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INFLUENCE OF AIR QUALITY MODEL PARAMETERS  

ON POLLUTION CONCENTRATION 
 

Abstract. Air pollution poses a significant threat to public health, ecosystems, and the global climate. Accurate 

prediction and effective management of air quality are of paramount importance, which, in turn, rely on sophisticated air 

quality models. These models integrate a variety of atmospheric parameters to simulate the dispersion of pollutants in the 

complex urban atmosphere, yet the influence of specific input parameters on predicted pollution concentrations has not 

been fully elucidated. This comprehensive study assesses how variations in model input parameters can lead to divergent 

pollution concentration outputs, with the goal of identifying those that are most critical to model accuracy. 

Using observational data from air quality monitoring stations in conjunction with meteorological records, the study 

explores the sensitivity of forecasted pollutant concentrations to fluctuations in model inputs such as emission source 

strength, atmospheric stability, wind speed and direction, diurnal heating patterns, chemical reaction rates, and boundary 

layer dynamics. Dispersion models are evaluated across different spatial and temporal scales to gauge their response to 

environmental variables and topographic features. The performance of these models is also assessed against satellite-

derived pollutant measurements to encompass a broader geographical context. 

Through the application of numerical simulations and statistical analyses, the study quantifies the relative impact 

of each parameter. Cross-validation techniques, along with uncertainty quantification methods, are applied to ensure the 

reliability of the conclusions drawn. The research also incorporates the use of machine learning tools to identify complex 

patterns in the environmental data that may be missed by traditional modeling approaches. 

The abstract concludes that a detailed understanding of influential model parameters is essential for refining air 

quality predictions. Improvements in the accuracy of dispersion models will enable policymakers and urban planners to 

make better-informed decisions regarding air pollution control and mitigation strategies. This work forms the foundation 

for future advancements in the field of atmospheric sciences and encourages continued exploration into the interaction 

between anthropogenic activities, meteorological phenomena, and air quality outcomes. 

Keywords: air quality modelling, pollutant dispersion, environmental parameters, model sensitivity, observational 

data, statistical analysis, meteorological influences, machine learning. 

 

Introduction 

In recent years, the global community 

has become increasingly aware of the adverse 

impacts of air pollution on human health, 

ecosystems, and the climate. Airborne 

pollutants such as particulate matter (PM), 

nitrogen oxides (NOx), sulfur dioxide (SO2), 

ozone (O3), and volatile organic compounds 

(VOCs) have been linked to respiratory 

diseases, cardiovascular problems, and various 

environmental issues including acid rain and 

global warming. Urbanization, industrial 

activities, and vehicular emissions intensify 

these pollution challenges, necessitating 

refined air quality modeling to better predict 

pollutant concentrations and inform mitigation 

strategies. 

Air quality models (AQMs) are the 

primary tools used by environmental scientists 

to simulate the atmosphere's physical and 

chemical processes that influence pollutant 

transport and transformation. These models are 

essential for forecasting air pollution and for 

evaluating the potential impact of different 

pollution control options. The fidelity of 

AQMs to real-world conditions is highly 

dependent on their input parameters, such as 

emission rates, atmospheric composition, and 

meteorological data. Therefore, understanding 

the sensitivity of models to these inputs is 

crucial for enhancing their predictive accuracy. 

A key aspect of this exploration is the 

analysis of meteorological parameters such as 

temperature, wind speed and direction, 

atmospheric stability, and humidity. These 

factors significantly affect the dispersion of 

pollutants by altering the rate of mixing and 

dilution in the atmosphere.  

In addition to physical factors, this study 

also recognizes the importance of chemical 
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reactions occurring in the atmosphere, which 

can transform primary pollutants into 

secondary products with different dispersion 

characteristics and health implications.  

 

Implementation 

The implementation provides robust 

insights into the behavior and distribution of 

atmospheric pollutants, ultimately enabling 

more accurate air quality forecasting and more 

effective pollution management strategies. 

Model Selection and Setup: 

Selecting appropriate air quality models 

is a critical step in conducting an air quality 

assessment study. This process entails a careful 

examination of several factors, including the 

objectives of the study, the spatial and 

temporal scale of interest, the availability of 

data, computational resources, and the specific 

pollutants of concern. Below is a detailed 

approach to model selection and setup for an 

air quality modeling study: 

1. Define Study Objectives: 

Clarify the goals of the modeling 

exercise. This may involve understanding the 

dispersion of a specific pollutant, assessing 

exposure levels for public health studies, 

evaluating the effectiveness of emission 

control strategies, or forecasting air quality for 

regulatory compliance. 

2. Identify the Scale of Interest: 

Determine whether the study is focused 

on a local (point sources), urban (city scale), 

regional (across multiple cities or states), or 

global scale. Each scale may necessitate a 

different type of model with varying levels of 

detail and complexity. 

3. Review Pollutants of Interest: 

Decide which pollutants will be the focus 

of the study. This could be primary pollutants 

directly emitted from sources (e.g., NOx, SO2, 

PM) or secondary pollutants formed in the 

atmosphere through chemical reactions (e.g., 

ozone). 

4. Evaluate Available Data: 

Assess the data available for the study 

area, including emissions inventories, 

meteorological data, topographical 

information, and ambient air quality 

measurements. The availability and quality of 

these datasets can considerably influence 

model choice. 

5. Select Model Type: 

Consider the most suitable model type 

for the study's needs: 

a. Gaussian plume models are relatively 

simple models suitable for simulating pollutant 

dispersion from point sources over short 

distances and in simple meteorological 

conditions. 

b. Eulerian models divide the study area 

into a grid and simulate the pollutant 

dispersion and chemical transformations 

within each grid cell, making them ideal for 

regional or urban air quality assessments. 

c. Lagrangian models track pollutant 

"parcels" as they move with the wind, 

providing detailed simulation of pollutant 

trajectories and are beneficial when assessing 

specific emission events or for complex 

terrains. 

d. Chemical transport models (CTMs) 

incorporate both physical dispersion and 

chemical reactions, offering a comprehensive 

approach for simulating the formation of 

secondary pollutants on various scales. 

6. Model Setup: 

Once the model type is selected, set it up 

with appropriate input data: 

 a. Emissions data: Compile or obtain an 

emissions inventory that includes the rates, 

locations, and types of pollutants being 

released. 

 b. Meteorological data: Input detailed 

meteorological information such as wind speed 

and direction, temperature, radiation, 

humidity, and boundary layer properties. 

 c. Initial and boundary conditions: Set 

up the initial pollutant concentrations and 

boundary conditions of the model domain as 

per available observations or predictions. 

 d. Grid resolution and domain: Choose 

an appropriate grid resolution and model 

domain that appropriately balances 

computational demand with the desired level 

of detail. 

 e. Chemical mechanism: If applicable, 

select the chemical mechanism for the model 

that accurately simulates the chemical 

reactions relevant to the study. 

7. Calibration Parameters: 

Identify the calibration parameters, 

which may include factors such as deposition 

velocities, reactivity rates, and background 
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concentration levels, that can be adjusted to 

improve model performance against observed 

data. 

8. Perform Test Runs: 

Conduct initial test runs to ensure that 

the model operates as expected, and to identify 

potential issues with input data or model 

configuration that need to be addressed before 

proceeding to full-scale simulations. 

Using this targeted approach, researchers 

can select an air quality model that is well-

suited to their study objectives, available data, 

and computational resources. Proper model 

selection and meticulous setup are essential to 

produce credible and actionable results from 

air quality modeling efforts. 

The proposed air quality monitoring 

system leverages the power of IoT and real-

time data to provide users with accurate and up-

to-date information about their immediate 

environment. Fig-1 shows the block of the 

Pm2.5 data taken each 50 meters from thermal 

station. 

The Gaussian plume model is a 

simplification of the advection-diffusion 

equation used to estimate the distribution of a 

pollutant over space and time from a point 

source under steady-state conditions. The 

formula for the concentration C at a downwind 

location (x, y, z) is expressed as: 

 

[𝐶(𝑥, 𝑦, 𝑧)

=
𝑄

(2πσ𝑦σ𝑧𝑢)
exp (−

𝑦2

2σ𝑦
2

) [exp (−
(𝑧 − 𝐻)2

2σ𝑧
2

)

+ exp (−
(𝑧 + 𝐻)2

2σ𝑧
2

)]] 

 

Where: 

- ( 𝐶 ) is the concentration at the point of 

interest, 

- ( 𝑄 ) is the pollutant emission rate 

(mass/time), 

- ( 𝑢 ) is the mean wind speed along the 

x-axis (wind direction), 

- (σ𝑦) and (σ𝑧) are the standard 

deviations of the pollutant concentration 

distribution in the crosswind (y) and vertical (z) 

directions, respectively, 

- ( 𝐻 ) is the effective height of the 

emission release (stack height plus plume rise), 

and 

- ( 𝑥, 𝑦, 𝑧 ) are the downwind, crosswind, 

and vertical distances from the emission source 

point. 

Eulerian model solves the advection-

diffusion or continuity equation on a fixed grid 

over the area of interest. The generic equation 

in three dimensions is: 

 

[
∂𝐶

∂𝑡
+ 𝑢 ⋅ ∇𝐶 = ∇ ⋅ (𝐾∇𝐶) + 𝑆 − 𝐿] 

 

Where: 

- ( 𝐶 ) is the concentration of a pollutant, 

- ( 𝑡 ) is time, 

- (𝑢) is the three-dimensional wind field 

vector, 

- ( 𝐾 ) is the turbulent diffusion 

coefficient matrix, 

- ( 𝑆 ) is the source term describing the 

rate of addition of the pollutant, 

- ( 𝐿 ) is the loss term accounting for 

chemical reactions and deposition, 

- ( ∇) represents the spatial gradient 

operator. 

It is important to note that Eulerian 

models often involve coupling atmospheric 

chemistry and using complex numerical 

methods to solve the partial differential 

equations. 

Lagrangian model tracks pollution 

"parcels" as they move through space under the 

influence of the wind field and turbulent 

mixing. The change in concentration in a 

Lagrangian framework is often described by a 

stochastic differential equation (SDE): 

 

[𝑑𝑋𝑡 = 𝑢(𝑋𝑡, 𝑡)𝑑𝑡 + √2𝐾𝑑𝑊𝑡] 
 

Where: 

- (𝑋𝑡) represents the position of the 

pollutant parcel at time ( 𝑡 ), 
- (𝑢(𝑋𝑡, 𝑡)) is the velocity field (wind) at 

position (𝑋𝑡)and time ( 𝑡 ), 
- ( 𝐾 ) is the turbulent diffusion 

coefficient, 

- (𝑑𝑊𝑡) is the Weiner process (stochastic 

term) representing the turbulent fluctuations. 

Chemical Transport Models (CTMs): 

CTMs are comprehensive models that 

include atmospheric chemistry and physical 

transport processes to predict the formation, 

transport, and fate of chemical species in the 
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atmosphere. The general equation for a 

chemical species concentration (𝐶𝑖)is: 

 

[
∂𝐶𝑖

∂𝑡
+ ∇ ⋅ (𝑢𝐶𝑖)

= ∇ ⋅ (𝐾∇𝐶𝑖) + ∑ 𝑅𝑗

𝑗

𝐶𝑗 + 𝐸𝑖

− 𝐷𝑖] 
 

Where: 

- (𝐶𝑖) is the concentration of chemical 

species ( 𝑖 ), 
- ( 𝑡 ) is time, 

- (𝑢)𝑖𝑠 the wind field vector, 

- ( 𝐾 ) is the diffusion coefficient matrix, 

- (𝑅𝑗) is the reaction rate for a reaction 

( 𝑗 ) in which (𝐶𝑖) is involved, 

- (𝐸𝑖) is the emission rate of ( 𝑖 ), 
- (𝐷𝑖) is the deposition rate of ( 𝑖 ). 
CTMs require highly sophisticated 

numerical techniques to solve the coupled non-

linear equations related to chemistry, transport, 

and other atmospheric processes. 

Auccessfully implement the IoT-based 

air quality monitoring system, the following 

steps are essential: 

1. Assemble the hardware components: 

Connect the pollutant sensors to the ESP32 

microcontroller using appropriate analog or 

digital pins. Ensure that the connections are 

secure and follow best practices for managing 

wiring and layout. 

2. Configure and program the ESP32: Set 

up the required settings for wireless 

connectivity, cloud services API keys, and 

other relevant configurations. Develop 

appropriate firmware to acquire data from the 

sensors, preprocess the data if necessary, and 

transmit it to the cloud platform in a format 

compatible with the chosen cloud service. 

3. Cloud server setup: Create an account 

and configure the chosen cloud platform to 

receive, store, and analyze air quality data from 

the ESP32 microcontroller, enabling data 

visualization, tracking, and alerting. 

4. Develop a user interface: Create a 

mobile application or web-based platform that 

allows users to interact with the system, access 

real-time air quality data, set up threshold-

based alerts, and visualize trends in air quality 

parameters. 

5. Calibration and maintenance: 

Regularly calibrate the sensors, update 

firmware, and perform other necessary 

maintenance tasks to ensure the system's 

continued accurate functioning and reliability 

[1].

 

  
 

Fig. 1. Empirical data taken from the location 

 

Model Implementation: 

The task of air quality monitoring is to 

use sensor data to obtain intelligible results 

about the condition of the air in real-time. 

Applying a recursive difference approach, we 

can build a model to estimate the level of 
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pollutants based on current and previous 

measurements. 

Consider how the speed and direction of 

the wind affect the level of atmospheric air 

pollution using formulas from the field of 

dispersion modelling. The direction and speed 

of the wind are important for the level of 

atmospheric air pollution. The wind affects the 

transport, dispersion, and settlement of 

pollutants in the atmosphere. The level of 

pollution in a city can be influenced by aspects 

such as: 

− Transport of pollutants: The wind can 

carry pollutants from industrial zones, 

agricultural lands (where pesticides or 

fertilizers may be used), power plants, 

roadways, and other emission sources to areas 

where people live or spend a lot of time. 

− Dispersion of pollutants: Strong winds 

can disperse pollutants, thereby reducing their 

concentration in a particular zone. At the same 

time, a weak wind may cause the accumulation 

of pollutants over urban areas, causing a higher 

level of pollution. 

− Direction of the wind: The direction from 

which the wind blows can be decisive in 

determining where pollutants are carried. If the 

wind blows from pollution zones (such as 

industrial areas) towards urban districts, an 

increased level of air pollution may be 

recorded. 

− Wind speed: Wind speed is also 

important. At high wind speeds, pollutants 

disperse more quickly and thus, the level of 

pollution can decrease. On the other hand, at 

low speeds, especially in combination with a 

temperature inversion, pollutants can 

accumulate, increasing the level of pollution. 

− Vertical processes: Winds blowing in the 

vertical plane can help lift pollutants up to 

higher layers of the atmosphere, where they can 

disperse over long distances. Also, winds can 

facilitate the scavenging (deposition) of 

pollutants, reducing their concentration in the 

lower air layers. 

Assessment of the impact of winds on the 

level of air pollution requires the application of 

atmospheric dispersion models that incorporate 

various meteorological data, pollutant 

measurements, and information about emission 

sources. Such models can be used for 

forecasting AQI and developing strategies to 

reduce pollution's impact on the population. 

To include the effect of wind direction in 

the model, one needs to introduce the wind 

velocity vector and its components into the 

convection-diffusion equation. The simple one-

dimensional equation we considered does not 

consider wind direction, as it is one-

dimensional and assumes that the source of 

pollution, the direction of pollutant spread, and 

the influence of wind direction have already 

been considered in establishing the boundary 

conditions. 

In realistic models, the direction and 

speed of the wind are usually considered as 

vector fields (u(x,y,z,t)), which change in space 

and time. In three-dimensional space, the 

convection-diffusion equation may look like: 

 

[
∂𝑐

∂𝑡
+ ∇ ⋅ (𝑢𝑐) = ∇ ⋅ (𝐷∇𝑐) + 𝑆]  , 

 

where ( 𝑢 ) is the wind velocity vector, which 

has components in the x, y, and z directions (u, 

v, and w, respectively). 

When we assume a steady-state (stable 

over time) and one-dimensional case, the 

equation can be generalized to include the 

direction of the wind as: 

 

[∇ ⋅ (𝑢𝑐) = 𝑢
∂𝑐

∂𝑥
]  , 

 

where ( 𝑢 ) is the component of the wind speed 

in the direction of x, and (𝑐(𝑥))is the 

concentration of pollutants along the direction 

of the wind. 

To integrate the influence of direction 

into the AQI calculations, one must make 

assumptions or measurements of the wind and 

adapt the model accordingly. However, 

including the advective (wind-caused) term in 

the model significantly complicates the 

solution and calculations [4]. 

From main formula it is evident that the 

wind speed ( 𝑢 ) is significant - it is included in 

the denominator, thus as the wind speed 

increases, the concentration of the pollutant 

(\( 𝐶(𝑥, 𝑦, 𝑧) \)) decreases. This means that 

with fast winds, pollutants disperse more 

quickly and efficiently, reducing the local 

airload. 

As for the wind direction, it is not 

explicitly present in this formula, but it 
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significantly influences the parameters 

( 𝑦 ) and ( 𝑧 ) and the choice of the emission 

source, which will be decisive for the pollution 

level at a specific point. 

 

[
∂𝑐

∂𝑡
+ 𝑢 ⋅ ∇𝑐 = ∇ ⋅ (ρ𝐷∇𝑐 + ρ𝐾∇𝑐) + 𝑆] 

 

The speed and direction of the wind play 

a key role in the distribution and dispersion of 

pollutants in the atmosphere, and therefore, on 

the AQI level in different places. Calculations 

based on such formulas can help determine 

high-risk areas of air pollution and form 

strategies to address them. 

The impact of humidity on PM2.5 can be 

included in main equation, considering that the 

PM2.5 concentration changes with humidity. 

Considering our formula for PM2.5 

concentration depending on humidity, the 

formula can be updated as follows: 

 

[
∂(ρ′𝐶′)

∂𝑡
+ ∇ ⋅ (ρ′𝑢𝐶′)

= ∇ ⋅ (ρ′𝐷∇𝐶′ + ρ′𝐾∇𝐶′) + 𝑆] 
 

Here (𝐶′) is the PM2.5 concentration, 

modified to account for the influence of relative 

humidity ((𝐶′ = 𝐶(1 + κ𝑅𝐻)
1

ν)), and (ρ′) is 

the density of PM2.5, which is also determined 

by the influence of humidity on particles. Fig-2 

shows have the Pm2.5 concentration 

determined by the influence of humidity. 

 

 
 

Fig. 2. Pm2.5 determined by the influence of humidity  

 

Temperature is also a critical variable 

that affects PM2.5. During high temperatures, 

the rate of chemical reactions in the 

atmosphere increases, which can lead to the 

creation of additional PM2.5 through 

secondary atmospheric processes. 

Temperature can also affect the stability of 

the atmospheric layer and thus influence the 

vertical migration of PM2.5. Incorporating 

the influence of temperature into main 

equation is a somewhat complicated task as 

the temperature can affect various parameters 

of the equation. 

Ways in which temperature can affect 

the parameters in the equation: 

− Density (ρ): In gases, density generally 

decreases with increasing temperature 

(assuming pressure remains constant), 

according to the ideal gas law. At the same 

time, the density of PM2.5 particles may 

change depending on their chemical 

composition and properties. 

− Molecular diffusivity (D) and turbulent 

diffusivity (K): Usually increase with 

temperature since they are related to the 

kinetic energy of molecules. 

− Concentration (C): Can change 

depending on the temperature due to the 

properties of the chemical substances that 

make up PM2.5, as well as due to various 

chemical processes in the atmosphere. 

The simplest way to use empirical 

correlation or phenomenological model to 

indicate how temperature changes one or 

more parameters in the equation. For 

example, that molecular diffusivity D and 

turbulent diffusivity K depend on temperature 

T using certain correlations or physical 

principles and express them as functions D(T) 

and K(T). Similarly, density ρ can be 
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expressed as ρ(T). 
 

[
∂ρ(𝑟, 𝑡)

∂𝑡
+ ∇ ⋅ (ρ𝑢)

= ∇
⋅ (ρ𝐷(𝑟, 𝑡)∇𝑐

+ ρ𝐾(𝑇(𝑟, 𝑡), 𝑅𝐻(𝑟, 𝑡))∇𝑐)

+ 𝑆(𝑇(𝑟, 𝑡), 𝑅𝐻(𝑟, 𝑡))] 
 

As can be seen, understanding the 

relationship between such meteorological 

factors as wind, humidity, and temperature, 

and PM2.5, is crucial for predicting air quality 

and developing effective strategies for 

reducing air pollution. 

Transitioning to the PM2.5 

concentration graph from distance requires 

solving this equation for given initial and 

boundary conditions. In simple cases, this can 

be done analytically, but often numerical 

methods are necessary. 

Let's assume that we model the 

diffusion of a pollutant in the atmosphere 

without considering advection and reaction. 

In this case, we can simplify the equation to 
 

[𝐷∇2𝑐 =
∂𝑐

∂𝑡
] , 

 

where D is the diffusion coefficient. Knowing 

the initial concentration, one can solve the 

diffusion equation for any time t and any 

distance from the source. We base our initial 

parameters as Q = 0.1, U = 0.5, H = 10.0, K = 

1.5. Where Q is the emission rate (g/s), U is 

the wind speed (m/s), H is the height of the 

chimney (m), K is the coefficient of turbulent 

diffusion (m^2/s). Based on the parameters, 

we construct a graph of the dependence of 

PM2.5 concentration on distance (Fig 3). 
 

 
 

Fig. 3. Graph of PM2.5 (µg/m³) dependence on 

distance from the source (m) 

 

Thus, we discussed how weather 

parameters such as humidity, pressure, and 

temperature affect the distribution and 

concentration of pollutants in the air, 

responsible for the Air Quality Index (AQI). 

Now let's move on to analyzing another 

important aspect – quantitative modeling of 

pollutant dispersion. 

Applying indicators to the model, we 

calculate the concentration of pollutants at 

various distances from the emission source. 

Equation considers not only the height and 

wind speed but also air turbulence, so it is 

possible to predict the distribution of 

concentrations in both vertical and horizontal 

directions. 

These calculations allow ecologists and 

engineers to determine the "impact area" of 

industrial emissions, predict areas of 

potentially higher pollution levels, and 

develop measures to reduce the negative 

impact on the environment. They are also 

useful in planning the placement of new 

production facilities and studying the impact 

of existing plants on the environment and 

public health. 

Analyzing data from Fig 4, several key 

conclusions can be made about the behavior 

of the PM2.5 particle distribution model: 

− Increasing the emission rate (Q): When 

Q increases, the maximum concentration also 

increases proportionally. This corresponds 

with intuition since a larger amount of 

pollutants released into the atmosphere 

increases the concentration near the source. 

This shows that controlling the emission rate 

is important for reducing the maximum 

concentration of pollutants [5,6]. 

− Changes in wind speed (U): With the 

increase in wind speed, the maximum 

concentration decreases. This is because 

stronger winds spread the pollutants more 

broadly, thereby reducing their concentration 

at any given location. This underscores the 

importance of wind speed in assessing and 

controlling pollution levels. 

− Changes in chimney height (H): A 

higher emission height ensures better 

distribution of pollutants in the upper 

atmospheric layers, resulting in lower 

concentrations near the ground surface. 

Increasing H from 5 to 20 meters reduces the 
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maximum concentration of pollutants. 

− Turbulent diffusion coefficient (K): In 

this analysis, the maximum concentration did 

not change with the variation of the diffusion 

coefficient, which may indicate that in the 

given scenario, with specified emission rate, 

wind speed, and source height, the impact of 

the diffusion coefficient K on pollutant 

concentration is minimal or that it may have a 

more significant effect on the spread of 

pollutants beyond the considered distance. 

 

 
 

Fig. 4. Graph of PM2.5 (µg/m³) dependence on parameters 

 

Solving and studying the inverse 

problem 

The solution to the inverse problem 

involves finding effective parameters for air 

quality determination. The process of 

searching for coefficients for the model's 

dispersion parameters is carried out using two 

optimization methods: the brute force method 

(`brute`) and the Broyden-Fletcher-Goldfarb-

Shanno optimization method (BFGS). 

Before starting the optimization process, 

it is necessary to first define the model that will 

be used to describe the phenomenon and the 

objective function that will be minimized or 

maximized during optimization. In our case, 

the model is the distribution of the pollutant, 

describing how lateral and vertical dispersions 

affect the concentration of emissions at a 

certain point from the source. 

The model parameters that need to be 

determined and optimized may include: 

− Q - mass emission rate of the pollutant in 

g/s 

− U - wind speed in m/s 

− H - height of the smokestack in m 

− K - diffusion coefficient that reflects the 

dispersion process of the pollutant in the 

environment. 

Preliminary values for these parameters 

should be used that are typical for the problem 

or available from previous research, expert 

estimates, or technical standards. 

The objective function that we optimize 

in this problem is the sum of the squares of the 

differences between the measured and 

predicted concentrations of the pollutant: 

 

[∑ (𝐶pred,𝑖 − 𝐶meas,𝑖)
2

]𝑖   , 

 

where (𝐶pred,𝑖) is the predicted concentration at 

point \(i\), calculated using the model, and 

(𝐶meas,𝑖) is the measured concentration at the 

same point. 

The objective function calculates the 

deviation of predicted values from measured 

ones, and the task of optimization is to 

minimize this deviation by selecting optimal 
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values for the model's parameters. 

Prior to commencing the optimization 

process, it is critical to gather and prepare the 

input data that the model will utilize. The 

following data are required for calculating the 

dispersion model parameters: 

− Measured concentration levels of the 

pollutant at various points (distance from the 

emission source). 

− Distances from the emission source to 

the points where measurements were taken. 

This data was collected from 

experimental measurements in CSV format. 

To upload and process this data, we utilize the 

pandas library, which allows easy reading of 

data from various file formats and convenient 

operation with tables in Python: 

 
import pandas as pd 

df_loaded = pd.read_csv('pm25_data.csv') 

measured_distances = df_loaded['L (m)'].values 

measured_concentrations = df_loaded['Pm25 

(µg/m³)'].values 

 

As a result, we have two arrays: one with 

distances to measurement points from the 

emission source (`measured_distances`) and 

another with the measured concentrations of 

the pollutant (`measured_concentrations`). 

These data will serve as the basis for further 

analysis and optimization of the model's 

parameters. 

The brute force method, also known as 

the exhaustive search method, is used to find 

an approximate optimal solution to the 

optimization problem by systematically 

reviewing each possible value within a set 

range. 

When using the brute force method, the 

process has the following stages: 

1. Selection of search range: We 

determine the range of values for each 

parameter being optimized. The range may be 

based on prior experience, expert assessments, 

or the range of observations. Each parameter 

receives its range, which is then divided into 

equal intervals (possible parameter values). 

2. Enumeration: We systematically 

calculate the objective function for all 

combinations of parameter values within the 

established intervals, i.e., "rummaging 

through" all possible parameter values and 

finding the corresponding value of the 

objective function. 

3. Evaluation: We assess the results for 

each combination of parameters by comparing 

the measured data with the predicted. 

4. Finding the Minimum: We determine 

the set of parameters that provides the smallest 

(optimum) value of the objective function. 

Such a combination will approximate the best 

optimization problem solution 

Although this method is simple and 

easily implementable, it can be very resource 

intensive as the number of calculations 

increases exponentially with each additional 

parameter or reduction in the exhaustive search 

grid step. Also, it provides only an 

approximation of the optimal solution and does 

not guarantee finding the absolute minimum of 

the objective function. 

Example of using the `brute` method for 

optimizing one parameter using the `SciPy` 

library: 
# Result of the brute force method 
result = brute( 

    objective_function, 

    ranges=[(min_value, max_value)],  # Range 

of values for the parameter 

    Ns=number_of_steps,               # Number of 

steps in the range 

    full_output=True, 

    finish=None                       # No additional 

optimizers after brute force 

) 

In the code, `min_value` and 

`max_value` are the search range limits for the 

parameter, and `number_of_steps` is the 

number of steps in this range, determining the 

discretization bound for the enumeration 

process. The `brute` function returns the 

optimization result, including the 

approximated optimum parameter value and 

the minimum value of the objective function. 

Optimization with the BFGS Method. 

The BFGS method (named after 

Broyden, Fletcher, Goldfarb, and Shanno) is an 

iterative method for finding the minimum of an 

objective function. It belongs to the class of 

quasi-Newton methods and is one of the most 

popular methods for unconstrained 

optimization functions. 

The main steps of the BFGS 

optimization process are as follows: 

- Initial Point Selection: We determine a 

starting point for the parameters from which 

the optimization process will begin. Often, 
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initial values are taken from the results of prior 

optimization, for example, using the brute 

force method. 

− Gradient Calculation (derivative): The 

objective function is calculated along with its 

gradient—a vector of its first derivatives with 

respect to all parameters. The gradient 

indicates the direction of the steepest increase 

of the function. 

− Direction of Search Determination: The 

direction in which the function is most likely 

to decrease is determined based on the gradient 

and previous calculations. 

− Step Size Calculation: The size of the 

step is determined using a line search, which 

"probes" the objective function in the chosen 

direction to find the optimal step length. 

− Parameter Update: Parameters are 

updated by the amount of the step in the chosen 

direction. 

− Stop Conditions Check: If the 

parameters have changed only slightly or the 

objective function has ceased to decrease, the 

optimization process concludes, and a local 

minimum is found. 

− Iteration: If the stopping conditions are 

not met, the process from steps 2 to 6 is 

repeated. 

The BFGS is a more calculation-

intensive method than brute force but is much 

more efficient for exploring multi-parametric 

spaces and typically converges to the optimum 

quickly [2,3]. 

To perform optimization with the BFGS 

method, the `minimize` function from the 

`SciPy` library can be used, specifying 'BFGS' 

as the optimization method: 

 
initial_params = [initial_Q, initial_U, initial_H, 

initial_K] 

# Perform the optimization 

result = minimize( 

    objective_function, 

    initial_params, 

    method='BFGS' 

) 

Here, `initial_params` is an array with 

the initial values of the parameters to be 

optimized. `result` is an object containing 

information about the optimization results, 

including the optimal parameters (`result.x`) 

and the value of the objective function at the 

optimum point (`result.fun`). 

As a result of optimizing the parameters 

for the dispersion model, we obtained sets of 

parameter estimates that allow us to predict 

PM2.5 concentration at various distances from 

the emission source with a high degree of 

accuracy. This model reflects the real behavior 

of pollutants in the atmosphere and can be 

successfully applied to assess air quality. 

Based on the optimization results, we 

observe that: 

- The values of MSE and MAE are 

sufficiently low, indicating minor 

discrepancies between observed and modeled 

concentrations. 

- Further analysis of the residuals shows 

they do not exhibit noticeable trends or 

patterns, which is evidence of the model's 

adequacy. 

- A high R² value, close to 1, 

demonstrates that the model accurately 

predicts changes in concentration. 

- Tests for homoscedasticity did not 

reveal any statistically significant indications 

of heterogeneity in the residuals, which speaks 

to the model's robustness under different 

conditions. 

Considering the obtained results (Q: 

10.0, U: 0.1, H: 5.0, K: 0.01), we can be 

confident that the optimized model is a reliable 

tool for determining air pollution levels. 

 

Conclusion 

In conclusion, the application of 

optimization techniques such as the brute force 

method and the BFGS method has proven to be 

effective in solving the inverse problem of 

determining effective parameters for air 

quality models. The process involved careful 

preparation of the necessary input data, 

selection of an appropriate dispersion model, 

and definition of a suitable objective function 

to minimize the discrepancy between modeled 

and measured pollutant concentrations. 

By utilizing the brute method, we were 

able to obtain a rough estimate of the optimal 

parameters for the model, which provided a 

valuable starting point for further refinement. 

While the brute force method is 

straightforward and easy to implement, its 

exhaustive nature makes it computationally 

expensive, particularly for complex models 

with multiple parameters. 
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Subsequent fine-tuning using the more 

advanced BFGS optimization algorithm 

allowed for a more detailed and efficient 

search for the optimal values of the model 

parameters. The BFGS method not only 

offered a faster convergence to the solution but 

also produced a set of parameters that 

significantly improved the model's predictive 

accuracy, as evidenced by the low values of 

mean squared error (MSE) and mean absolute 

error (MAE), as well as a high coefficient of 

determination (R²). 

 
 

Fig. 5. Historical  of air quality data by the time 

 

The graphical analysis provided further 

confirmation that the optimized model could 

effectively characterize the concentration of 

PM2.5 pollutants as a function of distance from 

the emission source. The lack of systematic 

patterns in the residuals underscored the 

model's reliability, while tests for 

homoscedasticity supported its robustness 

across various conditions. 

Ultimately, the combination of 

optimization methods and careful data analysis 

enabled the development of an air quality model 

capable of accurately estimating pollutant 

concentrations. Such models are crucial for 

environmental management and public health, 

as they allow for the assessment of pollution 

levels and the identification of necessary 

mitigating actions. They also serve as essential 

tools for policymakers and stakeholders to 

address air quality issues effectively. 
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