7. Additional arguments
are “successAction”, “errorAction”, and
“keysToUpdate”, “clearKeys”. The “request”
argument is a function for creating a request to
the API service.

The “request” argument is a function for
creating a request to the API service.
Depending on the specific implementation, it
can be a client for working with REST or a
GraphQL service. The “wrapRequest” function
wraps and abstracts the request function, which
is set directly in the entity hook
implementation. “wrapRequest” accepts a
function and passes the key as the first
parameter (which was specified in the hook
implementation directly) and the arguments

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

57

that are set in the component when the mutation
is called (a specific example will be discussed
below) [23].

“successAction” is a callback that will be
executed upon receiving a successful response
from the API, passing the received data as
arguments to this callback. An example of a
callback is closing a popup of authorization
after successful login, routing to another web
page, analytics event, etc.

“errorAction” is similar to the previous
callback, which is executed when an error is
received. This callback is used to create
synchronous error handling (as opposed to the
error state, which is in the errors variable).

Equally important are the keysToUpdate,
clearKeys parameters. Given that storage,
updating, deletion, and invalidation of data in
the cache occur through the use of a key, it is
imperative to develop a mechanism that
facilitates the updating or complete removal of
data from the cache. Therefore, keysToUpdate
is an array with keys by which data should be
updated upon successful mutation. After
receiving a response from the API, the data
management system on the client side goes
through each record by key, creates a request to
the microservice, and updates data by keys
[24].

Consider a working example:

• A test request to retrieve user data is
created using the “useUser” hook.

• Response results are stored in the
cache.

• Existing user data is displayed across
all components of the web system.

• The user changes his name, address,
etc.

• The web system does not recognize
that the data has been updated and
displays outdated information.

• During creating a mutation to update
user data, the USER key, formed in
useUser, is specified.

• Upon updating the user's data, the
system refreshes the user's
information and sends a request to the
profile microservice through the API.

• The data is updated in the cache, and
all components display the actual
information since they are subscribed
to these changes.

Similarly, the processing of the
clearKeys parameter functions. After a
successful API response, the data specified by

the keys in the clearKeys array is deleted. For
example, this can be useful when checking
whether a user is authenticated:

• The user clicks on the “logout” link.

• A request to the authentication service
API to clear the current session is sent.

• The response comes with instructions
to set up cookies, where the
authorization token is missing.

• When in the “clearKeys” field key
“USER” is specified, user information
is cleared.

• In all signed components to the
“USER” key, the data state is updated.

• The client-side middleware checks for
the presence of user data in the store,
and in their absence, redirects to the
unauthorized user page.

Deferred requests and mutations can, in
most cases, include some user-specific payload
data (e.g., user's login, password, language,
country, etc). The response from the API
depends on the given arguments. To send data
to the API, it is possible to set the data in the
“payload” argument. This name is often used in
other store organization solutions, for example,
Redux [25].

Create a mutation “useLogin” to work
with authorization. The code is shown in
Listing 8.

From the given code above, the mutation
accepts a “successAction” argument, which is
passed in the basic useMutation hook directly
from the component where this mutation is
used. “successAction” is a callback that will be
executed after receiving a successful response
from the API authorization service (for
example, redirecting to another page, closing
the authorization popup, updating the data
validation status, etc). This callback is given to
the implementation of the component in which
it is used, unlike the keysToUpdate parameter.
An array with the keys “USER”, “BALANCE”
is passed to the “useMutation” abstraction. The
data with the specified keys will be updated as
soon as the authorization is successful. The
“useUser” hook is implemented to obtain data
about the user, where the “USER” key is
specified in the path parameter. The component
that uses this hook to output certain information
about the user will receive updated information
about the user from the corresponding API
immediately after successful authorization,
because the “keysToUpdate” of the “useLogin”
hook is set to the “USER” key to update. In

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

58

“useLogin”, the “LOGIN” key is also
specified, under which the received data from
the response will be stored after a successful
authorization (for example, a token for working
with authorized requests may come with a
successful authorization, which must be stored
on the client side) [26].

interface UseResponse extends

UseMutationResponse

 {

 login: (data?: LoginVariables) =>

void

 }

const request = async (data:

LoginVariables) => {

 const authAPI = getAuthApi()

 return authAPI.login(data)

}

export const useLogin = ({

 successAction,

}: UseClientAPIConfig = {}):

UseResponse => {

 const { mutate, isSubmitting, error

} = useMutation({

 request,

 successAction,

 keysToUpdate: [USER, BALANCE],

 path: LOGIN,

 })

 return useMemo(

 () => ({

 login: mutate,

 isSubmitting,

 error,

 }),

 [mutate, isSubmitting, error],

)}

Listing 8. Implementation of the useLogin hook to work
with authorization

In the useLogin hook, the request
function for working with the authorization
service is passed to useMutation as a
parameter. This function is wrapped in
useMutation by an additional wrapRequest
abstraction and receives the arguments
necessary to work directly with the login.
Types of arguments for working with the login
are described in the LoginMutationVariables
type, which is generated and imported from the
package for the authorization service API. The
main task of the wrapRequest function in this
context is to pass the second parameter to the
request (user data that is set directly in the
component where the useLogin hook is used)
[27].

The main tasks performed by the
useLogin hook:

• Abstraction of client settings for
working with the API of the desired
service.

• Description of data types.

• Setting the keys for cache
management.

Consider an example of using the
“useLogin” hook (Listing 9).

const {login, isSubmitting, error} =

useLogin({
 successAction: redirectDashboard,

 })
const onSubmit = ({login, password}) =>

login({

 login,
 password

})

Listing 9. An example using the useLogin hook in a

component

After the hook “useLogin” is called the
“login” function for working with the service
authorization API is returned. “isSubmitting” is
the status of the request at the current moment,
and “error” is the error that was sent by the
service.

Let's analyze what happens “under the
hood” during calling “useLogin” hook in the
“login” component when the “login” button is
pressed:

• Calling the “login” function and
passing the user credentials as
parameters.

• Calling “wrapRequest” function by

the SWR library, to which the key

“LOGIN” of the current request is

passed as the first parameter, and the

object of the user`s credentials is

passed as the second parameter.

• The “wrapRequest” function passes
the object with credentials to the
request function, which is described in
Listing 7.

• Sending a request to the Frontend
Server API Gateway.

• The “isSubmitting” value switches to
the “true” state.

• “error” is in the null state (or
undefined - depending on the
settings).

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

59

• API Gateway accepts a request and
makes another request to the
Authorization microservice API.

• API Gateway gets a response and
prepares an answer to the Frontend
Client.

• After receiving a successful response
from the authorization service,
isSubmitting switches to the “false”
state.

• Aata received from the authorization
service is recorded to the SWR cache
using the LOGIN key.

• Query calls are generated for the
“USER” and “BALANCE” keys;
these calls follow a path similar to the
preceding login mutation call and
influence the update of states in the
components where they are utilized.

• The data retrieved from the “useUser”
and “useBalance” hooks updates the
existing information in the SWR
cache.

To summarize, the developed abstraction
of entities as queries, lazy queries, and
mutations can be utilized to implement specific
hooks for facilitating client-state sharing
between components, caching data, and
making requests to the API Gateway.

Conclusions
Client State Management using the

Backend for Frontend pattern architecture
approach researched in this article can be used
in the B2B segment that requires deploying
additional instances of Frontends and their
support, as well as in B2C solutions. This
solution enables flexible configuration of
caching, updating data, and interacting with
various API microservices by combining
GraphQL and REST. It provides the ability to
segment the API into Public and Private levels
while adding an additional layer of security.

As a result of this research, we have
reduced boilerplate code, enhanced the comfort
of development, and improved various aspects
of WunderGraph decision. This includes
splitting the API into Public and Private
components, using several Frontend instances
during development, and the possibility to
utilize multiple Frontend instances during
development. Added the ability to work with
several microservices via API Gateway,
regardless of whether GraphQL or REST
architecture is used.

This approach contains certain
disadvantages, in particular: the complexity of
implementation, and the need to conduct
preliminary training of developers to work with
this approach. Managing the data caching
policy requires setting the policy on a case-by-
case basis, which raises the threshold for
getting started with this data state management
solution on the client.

References

1. What is WunderGraph, August 2023, [online]
Available:
https://github.com/wundergraph/wundergraph.

2. Vadlamani, S.L., Emdon, B., Arts, J. and Baysal,
O., 2021, June. Can graphql replace rest? a study of their
efficiency and viability. In 2021 IEEE/ACM 8th
International Workshop on Software Engineering
Research and Industrial Practice (SER&IP) (pp. 10-17).
IEEE.

3. Falkevych, V. and Lisnyak, A., 2023, September.
Internal and External Threats in Cyber Security and
Methods for Their Prevention. In 2023 13th
International Conference on Advanced Computer
Information Technologies (ACIT) (pp. 414-419). IEEE.

4. Chemerys, H., Demirbilek, M., Bryantseva, H.,
Sharov, S. and Podplota, S., 2022, July. Fundamentals
of UX/UI design in professional preparation of the
future bachelor of computer science. In AIP Conference
Proceedings (Vol. 2453, No. 1). AIP Publishing.

5. N. Vohra and I. B. Kerthyayana Manuaba,
"Implementation of REST API vs GraphQL in
Microservice Architecture," 2022 International
Conference on Information Management and
Technology (ICIMTech), Semarang, Indonesia, 2022,
pp. 45-50.

6. Sklyarov, D., 2020. The Web service
development with React, GraphQL and Apollo.

7. Andersson, T. and Reinholdsson, H., 2021.
REST API vs GraphQL: A literature and experimental
study.

8. Brito, G. and Valente, M.T., 2020, March. REST
vs GraphQL: A controlled experiment. In 2020 IEEE
international conference on software architecture
(ICSA) (pp. 81-91). IEEE.

9. Dos Santos, J.S., Azevedo, L.G., Soares, E.F.,
Thiago, R.M. and da Silva, V.T., 2020. Analysis of
Tools for REST Contract Specification in
Swagger/OpenAPI. In ICEIS (2) (pp. 201-208).

10. Hagelberg, T., 2023. Development of a
Serverless RESTful API.

11. Lawi, A., Panggabean, B.L.E. and Yoshida, T.,
2021. Evaluating GraphQL and REST API Services
Performance in a Massive and Intensive Accessible
Information System. Computers 2021, 10, 138.

12. Wittern, E., Cha, A. and Laredo, J.A., 2018, May.
Generating graphql-wrappers for rest (-like) apis. In
International Conference on Web Engineering (pp. 65-
83). Cham: Springer International Publishing.

13. Sferruzza, D., 2018, September. Top-down
model-driven engineering of web services from extended
OpenAPI models. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering (pp. 940-943).

14. Carvalho, T.E.A.D., 2021. Generation of Web
API Definition Files, using a single platform,
accordingly to the Design First Approach (Doctoral
dissertation).

15. Senger, A. and Agrawal, S., API Modeling and
Description Languages.

16. Preibisch, S. and Preibisch, S., 2018. API Design.
API Development: A Practical Guide for Business
Implementation Success, pp.41-60.

https://github.com/wundergraph/wundergraph

ISSN 2710 - 1673 Artificial Intelligence 2024 № 2

60

17. Oleshchenko, L. and Burchak, P., 2023, March.
Web Application State Management Performance
Optimization Methods. In International Conference on
Computer Science, Engineering and Education
Applications (pp. 59-74). Cham: Springer Nature
Switzerland.

18. Le, T., 2021. Comparison of State Management
Solutions between Context API and Redux Hook in
ReactJS.

19. Daishi Kato, Micro State Management with React
Hooks: Explore custom hooks libraries like Zustand,
Jotai, and Valtio to manage global states, Packt
Publishing, 2022.

20. McFarlane, T., 2019. Managing State in React
Applications with Redux.

21. Y. Yao and J. Xia, "Analysis and research on the
performance optimization of Web application system in
high concurrency environment," 2016 IEEE Information
Technology, Networking, Electronic and Automation
Control Conference, Chongqing, China, 2016, pp. 321-
326.

22. Daniel Afonso; Ricardo Mestre, State
Management with React Query: Improve developer and
user experience by mastering server state in React, Packt
Publishing, 2023.

23. Miftachudin, Muhammad Khoirul Hasin, and
Afif Zuhri Arfianto. "State Management of API Web
Service using Redux on React Native App." (2023).

24. Litt, G., Schiefer, N., Schickling, J. and Jackson,
D., 2023, October. Riffle: Reactive Relational State for
Local-First Applications. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software
and Technology (pp. 1-16).

25. Le, T., 2021. Comparison of State Management
Solutions between Context API and Redux Hook in
ReactJS.

26. Tran, K., 2023. State Management in React.
27. Sapountzi, Ι., Progressive web apps:

development of cross-platform and cross-device apps
using modern web architectures and technologies.

The article has been sent to the editors 18.05.24.

After processing 15.06.24.

Submitted for printing 28.06.24

Copyright under license CCBY-SA4.0.

