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COMPARISON OF PROBLEM-SOLVING PERFORMANCE ACROSS 

MATHEMATICAL DOMAINS WITH LARGE LANGUAGE MODELS 
 

Abstract. This study investigates problem-solving performance across four mathematical domains, using 

statistical techniques to analyse domain-specific differences. By leveraging the NuminaMath-TIR dataset, we categorized 

problems into algebra, geometry, number theory, and combinatorics, selecting 8,000 problems for the analysis. Models 

including GPT-4o-mini, Mathstral-7B, Qwen2.5-Math-7B, and Llama-3.1-8B-Instruct were applied to assess answer 

correctness. Significant differences in solution accuracy were identified, with algebra showing the highest correctness 

rates and combinatorics the lowest. The results highlight the impact of domain on model performance and suggest the 

potential for tool-integrated reasoning (TIR) techniques to enhance consistency across domains. Future work can explore 

targeted model training improvements, aiming to optimize educational technologies and adaptive learning systems. 

Keywords: Artificial Intelligence; Mathematical Problems; Natural Language Processing; Large Language 

Models; Automated Reasoning. 

 

Introduction 

Mathematics education often reveals 

varying levels of student success across 

different domains. Understanding these 

differences can inform educational practices 

and resource allocation. Identifying problem 

areas within mathematical domains allows 

educators to tailor strategies for improvement, 

enhancing overall learning outcomes.      The 

same is true for computational models, 

including large language models (LLMs). 

This study aims to assess problem-

solving efficacy across multiple mathematical 

domains and to determine if significant 

differences exist in correctness rates. In this 

research, we address the following two 

questions: 

1. Are there significant differences in 

the performances of LLMs across distinct 

mathematical domains?  

2. Which domains exhibit the highest 

and lowest problem-solving success? 

 

1 Analysis of recent research and 

publications 

Automation in addressing mathema-

tically complex problems has been a topic of 

interest for over 50 years. In 1974, Victor 

Glushkov pioneered efforts in this domain by 

exploring the use of formal languages for 

documenting mathematical texts and 

automating the search for theorem proofs [3]. 

Recent advancements in artificial 

intelligence (AI), particularly in natural 

language processing (NLP), have introduced 

promising tools to facilitate mathematical 

problem-solving processes. However, the 

diversity in problem domains and overlaps 

highlights the importance of investigating best 

practices and models for the future 

development of computational models. 

LLMs such as GPT-4 (OpenAI, 2023 

[8]) and PaLM-2 (Anil et al., 2023 [1]), have 

shown significant progress in a broad spectrum 

of language-related tasks, particularly in 

addressing the longstanding challenge of 

mathematical reasoning. These models 

represent a leap forward in processing and 

understanding natural language; however, they 

frequently encounter challenges when tasked 

with advanced mathematical reasoning. 

In contrast, open-source models like 

LLaMA-2 (Touvron et al., 2023 [10]) and 

Falcon (Penedo et al., 2023 [9]) continue to 

face difficulties in complex mathematical 

tasks. The mathematical performance of 

language models has been improved in 

existing work either through step-by-step 

natural language reasoning [12], or by 

synthesizing and executing programs to arrive 

at correct answers [2]. These two 
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methodologies leverage distinct, yet 

complementary strengths. 

With models like AlphaGeometry and 

AlphaProof, which include neuro-symbolic 

systems for solution search and an LLM to 

formalise processed text, there has been shown 

significant progress in high-level competitions 

like the International Mathematical Olympiad 

[11]. However, these models and data used for 

training are not available, though considering 

the approaches used to solve problems of such 

level, it’s visible that a diversity of problems 

need to be addressed with different techniques. 

Natural language reasoning using these 

models is well-suited for tasks involving 

semantic analysis, planning, and abstract 

reasoning, which often require a commonsense 

understanding. However, this approach often 

falls short when precise computations, 

symbolic manipulation, or algorithmic 

processing are required. Conversely, program 

synthesis and execution provide the necessary 

robustness for such tasks by accurately 

performing operations and delegating complex 

calculations to tools designed to handle 

specific problem types, such as equation 

solvers. 

This study applies a systematic approach 

comparison between results in the domain-

related mathematical problems utilising 

several language models. It’s claimed that tool-

integrated reasoning (TIR) is pivotal in 

enhancing computational problem-solving 

accuracy [4], yet collecting and annotating data 

for this purpose can be resource intensive. 

Authors of the paper work with 

NuminaMathTIR a dataset of 70,000 problems 

from the NuminaMath-CoT dataset by 

focusing on those with numerical outputs, 

primarily integers. This was achieved by 

utilising a pipeline powered by GPT-4, to 

generate ToRA-like reasoning paths, which 

were used to execute code and derive complete 

solutions. Solutions were iteratively filtered to 

match reference answers to maintain accuracy 

and consistency, a process repeated three 

times. This method allowed the production of 

high-quality TIR data with reduced annotation 

costs and time [6]. 

 

 

 

2 Research methods 

In the first stage, we selected and filtered 

8,000 mathematical problems with numerical 

outputs from the NuminaMath-TIR dataset and 

categorized them into four distinct domains: 

algebra, geometry, number theory, and 

combinatorics, with 2,000 problems per 

domain. This categorization was achieved 

using keyword matching to ensure that each 

problem uniquely belonged to one of the 

specified domains, resulting in a dataset with a 

balanced representation across the domains. 

Next, we use open-source and propriety 

models to generate solutions and assess their 

reasoning abilities across domains. To verify 

numerical answer validity, problem statements 

were presented to the model to generate 

solutions, which were later compared to the 

baseline answers. 

To assess how well LLMs solve 

problems per domain, we integrated into the 

experiments four different models: the open-

source models Mathstral7B, Qwen2.5-Math-

7B, Llama-3.1-8B-Instruct – ran locally, and 

propriety model GPT-4o-mini – accessed via 

an API. This approach allowed us to evaluate 

and compare the performance and capabilities 

of both open-source and proprietary models in 

handling complex problem sets across various 

domains. Detailed specifications of the models 

tested can be found in the Section 3.3 Detailed 

specifications of LLMs tested. 

For the input, we have a Parquet file, 

which comprises 4 columns with details of 

each problem, including problem topic, 

answer, problem, and solution, which 

represent the problem’s domain, baseline 

answer, statement, and solution. 

For each problem per model, we perform 

a series of queries during which we: (i) 

introduce a problem (without any additional 

prompt added) to get a solution from a model; 

(ii) extract the final answer with the help of a 

regular expression; (iii) and compare it with 

the baseline answer, indicating whether 

answers are correct (“1”) or incorrect (“0”). 

We discovered from the dataset used for 

the experiments that many answers returned as 

mathematical LaTeX formulas, which was also 

true for the LLMs during the solutions 

generation process, e.g. 
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$\\𝑏𝑜𝑥𝑒𝑑{\\𝑓𝑟𝑎𝑐{12 − 5\\𝑠𝑞𝑟𝑡3}{36}}$ 

For that reason, we applied regular 

expressions to extract the numerical answers 

from the generated texts. For the cases when 

there was no boxed{} found, we extracted the 

last numerical answer present in the solution as 

a final response provided by the model. Also, 

in some cases, the problems were presented in 

a multi-choice option format. 

Results are saved in two additional 

columns: messages and answer_model, which 

correspond to dialogue with the model and 

whether the answer provided by the model was 

correct. Several problem examples are listed in 

the Section 3.4 Problems examples. 

Finally, for the analysis part of the results 

obtained, we calculated average correctness 

rates, expressed as percentages to convey 

domain difficulty levels, and performed two 

statistical tests to assess whether the 

differences are statistically significant across 

domains:  

(i) Chi-Square test of independence to 

assess the distribution of correct and incorrect 

answers per model and collectively, with the 

latter calculated as the median of values of the 

combined model outputs, which is used to 

determine performance by domain; 

(ii) Permutation test, performed by 

shuffling domain labels and comparing the 

mean differences between pairs of topics 

across all models per problem, was conducted 

to validate the differences in domain relevance. 

 

3 Experiment setup and data 

processing 

We used the GPU unit Quadro RTX 

8000 to experiment with open-source models 

with 48 GB of RAM. Although memory was 

not completely occupied during the 

experimentation process, it is visible that GPU-

Util was 100% busy (Figure 1), indicating the 

bottleneck of the data processing with several 

instances of LLM running locally on the same 

GPU-unit. Interference with the GPT-4o-mini 

model has been done via OpenAI API calls. 

To speed up the processing processes we 

ran 4 scripts to process each domain 

simultaneously, details on how much time was 

used    for processing data   are  included    in 

Table 1. 

 
Table 1. Durations for processing data 

 

 

 

 

 

 

 

 

 

 

Code and data used for the analysis are 

available in the repository: 

https://github.com/andynik/math-domains-

comp-24. 

 

3.1 Open-source models 

For the open-source models for the 

experiment, we selected lightweight open-

source models: Mathstral-7B by Mistral 

company, Qwen-2.5-math7B by Alibaba 

Cloud company, and Llama3.1-8B-Instruct by 

Meta. 

Mathstral-7B is a model specialising in 

mathematical and scientific tasks, based on 

Mistral-7B [5]. 

Qwen2.5-Math series is expanded to 

support using both CoT and Tool-integrated 

Reasoning (TIR) to solve math problems in 

both Chinese and English. The Qwen2.5-Math 

series models have achieved significant 

performance improvements compared to the 

previous generation of the models on the 

Chinese and English mathematics benchmarks 

with CoT [13]. 

Model # of processes Queries via Time to process 

GPT-4o-mini 4 API 9.5-11.5 hours 

Mathstral-7B 4 Local 18.5-21.5 hours 

Qwen2.5-Math-7B 4 Local 40-60 hours 

Llama3.1-8B-Instruct 4 Local 53-54 hours 

https://github.com/andynik/math-domains-comp-24
https://github.com/andynik/math-domains-comp-24
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The Llama 3.1 instruction-tuned text-

only models are optimized for multilingual 

dialogue use cases [7]. 

 

3.2 GPT- 4o-mini 

As closed-access, we utilised one of the 

latest OpenAI large language models, GPT-4o-

mini. OpenAI would not disclose exactly how 

large GPT-4o-mini is, but it is mentioned on 

the website to be in the same tier as other small 

AI models, such as Claude Haiku and Gemini 

1.5 Flash. The model is probably bigger than 

7B as opposed to open source compared in this 

paper but is not specifically trained on the 

mathematical data only. 

During the experiment around 6.7 

million tokens were processed and the model 

generated 4.3 million output tokens. 

 

3.3 Detailed specifications of LLMs 

tested 

Table 2 lists models and their 

descriptions, which have been used during the 

experiments. The open-source models have 

been quantised using K-means quantisation 

with the help of llama.cpp library. The 

quantisation helps to speed up the inference, 

make data more private, and use less 

bandwidth. 

In the context of llama.cpp, Q4_K_M 

refers to a specific type of quantization 

method. The naming convention is as follows: 

• “Q” stands for quantisation. 

• “4” indicates the number of bits used 

in the quantisation process. 

• “K” refers to the use of k-means 

clustering in the quantisation. 

• “M” represents the size of the model 

after quantisation (S = Small,  

M = Medium, L = Large). 

Models with detailed descriptions of the 

open-source (quantised versions) and OpenAI 

are available at:  

✓ GPT- 4o-mini: (accessible via API): 

https://platform.openai.com/docs/models/gpt-

4o-mini 

✓ Mathstral-7B: 

https://huggingface.co/QuantFactory/mathstra

l-7B-v0.1-GGUF 

✓ Qwen2.5-Math-7B: 

https://huggingface.co/QuantFactory/Qwen2.5

-Math-7B-GGUF 

✓ Llama-3.1-8B-Instruct: 

https://huggingface.co/QuantFactory/Meta-

Llama-3.1-8B-Instruct-GGUF 

 
Table 2. Specifications of models tested 

 

Model Params Is quant. Q. method 
Context 

length 

Knowledge 

cutoff 
Model creator 

GPT-4o-mini-2024-

07-18 
n/a ✘ - 128k Oct 2023 OpenAI 

Mathstral-7B 7.25B ✔ Q4_K_M 32k n/a Mistral AI 

Qwen2.5-Math-7B 7.62B ✔ Q4_K_M 128k n/a Alibaba Cloud 

Llama-3.1-8BInstruct 8.03B ✔ Q4_K_M 128k Dec 2023 Meta 

 

3.4 Problems examples 

Table 3 represents some examples of the 

problems used for the tests presented in the 

way they appear in the dataset. Some of the 

answers are expected to be returned in the form 

of a test (“Choose the correct answer from 

options: A, B, C, D”), some answers might be 

expected as a continuation of the question from 

the problem statement (e.g. “The answer is _”), 

some answers might use mathematical 

constants like 𝜋. 

 

 

 

 

https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4o-mini
https://huggingface.co/QuantFactory/mathstral-7B-v0.1-GGUF
https://huggingface.co/QuantFactory/mathstral-7B-v0.1-GGUF
https://huggingface.co/QuantFactory/Qwen2.5-Math-7B-GGUF
https://huggingface.co/QuantFactory/Qwen2.5-Math-7B-GGUF
https://huggingface.co/QuantFactory/Meta-Llama-3.1-8B-Instruct-GGUF
https://huggingface.co/QuantFactory/Meta-Llama-3.1-8B-Instruct-GGUF
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Table 3. Examples of problems categorized by domain with answers 

 

Domain Answer Problem 

Algebra D 

Let 𝑓(𝑥) = 𝑥2 + 𝑏𝑥 + 𝑐. If the equation 𝑓(𝑥) = 𝑥 has no real roots, 

then the equation 𝑓(𝑓(𝑥)) = 𝑥: A. has 4 real roots B. has 2 real roots 

C. has 1 real root D. has no real roots. 

Combinatorics 3136 

In how many ways can two rooks be arranged on a chessboard such 

that one cannot capture the other? (A rook can capture another if it is 

on the same row or column of the chessboard). 

Geometry 60.0 
A triangle has side lengths of 8, 15 and 17 units. What is the area of 

the triangle, in square units? 

Number Theory 37 Find the greatest common divisor (GCD) of 8251 and 6105. 

Algebra -2 Simplify (3 − 2𝑖) − (5 − 2𝑖). 

Combinatorics 0.016 
Out of a randomly selected sample of 500 parts, 8 are found to be 

defective. Find the frequency of defective parts. 

Geometry 100 + 75𝜋 

A square has sides of length 10, and a circle centred at one of its 

vertices has radius 10. What is the area of the union of the regions 

enclosed by the square and the circle? Express your answer in terms 

of 𝜋. 

Number Theory 1 Find the remainder when 2100 is divided by 101. 

Algebra 16 

John has just turned 39. 3 years ago, he was twice as old as James 

will be in 6 years. If James’ older brother is 4 years older than James, 

how old is James’ older brother? 

Combinatorics No 

Is it possible to divide a 12 × 12 checkerboard into ’L’ shapes made 

from three adjacent cells such that each horizontal and each vertical 

row on the board intersects the same number of ’L’ shapes? (A row 

intersects an ’L’ shape if it contains at least one of its cells.) 

Geometry B. 45∘ 
In a regular tetrahedron 𝐴𝐵𝐶𝐷, 𝑀 and 𝑁 are the midpoints of edges 

𝐴𝐵 and 𝐶𝐷 respectively. Determine the angle between segment 𝑀𝑁 

and edge 𝐴𝐷. A. 30∘ B. 45∘ C. 60∘ D. 90∘ 

Number Theory 0 
The sum of all integers whose absolute value is greater than 1 but 

less than 3.5 is ___ . 

 

3.4.1 Wrong problems 

Because our algorithm relies on filtering 

by keywords, some of the problems have been 

classified wrongly, mainly due to the specifics 

of the terminology used in problem statements 

(e.g. “Pascal’s triangle” etc.) or due to the 

problem’s set phrases usage (e.g. “sitting 

around a round table” with misleading 

indication to geometry domain), which are 

designed as a story. Some examples of such 

cases are shown in the Table 4. 

 

4 Analysis of Results 

This section presents a statistical 

analysis of problem-solving performance 

across different mathematical domains on the 

models tested. First, we calculated the average 

performances of model across domains. Next, 

we utilised chi-square and permutation 

statistical methods to evaluate whether the 

distribution of correct and incorrect answers 

differs significantly between domains and to 

ascertain the average correctness rates for each 

domain.  
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Fig. 1. Multiple processes running on the GPU unit utilising the CPU element to the 100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Average solution rate between the domains 
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Table 4. Examples of wrongly identified problems with assigned and expected domains 

Assigned 

domain 

Expected 

domain 
Problem 

Geometry Combinatorics 
What is the 39th number in the row of Pascal’s triangle that has 41 

numbers? 

Geometry Combinatorics 

99 gnomes are sitting around a round table. The hobbit Bilbo knows all 

the gnomes, but he cannot see how they are seated as his eyes are 

covered. Bilbo can name two any gnomes, and all the gnomes will 

chorus in response, telling him how many gnomes are sitting between 

these two gnomes (along the shortest arc). Can Bilbo find out at least 

one pair of adjacent sitting gnomes by asking no more than 50 

questions? 

Number 

Theory 
Combinatorics 

Wanda, Darren, Beatrice, and Chi are tutors in the school math lab. 

Their schedule is as follows: Darren works every third school day, 

Wanda works every fourth school day, Beatrice works every sixth 

school day, and Chi works every seventh school day. Today they are all 

working in the math lab. In how many school days from today will they 

next be together tutoring in the lab? 

4.1 Models Performances across 

Domains 

We computed the average correctness 

rate for each domain per model, representing 

the percentages of problems solved correctly. 

This measure provides insight into the overall 

effectiveness of the models with different 

mathematical domains. 

From Figure 2, Qwen2.5-Math-7B 

emerged as the top performer with an average 

correctness rate of 68.6%, whereas Llama-3.1-

8B-Instruct model showed the worst results of 

25.6%. 

Average. From Table 5 we observe that 

the highest averaged model performances 

across domains (AMPD) have been achieved 

on algebra topic with 58% on average, 

indicating that on average, models perform 

best in this domain. Number Theory follows 

closely with an APD of 52%, showing 

relatively high performance. Geometry and 

Combinatorics have lower APDs of 46% and 

41%, respectively, suggesting these are more 

challenging domains for the models. The table 

also states that all the differences observed are 

statistically significant (details in section 

Permutation Test Analysis Results). 

Algebra. Algebra consistently emerged 

as the strongest area across all models, with 

GPT-4o-mini achieving a correctness rate of 

72.5% and Qwen2.5Math-7B reaching 76.1%. 

These figures indicate robust algebraic 

capabilities, as algebra tasks align well with 

the models’ strengths. 

Combinatorics. Combinatorial 

challenges were evident, as this domain 

consistently underperformed compared to 

others. Mathstral-7B struggled significantly 

with a correctness rate of only 35.2%, and 

GPT-4o-mini also found it challenging at 

51.8%. The complexity of combinatorial 

reasoning remains a considerable hurdle. 

Geometry. Performance varied in 

Geometry, with Mathstral-7B managing a 

correctness rate of 38.8%, indicating below-

average proficiency. In comparison, GPT-4o-

mini and Qwen2.5-Math-7B were more 

successful, achieving correctness rates of 

56.9% and 61.6%, respectively, suggesting 

moderate success in this spatial domain for 

some models. 

Number Theory. Number Theory 

showed mixed outcomes, with Mathstral-7B 

dipping to a correctness rate of 42.4%, 

indicating challenges. However, Qwen2.5-

Math-7B demonstrated substantial 

competence in this domain, achieving a 

correctness rate of 73.6%, revealing varied 

proficiency and potential for targeted 

improvement. 
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Table 5. Absolute differences between Averaged Model Performances across Domains (AMPD). 

 ’*’ represents that the domain difference was highly significant (p < 0.001) 

 

Domain  Algebra Combinatorics Geometry Number theory 

 AMPD 0.58 0.41 0.46 0.52 

Algebra 0.58 - 0.17* 0.13* 0.07* 

Combinatorics 0.41  - 0.04* 0.10* 

Geometry 0.46   - 0.06* 

Number 

theory 
0.52    - 

4.2 Statistical significance 

4.2.1 Chi-Square Test Analysis 

Results 

A Chi-Square test of independence was 

conducted to evaluate if the domain influences 

the distribution of correct and incorrect 

answers. The corresponding values are 

available in Table 6. Additionally, all 

investigated models have degrees of freedom 

𝐷𝑓 = 3, which is equal to the number of 

domains minus 1, and       𝑝𝑣𝑎𝑙𝑢𝑒 way below 

the significance level of 0.05. 

 
Table 6. Chi-Square test results for each model and a 

combined analysis of all models 

 

Model Chi-Square 

GPT-4o-mini 205.64 

Mathstral-7B 101.04 

Qwen2.5-Math-7B 149.37 

Llama-3.1-8B-Instruct 184.93 

Combined analysis 520.16 

 

From Table 6, we observe that the 

average chis-quare value 𝜒2 = 520.16  

underscores the overall influence of the 

domain across all models. The high average 

indicates that the domain significantly affects 

performance, consolidating that models 

exhibit varied performance outcomes across 

different domains. 

We observe that the highest chi-square 

value was achieved by the model GPT-4o-mini 

of 𝜒𝐺𝑃𝑇
2 = 205.64. This suggests a strong 

association between domains and the 

distribution of answers, indicating that the 

model performance significantly varies across 

different domains. 

With the 𝜒𝑀𝑎𝑡ℎ𝑠𝑡𝑟𝑎𝑙
2 = 101.04 

Mathstral-7B model shows the least domain-

specific variability in the correctness of 

responses. While there is still a significant 

influence of domain on performance, it is less 

pronounced compared to the other models. 

Overall, the results highlight that all 

models experience some degree of domain 

influence, with GPT-4o-mini and Llama-3.1-

8B-Instruct showing particularly high 

sensitivity to domain variations. One reason, 

why the indicated models specifically showed 

higher variability in performances across 

domains is due to the sensitivity of the regular 

expression formulas applied for the answer 

extraction, and this can be further investigated 

with better methods of data extraction. 

 

4.2.2 Permutation Test Analysis 

Results 

To further investigate inter-domain 

relevance, we performed a permutation test. As 

shown in Figure 2, the permutation test 

consistently yielded 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.001 across 

mathematical domains, corroborating the chi-

square test findings. 

The results provided by statistical 

analysis imply that the answer to the first 

research question investigated (“Are there 

significant differences in the performances of 

LLMs across distinct mathematical 

domains?”) is positive, as the likelihood of 

correctly solving a problem is significantly 

dependent on the specific domain.  

As regards the second question (“Which 

domains exhibit the highest and lowest 

problem-solving success?”) in our experiment 

we observed that the lowest the lowest 

performance rate was exhibited in 
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combinatorics, and the highest performance 

rate for algebra. 

 

Conclusions and Further Research 

The study effectively demonstrates the 

application of advanced computational models 

to assess problem-solving performance across 

distinct mathematical domains. By analysing a 

subset of the NuminaMath-TIR dataset, we 

identified substantial differences in correctness 

rates among the domains of algebra, geometry, 

number theory, and combinatorics. The results 

underscore a statistically significant 

association between the domain and problem-

solving success, with combinatorics exhibiting 

the lowest average correctness rate. 

Our analysis revealed consistent patterns 

across the models tested: algebra frequently 

emerged as the domain with the highest 

correctness rates for all models, indicating a 

robust understanding and capability in this 

area. Conversely, combinatorics consistently 

presented the greatest challenge. 

Understanding domain influences can guide 

efforts in model training, specifically targeting 

domains where models underperform. This 

could involve adapting training datasets to 

address gaps in model performance. 

While all differences between domains 

in model performances were significant, we 

observed that some models, like GPT-4o-mini 

and Llama-3.1-8BInstruct, showed more 

variability in performance (𝜒2 > 180), 

whereas model Mathstral-7B and Qwen2.5-

Math-7B had their performances are more 

closely aligned across domains (𝜒2 < 150), 

which is might be an indication of the 

importance of the techniques like tool-

integrated reasoning (TIR) to produce models 

more stable results across distinct domains. 

Furthermore, LLM Qwen2.5-Math7B 

demonstrated superior overall performance 

with consistent strength across topics. 

Our findings emphasize the importance 

of domain-aware evaluation within 

educational technology, offering a pathway for 

future studies to explore tailored curriculum 

enhancements and model improvements. This 

can foster the creation of more adaptive and 

intelligent learning systems that manage the 

intricacies of various mathematical domains 

effectively. 
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