
ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

195 

 

UDC: 004.93 https://doi.org/10.15407/jai2024.04.195   

 
O. Harasymchuk 
Lviv Polytechnic National University, Ukraine 

12, Stepan Bandera str., 79013, Lviv, Ukraine  

oleh.ih.harasymchuk@lpnu.ua  

https://orcid.org/0009-0008-6794-8599 

 
ARTIFICIAL INTELLIGENCE IN CONSUMER-DRIVEN CONTRACT 

TESTING OF DISTRIBUTED SYSTEMS 
 

Abstract. This article explores the case of the usage of artificial intelligence (AI) for optimizing the process of 

covering distributed systems with consumer-driven contract test, analyzing the pros and cons of this approach. 

Considering the complexity of development of modern distributed systems, like microservices, and the need to ensure the 

system components interactions keep reliable as long as the system keeps evolving this study is focused on finding the 

most effective way to introduce the contact testing into such systems to maximize the contracts tests coverage while 

minimizing development costs.  

The contract testing has its challenges: steep learning curve, impact on the delivery lifecycle, spreading the 

approach consistently across the organization. These challenges often lead to teams sacrificing the benefits of the approach 

and using more traditional ways of testing, like end-to-end (E2E) testing, which however does not fit well into distrusted 

system.  

The described methodology includes generating (by AI platform) the contract between the parties (consumer and 

provider), generating the consumer test to verify the provider is compatible with the expectations the consumer has of it. 

It is proposed to use following inputs for AI as the source for generation: request-response pairs, OpenApi specification, 

consumer codebase. 

The research employs Pact as a tool that allows to define a contract between a consumer and a provider as well as 

verify that both sides adhere to this contract. NodeJS is used as a framework for consumer and provider development. 

PactFlow platform with its HaloAI executes contracts and tests generation. The proposed approach simplifies the road to 

introduce the contact testing into the distributed systems, increases the development team effectiveness in system 

implementation and a confidence in its stability. 

Keywords: contract testing, artificial intelligence, pact, distributed systems, microservices, consumer, provider. 

 
Intoduction  

In today's software development 

landscape, the use of distributed architectures 

is prevalent. Each component owns and 

handles specific functionality and 

communicates with others through the variety 

of network protocols, like http, messaging or 

grpc. In this context, the need arises to ensure 

compatibility between services, ensuring they 

interact as expected and that changes in one do 

not negatively affect others [1]. 

Miscommunication between services can lead 

to broken functionalities, delayed releases, and 

ultimately, a poor user experience.  

This is where consumer-drivent contract 

testing [2] plays a crucial role. Contracts serve 

as a formal agreement between the two teams, 

ensuring that both sides adhere to predefined 

expectations [3]. Contract tests act as a safety 

net, catching potential issues before they reach 

production. This approach ensure that services 

(or components) interact with each other as 

expected and changes in one service do not 

break others. Unlike traditional end-to-end 

tests, which test the entire system, contract 

tests focus on the interactions between specific 

components. This makes them faster and more 

reliable. However contract testing is a 

technique, and there are many ways to achieve 

it. Various tools offer contract testing 

capabilities, each with its own learning curve, 

which can sometimes detract from the true 

benefits of the approach. The objective is to 

optimize the way organizations and teams have 

to pass to start using it, decrease the entrance 

threshold into the approach. With the rise of 

Generative AI, organizations and practitioners 

have been wondering how best to harness the 

emerging technologies to alleviate common 

problems across many workflows, with 

contract testing not an exception. This article 

examines current tools on the market that offer 

AI capabilities, the benefits and caveats of it, 

tactics and methodologies of GenAI usage to 

optimize contract testing implementation. 

 

https://doi.org/10.15407/jai2024.04.195
mailto:oleh.ih.harasymchuk@lpnu.ua
https://orcid.org/0009-0008-6794-8599


ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

196 

 

Analysis of recent research  

In recent years, the use of consumer-

driven contract testing in distributed systems 

has become more considered but still it’s not as 

popular as the traditional approaches. There 

are few materials describing why the 

traditional ways of testing are not the best 

choice and what are the pitfalls. Integration 

tests are a good way of verifying our system as 

they use real (not mocked out) components but 

quite a lot can go wrong [1,5]. Integration tests 

are [6]: 

− Unstable. A lot of efforts need to be 

taken to keep it up to date. Unstable tests are 

worse than no tests [7] as they train your team 

to ignore test results. 

− Broadly scoped & unspecific. When 

integration test fail it could be a whole host of 

possible reasons. But a tight scope should 

apply to your tests. When your tests fail you 

should be able to quickly pinpoint where the 

failure happened quickly and start to 

understand why. 

− Slow. It is quite expensive (resource 

vise) to spin up the subset of your system under 

test. It often requires additional servers and 

computing power to have the test suite up and 

running. 

− Expensive. To keep your integration 

tests up to date and fast comes at a cost. 

Developers or QAs will need to spend quite a 

lot of time keeping the tests green. 

On the other hand, the contract tests are: 

− Fast. 

− Focused on the single integration at a 

time. 

− Cheaper. No need for dedicated test 

environments. 

− Reliable. They have fast and reliable 

feedback, that is easier to debug. 

− Scalable. They scale linearly [4] with 

the number of integrations, instead of 

exponentially (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Contract vs E2E tests comparison 

 

Regarding the use of GenAI for contract 

test generation, this specific topic is quite new 

in the industry. We can find some thoughts 

about it in a few articles over the network, 

describing that AI integration into contract 

testing can overcome hurdles, enhancing 

efficiency, accuracy, and overall software 

quality [8]. GenAI tools like ChatGPT and 

CoPilot have demonstrated the potential to 

dramatically enhance efficiency, accelerate 

learning, and offer valuable insights that were 

previously difficult to uncover. There is even 

ready to use solution, that we are going to use 

in this research [9], however this solution is the 

single one on the market. It supports only test 

generation for services communicating over 

http protocol. Moreover, it can’t be used for 

free and supports only 2 technologies that can 

integrate with it: JS and Java. So, a plenty of 

other popular technologies, like. Net or Ruby 

are still uncovered. 

 

The aim of the study 

The main purpose of this work is to 

demonstrate the GenAI usage to generate 

contracts and consumer tests for the distributed 

systems based on different type of inputs, 

analyze which inputs are better to use to 

calibrate the end result, so that human 

involvement into the process is minimized. 

https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html


ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

197 

 

1. // Consumer Code 

2. const ProductRepository = require("./product.repository"); 
3. const repository = new ProductRepository(); 
4. exports.getAll = async (req, res) => { 
5.     res.send(await repository.fetchAll()) 
6. }; 
7. exports.getById = async (req, res) => { 
8.     const product = await repository.getById(req.params.id); 
9.     product ? res.send(product) : res.status(404).send({message: "Product not found"})                                              
10. }; 
11. exports.repository = repository; 
12. class Product { 
13.     constructor(id, type, name, version, price) { 
14.         this.id = id; 
15.         this.type = type; 
16.         this.name = name; 
17.         this.version = version; 
18.                 this.price = price; 
19.     } 
20. }  
21.  
22.  // Provider Code 
23. const axios = require('axios').default; 
24. const adapter = require('axios/lib/adapters/http'); 
25. axios.defaults.adapter = adapter; 
26. class Product { 
27.     constructor(id, type, name) { 
28.         this.id = id; 
29.         this.type = type; 
30.         this.name = name; 
31.     } 
32. } 
33. export class API { 
34.   constructor(url) { 
35.    //... some code here 
36.   } 
37.   async getAllProducts() { 
38.     return axios 
39.       .get(this.withPath('/products'), { 
40.         headers: { 
41.           Authorization: this.generateAuthToken() 
42.         } 
43.       }) 
44.       .then((r) => r.data.map((p) => new Product(p))); 
45.   } 
46.   async getProduct(id) { 
47.     return axios 
48.       .get(this.withPath('/product/' + id), { 
49.         headers: { 
50.           Authorization: this.generateAuthToken() 
51.         } 
52.       }) 
53.       .then((r) => new Product(r.data)); 
54.   } 
55. } 

Usual approach of manual test implementation 

often results into several problems: human 

errors, long learning curve, ineffective tests 

that can provide a false sense of confidence by 

either testing too little or testing the wrong 

parts of your code. Introducing GenAI 

possibilities into the process we get the next 

benefits: 

− Reducing human error. 

− Predictive insight. 

− Quickly scaffolding. 

− Improved time to market. 

− Scale across organization. 

We are going to exercise the following 

modes of consumer test generation: 

− Traffic capture, 

− OpenAPI descriptions. 

− Existing client code. 

− OpenAPI descriptions improved by 

client code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Consumer & provider codebase 

 



ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

198 

 

pactflow-ai generate request-response \ 
--request ./capture/get.request.http \ 
--response ./capture/get.response.http \ 
  --language typescript \ 
  --output ./src/api.pact.spec.ts 

Methods and materials  

To setup our framework and working 

environment we would need to use several 

existing technologies and libraries. 

− NodeJS is used to implement out 

distributed system parties between which we 

are going to setup contract and tests: consumer 

and provider. 

− Pact is a code-first tool that allows to 

define a contract between a consumer and a 

provider as well as verify that both sides 

adhere to this contract. 

− Pactflow is AI-powered developer 

platform that allows us to enable test 

generation feature and run it through different 

data inputs. 

− Killercoda is an online platform that  

 

 

− allows us spin up the working 

environment and run our experiments on it. 

 

Testing results 

The following (Fig. 2) provider and 

consumer codebase was created using NodeJS 

(only important parts left just to illustrate the 

idea, rest of the codebase was omitted). 

 

Traffic capture 

Let’s consider the case when we have an 

existing provider that we wish to generate 

contracts for. Pactflow-ai allows to generate 

Pact tests from capture files. These capture 

files, are request/response pairs. Specifically,  

the capture files should conform to an HTTP 

Messages, using the HTTP/1.1 format (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Request & response example

 

Let’s use this pair as the input for the pactflow-ai to generate the consumer test.

 

 

 

 

 

 

The generated consumer test is shown in Fig. 4 below: 

 

 

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages


ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

199 

 

 
 

Fig. 4. Consumer test 
 

The are several problems with this 

consumer test. The ProductClient is generated 

by AI but it’s not a real http client The test 

expectation is to get response from provider 

with 5 fields inside, but our consumer uses 

only 3 of them: id, type, name. These problems 

would cause the test failure if we ran it, so still 

it needs some manual work to be done to fix it. 

 

OpenAPI descriptions 

We may have documented services using  

API descriptions that adhere to the 

OpenAPI specification. These OpenAPI 

descriptions can aid shared understanding of a 

providing services expectations, for both 

providers and consumers. For consumers, they 

can easily leverage tools like swagger-codegen 

to bootstrap clients from OpenAPI 

specifications in multiple languages. So having 

OpenAPI descriptions its now possible to 

execute test generation passing these files as an 

input. 

 

pactflow-ai generate openapi \ 
--spec ./products.yml \ 
--endpoint "/product/{id}" \ 
--output ./src/api.pact.spec.ts \ 
--language typescript 



ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

200 

 

1.  openapi: 3.0.1 
2. info: 
3.   title: Product API 
4.   description: Pactflow Product API demo 
5.   version: 1.0.0 
6. paths: 
7.   /product/{id}: 
8.     get: 
9.       summary: Find product by ID 
10.       description: Returns a single product 
11.       operationId: getProductByID 
12.       parameters: 
13.       - name: id 
14.         in: path 
15.         description: ID of product to get 
16.         schema: 
17.           type: string 
18.         required: true 
19.         example: 10 
20.       responses: 
21.         "200": 
22.           description: successful operation 
23.           content: 
24.             "application/json; charset=utf-8": 
25.               schema: 
26.                 $ref: '#/components/schemas/Product' 
27.               examples: 
28.                 application/json: 
29.                   value: 
30.                     id: "1234" 
31.                     type: "food" 
32.                     price: 42 
33.         "400": 
34.           description: Invalid ID supplied 
35.           content: {} 
36. components: 
37.   schemas: 
38.     Product: 
39.       type: object 
40.       required: 
41.         - id 
42.         - name 
43.         - price 
44.       properties: 
45.         id: 
46.           type: string 

We received almost identical consumer 

test, but this time the “dummy” http client is 

the real working one, so the the only reason for 

test to fails would be still 2 extra fields that 

consumer does not use: price, version. We can 

try to improve the test generation. We will use 

an OpenAPI description as an input but will 

also provide the context of our client code, 

which will become our system under test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Provider OpenApi specification 

 



ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

201 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Consumer test (2) 

  



ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

202 

 

By providing our codebase as a 

context, pactflow-ai can replace the dummy 

client generated in the previous step, with our 

real client. If the code provided also contains 

the object model used, then pactflow-ai should 

ensure that only fields used by a consumer are 

added to the contract. This avoids a common 

pitfall, whereby more fields are added to a 

consumer test, than the consumer client code 

uses.  

This puts tension between provider 

teams, as they are unduly bound to honour 

those fields for consumers that do not use 

them. 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Consumer test (3) 



ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

203 

 

We can see the improved test version, 

where read API clients is used as well as 

response is expected to contain only 3 fields 

used by consumer. 

 

Existing client code 

When we do not have OpenAPI 

descriptions for the provider we can generate 

tests from the client code, without the need 

for an OpenAPI description. 

 

 

 

 

 

 

 
 

Fig. 8. Consumer test (4)

pactflow-ai generate code  
   ./src/api.js ./src/product.js \ 
  --output ./src/api.pact.spec.ts \ 

  --language typescript 
 



ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

204 

 

This consumer test version looks the best 

and perfectly matching the consumer needs. 

However, GenAI does not have any 

information about the provider this time, so it 

can’t make any expectations on values that 

could be returned by the real provider during 

the runtime. Finally, if we run our test we 

should get the Pact contract 

“npm run test:pact” 

You can check the test result below. The 

product details test passed succesfully.

 

 

 

 
 

Fig. 9. Test results 

 

During this research we exercised 

different options that GenAI can provide, and 

how it can help us to quickly generate 

consumer Pact tests and pacts between parties 

as well. The generation process is not ideal and 

different inputs can produce slightly different 

results.  
Whilst GenAI may need a small amount 

of tweaking to run, it quickly and accurately 

generate Pact tests, using the latest client 

library DSL's, following recommended Pact 

best practices, including the usage of Provider 

States and Matchers. 

By refining the inputs we provide to Gen 

AI, we can find ways to tailor it the particular 

use case. 

 

Conclusions 

In this article we’ve investigated the 

GenAI consumer test generation capabilities, 

the different options provided, and how they 

can help to quickly generate consumer Pact 

tests. 

While this approach may need a small 

amount of tweaking to run, it quickly and 

accurately uses the latest client library DSLs, 

and follows the recommended Pact best 

practices, including the usage of provider 

states and matchers. By refining the inputs you 

provide to GenAI paltform, we can tailor it to 

the particular use case.  

There is still a room for improvements 

and future invetigations: improving the inputs 

for the AI, extending the framework to support 

more techologies, such as Python, .NET & Go 

and more communication protocols, like grpc. 

However, even the existing mechanism 

is powerfull enough to help development 

teams and organizations to apply consumer-

driven contract testing faster in their projects 

and optimize the testing strategies with 

contract testing benefits. 

 

 

 

 

 

 

 

 

 

 



ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Pact (contract)

1. { 
2.   "consumer": { 
3.     "name": "ProductConsumer" 
4.   }, 
5.   "interactions": [ 
6.     { 
7.       "description": "a request to get a product by ID", 
8.       "providerStates": [ 
9.         { 
10.           "name": "a product with ID 1234 exists" 
11.         } 
12.       ], 
13.       "request": { 
14.         "headers": { 
15.           "Accept": "application/json; charset=utf-8" 
16.         }, 
17.         "matchingRules": { 
18.           "header": {}, 
19.           "path": { 
20.             "combine": "AND", 
21.             "matchers": [ 
22.               { 
23.                 "match": "regex", 
24.                 "regex": "/product/\\d+" 
25.               } 
26.             ] 
27.           } 
28.         }, 
29.         "method": "GET", 
30.         "path": "/product/1234" 
31.       }, 
32.       "response": { 
33.         "body": { 
34.           "id": "1234", 
35.           "name": "Sample Product", 
36.           "type": "food" 
37.         }, 
38.         "headers": { 
39.           "Content-Type": "application/json; charset=utf-8" 
40.         }, 
41.         "matchingRules": { 
42.           "body": { 
43.             "$.id": { 
44.               "combine": "AND", 
45.               "matchers": [ 
46.                 { 
47.                   "match": "type" 
48.                 } 
49.               ] 
50.             }, 
51.             //...other rules 
52.           }, 
53.           "header": {} 
54.         }, 
55.         "status": 200 



ISSN  2710 – 1673   Artificial  Intelligence   2024   № 4 

206 

 

References 

 

1. Lehvä, J., Mäkitalo, N. & Mikkonen (2019). 

Consumer-Driven Contract Tests for Microservices: A 

Case Study.  

https://doi.org/10.1007/978-3-030-35333-9_35 

2. Marie Cruz & Lewis Prescott. Contract Testing 

in Action 

3. Robinson. I.: Consumer-Driven Contracts: A 

Service Evolution Pattern.  

Available:https://martinfowler.com/articles/consumerD

rivenContracts.html 

4. Matt Fellows. What is contract testing and why 

should I try.  

Available: https://pactflow.io/blog/what-is-contract-

testing/ 

5. Elliott Murray. Proving E2E tests are a scam. 

[Online]  

Available: https://elliottmurray.medium.com/proving-

e2e-tests-are-a-scam-21d39e88913 

6. Thomas Shipley. Contract Testing with Pact in 

Net Core.  

Available:https://tomdriven.dev/.net%20core/c%23/con

tract%20testing/pact/test/2018/03/13/contract-testing-

with-pact-in-net-core.html 

7. Just Say No More to End-to-End Test. [Online] 

Available: https://testing.googleblog.com/2015/04/just-

say-no-to-more-end-to-end-tests.html 

8. Yousaf Nabi. Unpacking GenAI’s Role in 

Contract Testing.  

Available: https://pactflow.io/blog/ai-automation-part-2 

9. Pactflow [Online].  

Available: https://docs.pactflow.io/ 

10. Manuel Simosa; Frank Siqueira, Contract 

Testing in Microservices-Based Systems: A Survey. 

doi:10.1109/ICSESS58500.2023.10293058 

 
The article has been sent to the editors 11.10.24. 

After processing 20.10.24. 

Submitted for printing 30.12.24. 

 

Copyright under license CCBY-NC-ND 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

https://doi.org/10.1007/978-3-030-35333-9_35
https://martinfowler.com/articles/consumerDrivenContracts.html
https://martinfowler.com/articles/consumerDrivenContracts.html
https://pactflow.io/blog/what-is-contract-testing/
https://pactflow.io/blog/what-is-contract-testing/
https://elliottmurray.medium.com/?source=post_page-----21d39e88913--------------------------------
https://elliottmurray.medium.com/proving-e2e-tests-are-a-scam-21d39e88913
https://elliottmurray.medium.com/proving-e2e-tests-are-a-scam-21d39e88913
https://tomdriven.dev/.net%20core/c%23/contract%20testing/pact/test/2018/03/13/contract-testing-with-pact-in-net-core.html
https://tomdriven.dev/.net%20core/c%23/contract%20testing/pact/test/2018/03/13/contract-testing-with-pact-in-net-core.html
https://tomdriven.dev/.net%20core/c%23/contract%20testing/pact/test/2018/03/13/contract-testing-with-pact-in-net-core.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://pactflow.io/blog/author/yousaf/
https://pactflow.io/blog/ai-automation-part-2
https://docs.pactflow.io/
https://ieeexplore.ieee.org/author/37090062679
https://ieeexplore.ieee.org/author/37349562800
https://doi.org/10.1109/ICSESS58500.2023.10293058

