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Abstract. The article is devoted to solving the main tasks set in the work with the aim of analyzing and 

substantiating the implementation of intelligent control systems in technological processes of mechanical engineering, 

with an emphasis on increasing efficiency, accuracy, and reliability of production. The use of multi-agent systems and 

decentralized control systems, which significantly enhance the flexibility and adaptability of production, is analyzed. 

Special attention is paid to the role of physics-informed neural networks in fault diagnosis, which ensures increased 

reliability and reduced maintenance costs for equipment. The effectiveness of applying machine learning algorithms to 

optimize production processes, particularly in material processing and equipment maintenance, is evaluated. The impact 

of integrating intelligent control systems on production performance and quality, especially in the processes of milling 

and bonding large parts, is considered. Practical recommendations have been developed for the implementation of an 

adaptive intelligent production management system (AIPMS), which combines multi-agent systems, neural networks, 

digital twins, and innovative materials. The implementation of the artificial intelligence concept in production processes 

will contribute to the further development of mechanical engineering from a technological perspective, enabling 

enterprises to adopt innovations more rapidly, increase automation, and enhance the adaptability of technological 

processes, which in turn will lead to significant improvements in product quality and competitiveness. The use of such 

systems allows optimizing technological processes, reducing the number of defects, lowering energy consumption, and 

improving environmental efficiency. 

Keywords: intelligent control systems, machine learning, neural networks, maintenance, digital twins, 

decentralized control, optimization of production processes. 

 

Introduction 

In recent years, intelligent control 

systems have become the foundation of 

modern manufacturing processes, particularly 

in the field of mechanical engineering. The 

development of artificial intelligence 

technologies and cyber-physical production 

systems (CPPS) has opened new opportunities 

for optimizing technological processes, 

including production, maintenance, and 

equipment monitoring [1,2,3,4]. Modern 

decentralized approaches to production 

management enable the integration of multi-

agent systems, providing greater flexibility and 

adaptability in managing robotic systems, 

especially when performing complex 

technological tasks such as milling and 

welding [1,2,3]. An essential component of 

intelligent systems is their ability to integrate 

with physically based models for more precise 

control of production processes and fault 

detection. In particular, the use of probabilistic 

neural networks enhances the reliability of 

diagnosing mechanical components, including 

bearings, which is crucial for minimizing 

equipment downtime and increasing 

production efficiency [5]. The implementation 

of such systems significantly improves quality 

control, especially under dynamic changes in 

production processes. Moreover, intelligent 

control systems are used to optimize 

technological processes through deep learning 

and Bayesian optimization, allowing real-time 

adjustment of process parameters to achieve 

optimal results. The application of these 

approaches in milling and bonding large parts 

confirms their effectiveness in ensuring zero 

defects in production [6,7]. 

 

Analysis of the issues addressed in the 

article 

In modern mechanical engineering, 

intelligent control systems are becoming an 

integral part of the automation process and 

increasing production efficiency. The main 

issues addressed in this article include the 

optimization of material processing processes, 

the integration of physically-based models into 

control systems, and the application of 

artificial intelligence to improve prediction 

and control. The importance of these issues is 

confirmed by numerous studies emphasizing 
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the development of adaptive and self-learning 

systems for complex manufacturing tasks. 

First and foremost, the issue of 

integrating intelligent systems into 

manufacturing processes is gaining particular 

relevance due to the development of cyber-

physical production systems (CPPS) and 

multi-agent control systems [3,4,8,9,10,11]. 

This approach allows the creation of 

decentralized control networks where each 

production unit makes autonomous decisions 

based on data, significantly improving 

operational efficiency. This is evidenced by 

the implementation of robotic systems for 

operations such as milling, which can 

automatically adapt to material processing 

conditions and improve precision [12]. 

Another important aspect is the use of physics-

informed neural networks for fault diagnosis in 

mechanical systems. For instance, physics-

based probabilistic models are used to predict 

failures in bearings and other components, 

allowing not only to detect potential 

malfunctions but also to reduce the risk of 

accidents [5]. The use of such systems is key 

to ensuring the uninterrupted operation of 

complex production lines and minimizing 

maintenance costs. 

Moreover, intelligent systems play an 

essential role in optimizing production 

processes through machine learning 

algorithms. For example, the use of deep 

reinforcement learning allows the adaptation 

of disassembly processes under uncertain 

conditions, which increases efficiency and 

reduces inventory accumulation [6]. Similarly, 

Bayesian optimization can be employed for 

precise milling parameter adjustments, 

reducing defects and improving processing 

quality [6]. 

 

The purpose of this article is to analyze 

and justify the implementation of intelligent 

control systems in manufacturing processes 

with a focus on improving the efficiency, 

accuracy, and reliability of production. The 

article explores modern methods of integrating 

multi-agent systems, artificial intelligence, and 

physics-informed models into the control of 

material processing operations, and also 

proposes new approaches to fault diagnosis 

and the optimization of manufacturing 

processes. 

 

The tasks set in this work and 

addressed within its content include: 

1. Analyze modern approaches to the use of 

intelligent control systems in manufacturing 

processes of mechanical engineering, 

particularly multi-agent systems and 

decentralized control systems [3,11]. 

2. Consider the role of physics-informed 

neural networks for fault diagnostics in 

mechanical engineering and justify the 

necessity of their implementation to improve 

system reliability [5]. 

3. Evaluate the effectiveness of applying 

machine learning algorithms to optimize 

manufacturing processes, including material 

processing and equipment maintenance [6,13]. 

4. Investigate the impact of integrating 

intelligent control systems on overall 

productivity and product quality in mechanical 

engineering, particularly in milling and 

bonding of large parts [7,12]. 

5. Develop recommendations for the 

implementation of intelligent control systems 

in real manufacturing environments to 

improve the efficiency and accuracy of 

mechanical engineering processes. 

 

1.Analysis of modern approaches to 

the use of intelligent control systems in 

manufacturing processes of mechanical 

engineering 

One of the key areas for the development 

of manufacturing processes in mechanical 

engineering is the integration of intelligent 

control systems, which ensure automation, 

adaptability, and flexibility in production. The 

most promising approaches include multi-

agent systems (MAS) and decentralized 

control systems, which enhance productivity 

and reliability under complex and dynamically 

changing production conditions. 

Multi-agent systems are considered one 

of the most flexible approaches to managing 

manufacturing processes. In MAS, each agent 

is an independent intelligent module that can 

interact with other agents and make decisions 

based on its local information [4,8,9,10]. These 

agents can perform various functions, from 

production planning to quality control and 
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equipment condition monitoring. MAS are 

particularly effective in addressing planning 

and logistics tasks in production processes, 

optimizing material flows and route selection 

for automated transport vehicles [11]. By 

utilizing agents for task distribution and 

monitoring production lines, MAS enables 

optimal resource utilization and reduces the 

likelihood of errors. Agents make decisions 

based on real-time environmental data, 

significantly enhancing system flexibility and 

adaptability. Another notable example is the 

use of MAS in managing robotic milling lines, 

where each agent is responsible for controlling 

specific segments of the production process, 

allowing the system to quickly adapt to 

changing conditions [12]. This illustrates 

MAS’s ability to rapidly adapt to dynamic 

production environments. 

Decentralized control systems avoid the 

limitations of centralized management, such as 

dependence on a single decision-making 

center and reduced adaptability to changes. In 

decentralized systems, each production unit 

independently makes decisions based on local 

data and information received from other units. 

These systems can integrate intelligent devices 

into production processes, allowing the 

creation of autonomous control systems at the 

level of individual milling stations or logistics 

cells [3]. This approach enhances flexibility 

and resilience to changes in the production 

environment, enabling rapid adaptation to new 

requirements or unforeseen situations. 

Decentralization also improves system 

reliability, as the absence of a single control 

center reduces the likelihood of global failures 

in case one component malfunctions. This is 

confirmed by studies in the field of automated 

control of welding robots, where decentralized 

systems provide greater precision and 

adaptability to various types of welding 

processes [14]. 

Modern decentralized and multi-agent 

systems cannot function effectively without 

integration with cyber-physical production 

systems (CPPS), which provide continuous 

data exchange between the physical 

components of the production process and 

their digital twins. This allows real-time 

control of production processes and adaptation 

to changing conditions. CPPS facilitate the 

integration of advanced maintenance and 

production management methods based on 

data, reducing downtime and improving the 

efficiency of production lines [15]. Digital 

twins used in CPPS provide a high level of 

automation and prediction, particularly for 

early detection of potential equipment failures. 

Intelligent control systems based on multi-

agent and decentralized approaches are a 

crucial component of modern mechanical 

engineering. They provide increased 

flexibility, adaptability, and reliability in 

manufacturing processes, which is critical for 

companies seeking to remain competitive in 

rapidly changing market conditions. The 

integration of intelligent systems with cyber-

physical systems adds new opportunities for 

production control and optimization, making 

these approaches key to the future 

development of mechanical engineering. This 

is supported by numerous studies proving the 

effectiveness of multi-agent systems and 

decentralized control across various 

manufacturing sectors [3,4,8,9,10,11,12,15]. 

 

2.The role of Physics-Informed Neural 

Networks for fault diagnosis in mechanical 

engineering 

One of the key challenges in mechanical 

engineering is ensuring reliable and timely 

fault diagnostics in complex mechanical 

systems. This is especially important for 

equipment operating under intense loads and 

high precision requirements. Traditional 

diagnostic methods do not always provide the 

necessary level of accuracy and speed in 

detecting potential failures, which can lead to 

unexpected production line stoppages and 

significant financial losses. In this context, 

Physics-Informed Neural Networks (PINNs) 

have become an important tool for improving 

system reliability by combining mathematical 

models and machine learning methods. 

Physics-Informed Neural Networks 

combine the advantages of traditional physical 

models with the flexibility of neural networks. 

Instead of simply learning from data, PINNs 

incorporate physical laws, such as Newton’s 

equations or thermodynamics, to guide the 

training process. This allows for more accurate 

predictions, especially in cases where the data 

is incomplete or inaccurate. PINNs 
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significantly improve the accuracy of 

mechanical fault diagnostics, such as bearing 

damage, by using physical models that 

describe the dynamic behavior of components. 

This not only enhances failure prediction but 

also reduces false alarms, thereby increasing 

the reliability of the entire system. 

PINNs allow for modeling the 

degradation processes of mechanical 

components while accounting for real 

operating conditions. They can effectively 

predict bearing failures based on the analysis 

of vibration signals, temperature, and loads. 

This helps identify potential issues at early 

stages before they lead to production 

shutdowns. Additionally, integrating physical 

models into the neural network’s learning 

process makes it possible to account for 

external factors such as temperature or 

humidity, which is crucial for equipment 

operating in harsh environments. For instance, 

in manufacturing processes involving high 

temperatures, such as welding or heat 

treatment of materials, PINNs provide accurate 

predictions of material degradation and other 

system components. 

Another significant advantage of using 

Physics-Informed Neural Networks is the 

optimization of equipment maintenance. 

While Physics-Informed Neural Networks 

focus on enhancing fault diagnostics and 

improving equipment reliability, another 

crucial dimension of intelligent systems is the 

broader application of machine learning 

algorithms. These algorithms play a vital role 

not only in equipment maintenance but also in 

optimizing various manufacturing processes in 

real time. By accurately predicting failures, 

maintenance work can be planned in advance, 

reducing unforeseen downtime and increasing 

production line efficiency. This is especially 

important for complex production systems, 

where a failure in one component can affect the 

entire line. Integrating intelligent diagnostic 

systems based on neural networks can greatly 

reduce maintenance costs by forecasting 

failures and minimizing equipment downtime, 

thereby improving overall production 

efficiency and reducing operational costs. 

PINNs can also be integrated into the 

concept of digital twins, enabling real-time 

monitoring of equipment condition and 

diagnostics based on collected data. A digital 

twin is an accurate virtual copy of a physical 

object that synchronizes with real equipment 

and allows for predicting its behavior under 

various conditions. Digital twins with 

integrated neural networks provide efficient 

prediction and control of equipment conditions 

at all stages of its lifecycle. This not only 

enhances diagnostic accuracy but also 

simplifies maintenance and repair processes. 

Thus, Physics-Informed Neural 

Networks are a powerful tool for enhancing the 

reliability of mechanical engineering systems, 

providing accurate fault diagnostics and 

predicting potential failures. Their 

implementation reduces maintenance costs, 

minimizes downtime, and increases overall 

production efficiency. The integration of 

PINNs with digital twins creates new 

opportunities for real-time monitoring and 

management of complex mechanical systems, 

which is critical for modern manufacturing 

processes. 

 

3.Evaluation of the effectiveness of 

machine learning algorithms for optimizing 

manufacturing processes 

Modern mechanical engineering heavily 

relies on automation and the integration of 

artificial intelligence (AI) to enhance 

production efficiency. Machine learning 

algorithms, including deep learning methods, 

reinforcement learning, and Bayesian 

optimization, have become powerful tools for 

optimizing various stages of production 

processes, such as material processing and 

equipment maintenance. 

Machine learning algorithms are used to 

improve the parameters of production 

processes in real-time. For example, in 

material milling processes, where precision 

and cutting dynamics are crucial, machine 

learning allows the adaptation of processing 

modes depending on changing material 

characteristics. The application of Bayesian 

optimization for parameterizing the milling 

force model significantly improves cutting 

accuracy and reduces the number of defects. 

This is achieved by integrating external sensor 

data and controller data, allowing real-time 

adjustments for optimal cutting performance 

[6]. Such technologies are especially important 
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for the production of high-precision parts, such 

as components in the aviation or automotive 

industries, where any deviation can lead to 

defects and productivity losses. Additionally, 

deep learning algorithms are successfully 

applied to optimize complex processes like 

welding. AI enables the system to analyze 

process parameters (welding speed, 

temperature, laser power) and automatically 

adjust them to achieve the best results [14]. 

This helps improve the quality of welds and 

avoid defects, which is critical in 

manufacturing essential metal structures. 

The application of machine learning 

algorithms for predicting the technical 

condition of equipment and planning its 

maintenance is a key component of the smart 

manufacturing concept. Data-driven failure 

prediction algorithms significantly reduce 

maintenance costs and prevent downtime 

caused by unexpected equipment failures. The 

integration of predictive and recommendation-

based maintenance systems allows for 

considerable cost savings and reduces the 

number of unplanned equipment stoppages 

[15]. With machine learning, patterns that 

precede failures can be identified, and 

maintenance can be planned based on the 

actual condition of the equipment, rather than 

relying on pre-established service intervals. 

This ensures more rational use of resources 

and minimizes the risk of failures, which is 

important in complex production processes. 

Reinforcement learning (RL) algorithms 

are widely applied to optimize production 

processes under uncertainty or non-standard 

situations. For example, reinforcement 

learning can be used to optimize product 

disassembly processes. These algorithms 

allow systems to learn from their own 

experience and adapt their behavior to 

changing production conditions, which 

significantly increases efficiency and reduces 

costs [13]. This approach is also effective in 

automated material transportation processes 

within manufacturing. Multi-agent systems 

that use RL enable transport robots to 

coordinate their actions, avoid collisions, and 

optimize movement on production lines [11]. 

This reduces the time required for material 

transportation and improves the overall 

productivity of production lines. 

The application of machine learning is 

not limited to optimizing material processing 

and equipment maintenance. An important 

area is the optimization of energy consumption 

in production. By analyzing historical data and 

real-time equipment performance metrics, 

algorithms can predict energy needs and 

develop strategies for its efficient use. This is 

especially relevant for high-performance 

systems, such as metallurgical or chemical 

plants, where energy costs are a critical factor. 

The use of machine learning algorithms in 

optimizing production processes and 

equipment maintenance demonstrates high 

efficiency, especially in complex and dynamic 

conditions. Machine learning significantly 

increases the precision of material processing, 

reduces defects, and optimizes resource usage. 

Equipment condition prediction algorithms 

and reinforcement learning ensure timely 

maintenance and adaptation of production 

lines to changing conditions, reducing 

downtime and maintenance costs.  The 

influence of machine learning on the 

optimization of production processes cannot 

be overstated. However, the real 

transformative potential of intelligent control 

systems becomes evident when these 

technologies are fully integrated into the 

manufacturing process. This integration has a 

profound impact on overall productivity, 

quality, and the adaptability of production 

lines to dynamic conditions. 

 

4.The impact of the integration of 

intelligent control systems on overall 

productivity and production quality in the 

field of mechanical engineering 

The integration of intelligent control 

systems into manufacturing processes in 

mechanical engineering has a significant 

impact on the productivity, quality, and 

reliability of production. These systems allow 

for the automation of production process 

management, reducing resource costs, 

minimizing human error, and enhancing the 

accuracy of material processing. Their impact 

is particularly notable in complex 

technological processes such as milling and 

bonding of large components. Milling is one of 

the most precise and critical technological 

processes in mechanical engineering, where 
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the accuracy and quality of part processing are 

crucial. The use of intelligent control systems 

optimizes this process by automatically 

adjusting processing parameters in real-time 

and adapting to changes in materials or 

processing conditions. The application of 

intelligent systems for online parameterization 

of milling through Bayesian optimization not 

only reduces the number of product defects but 

also enhances processing accuracy by 

automatically correcting cutting modes based 

on external sensors and controller data [6]. 

Intelligent systems can adapt cutting speed, 

cutting depth, and other parameters according 

to the current material properties, ensuring 

high product quality without the need for 

stoppages for adjustments. The integration of 

intelligent systems into milling processes also 

reduces the processing time of complex parts, 

which directly impacts production 

productivity. By operating in real-time, these 

systems minimize equipment downtime, 

allowing for an increase in the number of parts 

produced per unit of time. As we have seen, the 

integration of intelligent control systems 

significantly enhances the efficiency and 

precision of manufacturing processes. To 

achieve these improvements in real-world 

settings, a systematic approach to the 

implementation of these systems is essential. 

The following section provides practical 

recommendations for enterprises aiming to 

adopt intelligent control systems effectively. 

Another important aspect of the 

integration of intelligent control systems is 

their use in bonding processes for large 

components that require high precision and 

continuous quality control. Bonding processes 

are often used in the production of large 

components such as aircraft or car bodies, 

where errors in bond quality can lead to serious 

consequences. A multifunctional feedback 

system for bonding large components, aimed 

at detecting defects in real-time and 

automatically adjusting the process, allows for 

zero-defect production by automatically 

monitoring the quality of adhesive joints and 

correcting the positioning of components 

during bonding [7]. The systems also use 

digital twins to track and simulate processes, 

enabling rapid responses to changing 

production conditions and ensuring high bond 

quality. This contributes to the reliability of 

large structures, which is critical in industries 

such as aerospace, automotive, and energy. 

Intelligent control systems integrated 

into manufacturing processes significantly 

improve overall production productivity due to 

several key factors:  

− аdaptability and automation, when the 

systems allow manufacturing processes to 

adapt to changing conditions in real-time, 

minimizing delays and disruptions. This is 

important in mass production or when 

processing unique parts where each process 

may require individual adjustments [6,7];  

− reduced maintenance and repair costs, 

when, by using intelligent systems, equipment 

breakdowns can be predicted, and maintenance 

can be performed at precisely defined times, 

minimizing downtime and repair costs [9];  

− optimization of resource usage, when 

intelligent systems enable more efficient use of 

materials and energy resources by optimizing 

technological processes and reducing waste 

and defects [16]. 

Thus, the integration of intelligent 

control systems becomes a critical factor in 

improving the competitiveness of enterprises 

in mechanical engineering and ensuring stable 

product quality [6,7,15]. 

 

5.Recommendations for the 

implementation of intelligent control 

systems in real manufacturing 

environments to improve the efficiency and 

accuracy of technological processes in 

mechanical engineering 

Based on the analysis of global 

experience, the phased implementation of 

intelligent control systems at machine-

building enterprises is advisable, as it will 

significantly improve the efficiency, accuracy, 

and reliability of production processes. The 

introduction of ICS should begin with a 

comprehensive analysis of current production 

processes to identify potential bottlenecks that 

limit productivity and cause equipment 

failures. Such an analysis will help identify key 

processes where automation can provide the 

greatest benefit. Attention should be focused 

on the analysis of part processing time, defect 

rates, equipment reliability, and its usage 

intensity. Particular emphasis should be placed 
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on welding, milling, thermal treatment, and 

other key manufacturing operations, where 

ICS automation will not only increase 

efficiency but also reduce defect rates. Upon 

completion of the analysis, it is recommended 

to identify priority areas for ICS 

implementation, which will ensure rapid 

economic returns from investments and 

rational allocation of enterprise resources. 

To integrate intelligent control systems 

with existing production facilities, a modular 

approach should be applied, allowing for the 

gradual integration of new system components 

without halting the production cycle. An 

important part of this process is the seamless 

integration with existing production control 

systems, such as SCADA (Supervisory 

Control and Data Acquisition) or MES 

(Manufacturing Execution Systems). This will 

enable real-time data collection and analysis, 

allowing for quick responses to process 

changes and preventing potential defects or 

equipment malfunctions. Special attention 

should be given to upgrading equipment to 

support digital twins and sensors for data 

collection. This step will provide transparency 

across all production processes and enhance 

production management capabilities based on 

real data, forming the foundation for further 

automation. 

Based on global experience, the 

implementation of machine learning 

algorithms for optimizing technological 

parameters of production processes is 

advisable. Machine learning algorithms, 

particularly reinforcement learning, can 

automate the process of adjusting 

technological parameters in real time, adapting 

the system to changing production conditions. 

This will minimize defects and improve 

overall production efficiency. In addition, 

Bayesian optimization will provide adaptive 

adjustment of parameters such as cutting speed 

or depth, improving material processing 

quality. Predictive algorithms should also be 

implemented for planning equipment 

maintenance based on actual data about its 

condition, reducing unforeseen repair costs 

and preventing production downtime. 

An important component of 

implementing intelligent control systems is 

ensuring continuous monitoring of production 

processes and analyzing collected data for 

quick responses to changes in production 

conditions. This can be achieved by 

introducing digital twins that create virtual 

copies of physical systems and allow real-time 

monitoring of equipment and technological 

processes. These technologies will facilitate 

production quality control and create 

opportunities for modeling various scenarios, 

enabling process optimization without 

interrupting their operation. It is also proposed 

to regularly collect and analyze data from 

sensors, which will help identify potential 

problems before they arise, ensuring 

continuous equipment operation and 

minimizing downtime. 

Based on best practices, it is essential to 

provide staff training for working with new 

intelligent control systems. Engineers and line 

operators must be prepared to work with new 

technologies, not only mastering the tools but 

also understanding the principles of ICS 

operation for their effective use. It is 

recommended to organize regular training and 

skill enhancement courses to improve 

proficiency with digital tools and artificial 

intelligence technologies, ensuring adaptation 

to the new demands of modern production. 

This will also allow personnel to quickly 

respond to production changes and optimize 

processes based on real conditions. 

Continuous development and the 

introduction of innovative technologies, such 

as 4D printing and metamaterials, are crucial 

for maintaining the competitiveness of 

enterprises. Investing in the research and 

development of new technologies that enable 

the automation of complex material processing 

tasks is advisable. The use of metamaterials 

that change their properties under external 

stimuli and advanced printing technologies 

will create new opportunities for flexibility in 

production processes. Furthermore, the 

implementation of modular solutions for ICS 

will allow for the easy adaptation of new 

technologies to existing production systems 

without significant changes to the production 

structure, enhancing flexibility and the ability 

of enterprises to quickly respond to new 

market challenges. 

Summarizing these recommendations, 

the creation of an adaptive intelligent 
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production management system (AIPMS) is 

advisable, combining multi-agent systems, 

physics-informed neural networks, digital 

twins, innovative materials, and machine 

learning algorithms for optimizing quality, 

energy consumption, and productivity. 

The given block diagram (Fig. 1) 

represents the general architecture of the 

adaptive intelligent production management 

system. 

 

 

Fig. 1. Architecture of AIPMS 

 

 

Mathematical model of setting the 

optimization problem. 

 

1.Description    of   model  components: 

𝑥 — vector of control parameters to be 

optimized; 

𝑆(𝑡) — a set of data received from 

sensors at a point in time t; 
𝐷(𝑡) — the dynamic state of the digital 

double, which displays the current values of 

the system parameters; 

𝐴(𝑡) — a vector of agents of a multi-

agent system, each of which performs specific 

management functions; 

𝑀(𝑡) — matrix of interactions between 

system agents and production components; 

𝑃(𝑡) — physical parameters of the 

system modeled by neural networks (PINNs); 

𝑄(𝑡) — optimized production 

parameters, which are the result of the work of 

ML-algorithms; 

𝐷𝑖𝑎𝑔(𝑡) — diagnostic indicators 

reflecting the state of reliability and 

serviceability of the system. 

 

2. The system of differential equations 

(1) describes the dynamics of the model 

component: 
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𝑑𝐷𝑖

𝑑𝑡
= 𝑓𝑖(𝑆(𝑡), 𝐷(𝑡), 𝑥, 𝑡) ; 

𝑑𝐴𝑗

𝑑𝑡
= 𝑔𝑗(𝑆(𝑡), 𝐷(𝑡), 𝑥, 𝑡) ; 

𝑑𝑃

𝑑𝑡
= ℎ(𝑆(𝑡), 𝐷(𝑡), 𝑥, 𝑡) ; 

𝑑𝑀

𝑑𝑡
= 𝑘(𝑆(𝑡), 𝐷(𝑡), 𝑥, 𝑡) ; 

𝑑Diag

𝑑𝑡
= 𝑙(𝑆(𝑡), 𝐷(𝑡), 𝑥, 𝑡) ; 

𝑑𝑄

𝑑𝑡
= arg max

𝑥
𝐽(𝑥) ; 

limitation: 
𝑑𝑈

𝑑𝑡
= m(Q(t), Diag(t), x) . 

 

where 𝑈 is a vector of control actions or 

parameters used for adaptive control of the 

production process. 

In the context of a system of differential 

equations 𝑈 is the result of optimization 

algorithms taking into account the objective 

function 𝐽(𝑥) and constraints for choosing 

optimal values of control actions. It provides 

adaptation of all parameters and system 

components in real time, directing the system 

to optimal functioning. 

 

3.Objective function: (2) the 

optimization goal of the model is to minimize 

costs and resources: 

2) 

𝐽(𝑥) = ∫ (
𝑇

0

𝑎1𝐹1(𝑥) + 𝑎2𝐹2(𝑥) + ⋯

+ 𝑎𝑚𝐹𝑚(𝑥))𝑑𝑡, 
 

where 𝐹𝑖(𝑥) — performance parameters to be 

optimized. 

 

 4. The system of restrictions ensures 

compliance of production parameters with 

conditions and requirements (3): 

3) 
𝐺i(x) ≤ Bi, i = 1, … , k  
Hj(x) = Cj, j = 1, … , l 

Ks(x) ≥ Ds, s = 1, … , p 
Rt(x) ≤ Et, t = 1, … , q 

 

where 𝐺𝑖(𝑥), 𝐻𝑗(𝑥), 𝐾𝑠(𝑥), 𝑅𝑡(𝑥) — 

constraint functions that describe the allowable 

limits of the parameters. 

These recommendations serve as 

practical guidelines for enterprises seeking to 

improve the efficiency and accuracy of their 

technological processes through intelligent 

control systems. They can also form the basis 

for further research and development in the 

field of automation and machine learning in 

production. 

 

Conclusions 

As a result of the research, the main 

objectives set in the study have been achieved. 

Modern approaches to the implementation of 

intelligent control systems in manufacturing 

processes in the field of mechanical 

engineering, particularly multi-agent and 

decentralized control systems, were analyzed. 

It has been confirmed that these approaches 

significantly enhance the adaptability and 

flexibility of production. The necessity of 

implementing physics-informed neural 

networks for fault diagnosis has been 

substantiated, which ensures improved 

reliability and reduces maintenance costs of 

equipment. 

The analysis of the impact of intelligent 

control systems on the manufacturing 

processes of large-scale products demonstrated 

a significant increase in production efficiency 

and quality. Based on the research results, 

recommendations have been developed for the 

implementation of an adaptive intelligent 

production management system (AIPMS), 

which combines multi-agent systems, neural 

networks, digital twins, and machine learning 

algorithms to improve the efficiency, 

accuracy, and environmental sustainability of 

manufacturing processes in mechanical 

engineering. 
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