
ISSN  2710 – 1673   Artificial  Intelligence   2025   № 1 

 

 107  

 

UDC: 004.8 https://doi.org/10.15407/jai2025.01.107 

 
O. Lukianykhin1, V. Shendryk2 

1,2Sumy State University, Ukraine 

   116, Kharkivska St., Sumy, 40007  
1oleh.lukianykhin.a@gmail.com 
2v.shendryk@cs.sumdu.edu.ua 
1https://orcid.org/0000-0002-4211-2401 
2https://orcid.org/0000-0001-8325-3115 

 

MACHINE LEARNING-DRIVEN PHOTOVOLTAIC GENERATION 

FORECASTING FOR PROSUMER DECISION SUPPORT 
 

Abstract. The problem of forecasting electricity generation is key to enabling decision-making support at the 

level of individual prosumers in the power grid and efficient prosumer integration into the grid. This study investigates 

the application of machine learning (ML) approaches to photovoltaic generation forecasting, aiming to provide general 

practical recommendations for the development of applied forecasting solutions. To this end, a specific use case was 

considered in the context of a private household with a photovoltaic installation, where data was gathered for several 

years. Based on the experimental results, a set of recommendations for applying ML models to photovoltaic generation 

forecasting tasks was formulated in the context of prosumer decision support. These recommendations address key 

aspects such as training and test data sizes used in the model creation process, and prediction horizon size used in the 

prediction process. In addition, guidelines on model file size were developed from the perspective of practical model 

utilization in specific use cases. This research demonstrates that establishing universal guidelines for ML model 

utilization in the Power System (PS) domain is both beneficial and achievable. It also highlights opportunities for 

further research on developing solutions for automated recommendations for required training data sizes and prediction 

horizons. 

Keywords: machine learning, photovoltaic generation, generation forecasting, decision support, prosumer. 
 

Introduction 

The modern state of the power grid and 

the most likely directions of the grid 

development are characterized by several 

structural changes in the power system (PS). 

One of them is the increasing number of 

renewable energy sources installed at a micro 

level of the grid, e.g., in private households 

[1–5]. Depending on the geography and 

climate, individual wind turbines and 

photovoltaic installations are one of the most 

popular [6,7].  

This trend leads to the emergence of 

prosumers in the grid - consumers with some 

generation capacity [8–11]. However, because 

of the small scale and other factors, such as 

data safety concerns, decision-making at this 

grid level is complex [2,8–14]. Besides, 

forecasting is a key component of further 

decision-making, as effective planning and 

control are arguably impossible without 

available estimates of the generation and 

consumption volumes [12,15–20]. 

The object of the study is forecasting 

photovoltaic electricity generation for 

prosumers’ decision-making support. 

Developing an applied forecasting solution, 

such as photovoltaic generation forecasting, is 

often time-consuming and requires significant 

efforts to achieve the required performance 

levels. In particular, the development process 

is slowed down because such problems are 

frequently considered from scratch, with 

limited reuse or knowledge transfer from 

similar use cases [18,19,21]. In addition, 

sufficient expertise in the PS domain is 

required to this end, especially when classic 

analytical approaches are applied. Therefore, 

it is essential to research efficient ways of 

developing applied forecasting solutions in 

the domain. 

The subject of the study is the 

application of machine learning (ML) models 

to the aforementioned forecasting problem. 

The ML approach softens the requirements 

for domain knowledge. However, one should 

have a sufficient understanding of the best 

practices for ML applications instead. 

Otherwise, a modest or even inferior 

performance may be achieved compared to 

the classic analytical approaches [15,21,22]. 

Hence leading to the conclusion of the 

irrelevance of ML methods to the problem. 

This may limit the development of potent 

solutions for the forecasting problem and 

domain development in general. 
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The purpose of the work is to 

investigate the application of ML approaches 

to photovoltaic generation forecasting to 

provide practical recommendations for the 

development of such applied solutions. This 

problem is considered in a specific use case of 

the household with a photovoltaic installation 

and in the context of prosumer decision 

support. 

 

Problem Statement 

It is crucial to match electricity supply 

and demand inside the electrical system, but 

as both profiles are highly stochastic, there is 

a bit of uncertainty in this planning process. 

Decision-making in prosumers relies heavily 

on understanding the upcoming electricity 

generation power. 

Therefore, forecasting photovoltaic 

electricity generation becomes a core problem 

of the corresponding decision support system 

(DSS) [12,15–20]. The problem can be 

summarized as follows: the goal is to predict 

the amount of energy generated at a specific 

time period in the future, given the 

information that is available to the DSS on the 

prosumer side. This goal has to be achieved 

despite the inherent stochastic nature of the 

processes and dependency on hardly 

predictable external factors. 

Formally, given a set of historical data 

pairs (x; y), where x is the input features, and 

y is the target variable, the objective is to find 

an estimator F that effectively maps F(x) -> y, 

even for previously unseen data. As for 

details, including effectiveness criteria, see 

Materials and Methods Section. 

Specific features used for forecasting 

may vary, as well as the amount of historical 

data available for model training or the time 

period in the future that one forecasts for. 

Moreover, these parameters can be changed 

by the developer of a solution on purpose.  

In every case, such parameters of the 

considered problem may substantially impact 

the final solution and its performance. Thus, 

the research questions set in this study were: 

1. What is the optimal amount of 

training and testing data for ML model 

application in this task? 

2. What is the optimal prediction 

horizon? 

3. What are the requirements of ML 

models regarding model size, and how does 

its limitation impact performance? 

 

Related Work 

Efficient decision support is crucial for 

prosumers' functioning and integration into a 

power grid [2,8–10,12–14]. Its core 

component is usually a set of forecasting 

solutions [12,15–20]. Prosumer’s decision-

making needs insight into future system 

behavior, including the expected supply and 

demand [15,20,22–24]. That is, forecasting 

enables prosumers to manage demand-supply 

balance, constrained system resources, and 

financial goals with efficient decision-support 

systems [12,15,16,20,25,26].  

Traditionally, forecasting problems 

were solved using classic analytical 

approaches. This also applies to renewable 

generation forecasting, as demonstrated in 

[21,27–29]. However, as seen in [27,28,30], 

such methods often require significant domain 

knowledge and effort to construct and 

maintain the solution. These limitations are 

particularly problematic for the highly 

variable nature of the processes in micro-grids 

and on the prosumer level [11,18,20]. 

In recent years, ML has proven to be a 

powerful tool for solving various forecasting 

problems, including those in the PS domain 

[15,19,21,22,27,30–33]. Some of its main 

benefits are the ability to process large 

amounts of historical data and find complex 

patterns in that data that traditional methods 

could overlook [28,33]. Arguably, classic 

analytical approaches are built on the 

assumption of specific patterns present in the 

data. Hence, a person developing such a 

solution should have deep domain expertise, 

while the algorithm is not capable of detecting 

new patterns by design [27,28,30]. 

Therefore, ML approaches not only 

show superior performance in many 

forecasting tasks, as shown in [19,22,27,30–

32], but also reduce the requirements for 

domain knowledge [28,33]. Various ML-

based solutions are successfully developed for 

renewable energy generation forecasting 

[21,30,33], including individual household 

levels [20,34]. 

However, applying the ML approaches 
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brought its own challenges to the domain. In 

particular, it is crucial to understand all the 

particularities and best practices of ML 

approach application. Otherwise, achieving 

the required performance level is hard, as 

demonstrated in [35]. This is a particularly 

acute problem for developing applications for 

a smaller scale of the grid, e.g., individual 

household size prosumers. Depending on the 

correctness of the approach, ML models may 

demonstrate different performance levels. At 

the same time, forecasting for decision 

support requires stable and consistent model 

behavior, as mentioned in [16]. Thus, 

applying ML approaches properly is 

mandatory by considering all the related 

aspects. 

The researchers are considering certain 

applied aspects of the ML solution 

development. For instance, it is already 

evident that different ML algorithms have 

different requirements for the quality of the 

data and its availability [36]. At the same 

time, there are many such aspects, e.g., proper 

experiment and evaluation procedures, model 

type choice, data preparation, feature 

engineering techniques, model 

hyperparameters choice, etc. [36–38]. Some 

of those are considered partially and often in 

the context of a particular applied task while 

still being crucial for successful solution 

development, as in [39–41].  

This leads to a situation when the PS 

domain is experiencing a surge of various 

ML-driven research projects [19,21,22,27,30–

32]. Still, most are specific applied use cases, 

not trying to generalize. Therefore, finding 

recommendations or best practices for ML-

based solution development in the PS domain 

is hard. However, one can find either general 

recommendations [42] or recommendations 

for other domains [40,41]. Nevertheless, such 

recommendations would be highly beneficial 

for developing applied solutions and further 

research. Because of that, the focus should be 

shifted, and more research is needed on how 

to apply ML methods in forecasting for 

prosumer decision support properly. 

 

Materials and Methods 

As this paper focuses on investigating 

efficient application of ML methods to 

generation forecasting, it is essential to 

describe the main components of an ML-

powered solution, i.e., data, tools, and 

modelling approach. 

A dataset was gathered in a private 

household with a photovoltaic generation 

unit, battery, and access to the main power 

grid. Data was collected at a daily frequency. 

It has a total of 1774 data points. 

Exploratory data analysis was 

conducted to understand the data better. The 

target variable is the amount of generated 

energy in kWh’s.  Other than the target 

variable, the considered dataset contains 

several other features available at the 

prosumer system controller level: 

− date; 

− outside temperature at 6:00; 

− outside temperature at 18:00; 

− consumption from the grid; 

− amount of energy used from the 

battery. 

As real-world data, this dataset has 

certain particularities. One of the most 

important ones is the presence of significant 

gaps, especially in the first half of 2019 and at 

the end of 2023. These data collection gaps 

are long and sequential, so correcting them 

effectively is hard [36]. 

Because of that, the data was filtered at 

the very beginning to include only the period 

of 1 Jan 2020 - 10 Nov 2023 for experiments.  

At the same time, small gaps of missing 

values were still present in the data. As some 

of the employed algorithms required 

continuous data, e.g., time-series approaches, 

data imputation techniques were used. The 

following approaches were considered for 

imputing missing values in the target variable: 

− filling empty values with zeros - the 

most straightforward possible approach used 

as a baseline for comparison; 

− filling empty values with a median of 

the target variable in historical data - a 

method powered by domain knowledge, 

which is easy to interpret; 

− polynomial interpolation using a 

polynomial of degree 3 - a more sophisticated 

method. 

After considering several examples of 

gaps from the data (See Fig. 1), it became 

evident that median value is the optimal 
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option, as it is a sufficiently lightweight 

approach that is well suited based on domain 

knowledge for this problem. So, it was used 

later for all the experiments for the target 

variable. However, polynomial interpolation 

of degree 2 was used for other numerical 

features in the dataset. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison of empty values imputation 

results for the target variable  (generation in kWh) 
 

In addition, the final values of a target 

variable were cleaned from outliers based on 

the IQR approach and domain knowledge, 

e.g., the generation value can’t be less than 0 

in this setup. The resulting lower and upper 

bounds for cropping values were 0 and 10, 

respectively. 

After these transformations, the main 

descriptive statistics of the considered target 

variable - amount of generated energy in kWh 

’s - are as follows: minimum value - 0.09, 

maximum value - 10, standard deviation - 2.5, 

and quantiles 0.25, 0.5, 0.75 correspondingly 

- 1.6, 4.21, 5.94. 

Most ML models can’t consume dates 

directly, so a feature engineering step was 

conducted to generate the date-related 

features. In addition, some other features were 

created to enhance the model’s capability to 

use the provided information for effective 

forecasting. The list of created data-related 

features: 

− day of the week; 

− is weekend; 

− day of the month; 

− month; 

− temperature change. 

Based on recent research [43] strong 

evidence of yearly seasonality is often 

observed in daily energy-related data, i.e., 

generation or consumption. A best practice 

from the time series analysis field was used to 

check this hypothesis - series decomposition 

into a trend, seasonal component, and noise 

was conducted. 
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b) 

Figure 2. Trend component of the time series extracted 

in the decomposition process with the expected 

seasonality of a) 365 days and b) 90 days 
 

The following results were received for 
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seasonality of 365 days and multiplicative 

decomposition (See Fig. 2a). In the case of 

other possible seasonality, decomposition 

results in a trend with a clear repetitive 

pattern, e.g., 90 days in Fig. 2b.  

Because of that, two more date-related 

features were added. Their purpose was to 

allow ML models to learn yearly seasonality 

components. The formulas (1) and (2) were 

utilized: 

        (1) 

       (2) 

To make sure the assumptions for the 

application of time series approaches are 

satisfied, the Augmented Dickey-Fuller 

(ADF) test was conducted for stationarity 

check. The ADF Statistic was -3.30, and the 

corresponding p-value was 0.0147, which 

indicated that the series is stationary as 

p<0.05. With that assumption checked, 

numerous time series models can be applied 

out of the box. 

Not all ML models can directly use 

previous values of the target variable to 

predict the next steps because of that, so-

called lag features were considered as well. 

Lag n of a feature or a target variable is 

essentially a corresponding value n steps back 

into history, e.g., lag 7 of electricity 

generation for today will be the value of 

generation 7 days ago. The second part of this 

section contains details on the cases in which 

these features were or were not utilized. 

Given the prepared dataset of historical 

data, one can train an ML model using it. This 

results in an estimator that effectively maps 

input features to the target variable with a 

certain degree of quality. This quality can be 

measured using certain evaluation metrics 

calculated by comparing the actual target 

values with predicted ones. Considering the 

nature of the problem considered in solar 

energy generation forecasting, it was decided 

to evaluate and compare models by Root 

Mean Squared Error (RMSE) metric values, 

as it heavily penalizes significant deviations 

of the forecast from actual values. This 

particularity is essential for reflecting the 

quality of the forecast. In addition, it has the 

same dimensionality as the forecasted target 

variable, which makes results easier to 

interpret. However, to allow for model 

comparison, one has to make sure that the 

models were trained in the same setup, e.g., 

the same training data was available to the 

model training process, and the evaluation 

metrics were calculated on the same subsets 

of the data. This allows for a fair comparison 

and enables making conclusions based on the 

changes in the evaluation metrics value. For 

instance, certain model types are more 

applicable to specific forecasting problems. 

Moreover, given that the experiment 

setup is the same for several experiments, one 

can make changes in one of the experiment 

parameters and make certain conclusions 

based on the dependency of the model 

performance metric and the experiment 

parameter values. 

It is important to emphasize that to draw 

conclusions based on such dependency, it is 

crucial to have at least somewhat robust 

estimates of the model's performance. To this 

end, several best practices can be utilized. 

First, one has to make sure that the model 

performance evaluation is done using the data 

that was not available to the model during the 

training process to avoid so-called data 

leakage. A particular case of this happens 

when the data has a time dimension in it, as 

data leakage from the future to the past can 

happen, although the feature set itself is valid. 

Hence, it is advised to use a classic train-test 

data split to avoid such issues. It is a 

technique that splits data into train and test 

subsets of the data. The training part is used 

for model training, while the test is used for 

performance evaluation only. A time series 

cross-validation technique can also be applied 

for a more robust and reliable model 

performance estimation. In a cross-validation 

process, the training data is subsequently split 

into several combinations of the training and 

validation subsets - folds. This approach 

allows the model training and validation 

process to be repeated several times. The final 

model performance estimate is then taken as 

some aggregation, usually average, of model 

performance on validation data folds. Time 

series stands for a particular design where 

target variable information is not leaking from 

fold to fold by design (See Fig. 3). This is 

often combined with hyperparameter tuning. 
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In such cases, a hold-out test data part is still 

required, as all data samples in the cross-

validation process are used either explicitly in 

the training process or implicitly to choose 

optimal hyperparameters of the model. 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3. Time series cross-validation technique 
 

As manual tuning is not considered a 

reliable way to get the best hyperparameter 

combinations for a specific model type, cross-

validation can be employed with a 

hyperparameter tuning approach. Random 

Search is regarded as a better alternative to 

the straightforward Grid Search [44]. 

A wide variety of the existing ML 

models were considered, as this paper focuses 

on studying the particularities of their 

application to the considered task of decision 

support and underlying solar power 

forecasting, not the attempt to create the best-

performing model for specific forecasting 

datasets. Because of that, several classes of 

the models were considered:  

1. linear models, including Lasso and 

Ridge modifications  [45]; 

2. simple tree-based models, such as 

Random Forest [45]; 

3. gradient boosting-based tree 

ensembles, such as 

GradientBoostingRegressor [45] or 

LightGBM [46]; 

4. Support Vector Regressor (SVR) 

[45] - an adaptation of the SVM for 

regression tasks; 

5. multi-layered perceptron (MLP) [45] 

- a model type with a much bigger capacity, 

in theory; 

6. time-series approaches, such as 

SARIMA [47]. 

Therefore, to answer the research 

question outlined in Problem Statement 

Section, different ML models should be 

trained using train-test splits, time series 

cross-validation, and hyperparameters tuning 

techniques. Their corresponding performance 

and the dependency of that performance on 

the experiment parameters reflecting the 

research questions will allow for finding 

answers to the questions. 

It is important to clarify the definition 

of prediction horizon to avoid ambiguity in 

answering the second research question. In 

this work, the prediction horizon is the 

number of steps ahead in the future that a 

model should predict without updating its 

knowledge of the historical data. In some use 

cases, like the one considered in this work, 

previous target variable values are used as lag 

features and, consequently, as an input to the 

model prediction process.  

Depending on the prediction horizon, it 

may or may not be valid to use actual 

historical values in the evaluation process. For 

instance, when using lag one and prediction 

horizon of one, the model makes one 

prediction step at a time, and then historical 

data can be updated. This way, it’s always 

valid to use actual historical values for the lag 

one feature.  

However, this will not be the case if the 

prediction horizon is higher than the lag, e.g., 

lag one and prediction horizon of seven. The 

model should make seven prediction steps 

before updating the historical data, and it 

can’t use lag one feature filled with actual 

historical values from the previous day. Then, 

the model's prediction from the previous step 

within the horizon should be used as the 

corresponding lag feature. For example, a 

model makes the first prediction of 2.5.  

Then, for the next prediction step, the 

model should use this value as a lag one 

feature value instead of an actual historical 

lag value. 

The implementation and execution of 

the experiment pipelines were done on an 

Intel 7-based machine with a Windows 10 OS 

in the Python 3.10 environment with the 

following major packages: scikit-learn (1.2.2) 

[45], scipy (1.10.1) [48], pmdarima (2.0.4) 

[47] , pandas (2.2.2) [49], numpy (1.24.3) 

[50], matplotlib (3.9.2) [51], lightgbm (4.5.0) 

[46]. 

A set of experiments must be done to 
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identify the model type that best fits the 

considered problem. To this end, a high-level 

comparison of the models can be done to 

determine the model class to be used for more 

detailed experiments, e.g., with more fine-

tuning and changing experiment parameters 

that reflect the research questions from the 

Problem Statement Section.  

In this work, 5% of the data, which is 

chronologically latest, was used for test 

purposes if otherwise not stated for a 

particular experiment. 

First, classic time series approaches had 

to be considered. Manual tuning of the 

SARIMA model parameters is not entirely 

reliable, and an automated tuning process was 

also utilized to find the best SARIMA model 

for the given data. 

Second, other model types were 

considered. For the sake of simplicity, 

regression models available in the sci-kit-

learn library were considered. This way, the 

experiment pipeline can be unified and reused 

for all the models. The list of considered 

models is as follows: LinearRegression, 

Ridge, Lasso, SVR, MLPRegressor, 

RandomForestRegressor, GradientBoosting-

Regressor, and ExtraTreesRegressor [45]. 

These models provide a good representation 

of different ML model types. 

For each model type, several 

hyperparameter combinations were 

considered. The idea was that some 

hyperparameter variation would improve our 

understanding of the model performance for 

the given data. Hyperparameter combinations 

that we considered mainly were one of three 

following types:  

− Commonly used hyperparameter 

combination that should work reasonably well 

in most cases for the given model type. One 

can think of it as default hyperparameters.  

− Hyperparameter combination that 

allows a model to overfit to the training data. 

This allows us to evaluate model capacity in 

favorable conditions.  

− Hyperparameter combination with 

strong regularization components that should 

stop overfitting and improve test metrics even 

if the train metrics value would suffer from 

this. 

This way, the model type's behavior can 

be understood better in relation to the given 

problem and dataset.  

It is important to mention an essential 

difference between SARIMA and other 

considered model types. SARIMA explicitly 

uses previous target variable values to predict 

the next steps but doesn’t have a direct ability 

to use other available features. 

For other models, it’s precisely the 

opposite. Because of that, we first compared 

the performance of the time series approach 

with the Scikit-learn models without lags but 

then added lags and compared the 

performance with the most prominent model 

type.  

Lag features derived from the target 

variable were used, with lags of 1,3,5,7. 

After comparing model behavior and 

performance, gradient-boosting tree-based 

models were selected to continue with the 

main experiments of this research work. As 

the following experiments required extensive 

tuning of the hyperparameters, it was decided 

to stick to the LightGBM implementation, 

known for its blazing-fast performance and 

light model footprint [46]. 

Next, the following setups were 

suggested to answer the research questions 

outlined in Problem Statement: 

1. Set parameters for the experiment, 

such as ranges of hyperparameters, input 

dataset, number of folds in the time series 

cross-validation, hold-out test data size, 

number of tuning iterations, etc.  

2. Conduct hyperparameter tuning 

using the Random Search approach, given 

hyperparameter ranges, and train part of the 

data. Time series cross-validation with three 

folds was used to get a robust estimate of 

model performance for each hyperparameter 

combination. 

3. Evaluate the best model on the test 

data part. 

4. Change one parameter of the 

experiment and repeat the procedure. 

5. Gather model performances for each 

parameter value and make conclusions about 

the dependency of the parameter on the model 

application. The final best model received as a 

result of full tuning in each experiment was 

used to compare results. 

As all experiment parameters are set, 
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except for the one that is being studied, one 

can attribute changes in model performance to 

the change in that one experiment parameter. 

After having the experiment procedure 

implemented, several parameters of the 

experiment were varied to understand the 

implications for the considered research 

questions: 

− size of the available training data; 

− size of the testing data; 

− prediction horizon. 

The best model was received with 1000 

iterations of the hyperparameters tuning 

process. 

Along with the experiment logs, 

prediction charts and model files were saved. 

These allow for making a qualitative 

evaluation of predictions compared to the 

actual historical data, as well as comparing 

model file sizes.  

The latter can be utilized to answer the 

last research question from the Problem 

Statement on model size considerations. 

 

Results 

Table 1 summarizes performance 

evaluation metrics, namely RMSE, for both 

train and test data subsets. Lower values of 

RMSE indicate higher performance. 
 

Table 1. Best performance per model type 
 

Model type TrainRMSE TestRMSE 

Linear 
Regression 

1.6 2.52 

Ridge 1.6 2.52 

Lasso 1.82 2.34 

SVR 1.86 2.62 

MLPRegressor 1.39 3.47 

RandomForest 
Regressor 

1.32 2.59 

Gradient 
Boosting 
Regressor 

1.21 2.67 

ExtraTrees 
Regressor 

0.76 2.77 

RandomForest 
Regressor with lags 

1.27 2.31 

SARIMA - 2.31 

 

It is observed that performance varies 

significantly among model classes. Some of 

the more complex models, like SVR and 

MLP, do not demonstrate performance 

superiority. The best test RMSE values are 

demonstrated by RandomForest and 

SARIMA models. Linear models show good 

test RMSE values but comparatively worse 

performance in terms of train metric values. 

Table 2 contains performance metric 

values for the best LightGBM model received 

after tuning for different amounts of the 

training data that were available to the model 

tuning process. It can be seen that with more 

training data, performance on the test data 

improves while train RMSE increases.  
 

Table 2. Tuned LightGBM model performance for 

different training data sizes 
 

 

LightGBM model performance 

dependence on the test data size is presented 

in Table 3.  

The test size was changed in this 

experiment, but the same prediction horizon 

of one step (one day) ahead was utilized. In 

this case, the lag features used as input in 

each prediction step are calculated on the 

actual historical data. This corresponds to the 

situation when forecasting is done for the next 

day. Hence, the actual values of a target 

variable from previous days are used. A DSS 

can collect this data during its work. In other 

words, lag features don’t contain any model 

predictions.  It was observed that model 

performance fluctuates with the change in test 

sample size without a clear monotonous 

pattern. 
 

Table 3. Tuned LightGBM model performance for 

different test data sizes 
 

 

Table 4 presents the performance 

Training data 
size 

Train RMSE Test RMSE 

Full data 
(2020-2023) 

1.4 2.03 

2021-2023 1.21 2.16 

2022-2023 1.36 2.34 

2023 only 0.18 2.56 

Test size Train RMSE Test RMSE 

5% of the full data - 71 1.4 2.03 

30 1.42 2.15 

14 1.42 2.05 

7 1.43 2.20 
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dependence on the prediction horizon size. It 

was observed that the training metric remains 

stable, as expected. On the other side, test 

RMSE increases with the increase of horizon 

size. 
 

Table 4. Tuned LightGBM model performance for 

different prediction horizons 
 

Horizon size Train RMSE Test RMSE 

5% of the full 
data - 71 

1.4 2.55 

30 1.4 2.53 

14 1.4 2.35 

7 1.4 2.24 

1 1.4 2.03 
 

Observed model sizes per model type 

are listed in Table 5. It is observed that the 

size of simpler linear models is stable and 

small. Especially if one compares to tree-

based models that are not only much bigger 

but also grow in size depending on the model 

structure (e.g., the number of trees in a forest). 
 

Table 5. Model file size in megabytes for different 

model types 
 

Model type Pickle-file size, MB 

LinearRegression [0.001] 

Ridge [0.001, 0.001, 0.001] 

Lasso [0.001, 0.001, 0.001] 

SVR [0.116, 0.125, 0.11] 

MLPRegressor [0.025, 0.036, 0.151] 

RandomForest 
Regressor 

[0.199, 3.897, 18.968] 

GradientBoosting 
Regressor 

[0.115, 0.682, 44.274] 

ExtraTreesRegressor [4.804, 30.542, 45.182] 

LightGBM Regressor [0.001, 0.001, 0.001] 

 

However, as shown in Table 6, which 

shows model performance to model file size 

dependency, there is no clear relation between 

bigger and more complex models providing a 

higher level of performance. 
 

 

 

Table 6. Model file size in megabytes and test RMSE 

for RandomForest models 
 

Model performance 
(Test RMSE) 

Model file size, MB 

2.6 0.199 

2.73 3.897 

2.77 18.968 

 

Discussion 

The first set of experiments was focused 

on choosing the model type for further 

experiments. It became evident that some 

model types are more prone to overfitting, 

while others lack the capacity to learn 

complex patterns. In particular, it is important 

to emphasize that linear models provide a 

comparable level of performance to tree-

based models. However, they demonstrated 

limited capacity to improve the evaluation 

metric further. This limitation is due to the 

linearity assumption at the core of such model 

design. Thus, tree-based models were chosen 

as a more flexible option for the following 

experiments. However, to account for model 

size concerns, it was decided to consider a 

more efficient implementation from the 

LightGBM library instead of standard scikit-

learn implementations of various tree-based 

models. It is also worth mentioning that a 

neural network model (MLP) may be capable 

of demonstrating a better level of 

performance, but this would likely require 

significant efforts for tuning not only 

hyperparameters but also the model structure 

(i.e. the number of layers and neurons in the 

network architecture).  

It was observed (see Table 2) that there 

is a direct relation between the amount of 

training data and model performance on 

unseen data. Train performance improves 

with a smaller amount of data, most likely, as 

in such cases, it is easier for the model to fit 

the training data. However, the test 

performance drops significantly after 

decreasing the amount of training data to 

below two full years. Thus, in practical 

applications, it is advised to make sure 

training data contains at least two full 

seasonal periods. For instance, in the 
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considered applied problem, there is strong 

evidence of yearly seasonality, and thus, two 

full years of training data are required to let 

the model learn the yearly seasonal patterns.  

Table 3 demonstrates that model 

performance fluctuates if the test period size 

is changed. It can be concluded that the length 

of the test period should be chosen based on 

the applied problem context and reflect the 

underlying processes’ particularities. It is 

worth mentioning that the test period length 

should be selected before the experiment to 

allow for correct experiment procedure and 

reliable results. 

It was observed that there is a clear 

dependency of the performance on the 

prediction horizon (see Table 4). The bigger 

the horizon, the higher the RMSE value for 

the test period. This dependency reflects a 

decrease in model performance when its own 

predictions are utilized as input for predicting 

the sequential steps. Hence, the uncertainty of 

inputs increases, and the model has less 

reliable information to make precise 

predictions. This result indicates that in 

practical applications, it is better to choose the 

shortest applicable horizon of forecasting to 

reduce the uncertainty of model inputs and 

allow for better performance by maximizing 

the probability of a precise forecast. In the 

case of DSSs deployed on edge to prosumer's 

compute and operating on a daily granularity 

level, it should be feasible to make one-day 

ahead predictions. This doesn’t mean a bigger 

number of prediction steps should always be 

avoided in practical applications. Rather, that 

there is a clear benefit in updating the forecast 

using the newly available model input values 

as frequently as possible from a practical 

perspective. 

As shown in Table 5, different model 

types have different sizes. However, there is 

no explicitly observed dependency between 

the model's size and its performance. For 

example, linear models are the smallest but 

have limited capacity, while LightGBM 

regression models have approximately the 

same size and better performance. At the 

same time, other model types demonstrated 

lower performance and orders of magnitude 

bigger file sizes. Moreover, as was 

investigated for RandomForest models, more 

complex models are not directly linked to a 

better performance. For instance, a model 

with a high number of deep trees will have a 

bigger footprint but is likely to overfit and 

show modest performance on the hold-out test 

dataset. This should be considered as a 

counterexample, not as a general rule, though. 

Considering model size and 

performance, such a model is feasible for 

local deployment even on a modest prosumer 

computing infrastructure, as limited resources 

are required to make predictions. There is no 

requirement for real-time performance, and 

daily forecast updates are totally feasible. 

 

Conclusions 

In this work, several aspects of applying 

ML approaches to forecasting in the context 

of prosumer decision support were 

investigated to provide practical 

recommendations for the development of such 

applied solutions, such as the required amount 

of training data and prediction horizon size. 

Based on the considered use case, it was 

observed that it is beneficial to apply models 

with significant capacity while controlling 

their tendency to overfit. In the case of time-

related data and a model type that doesn’t take 

previous values into account explicitly, it is 

also worth considering adding corresponding 

features reflecting previous variable values. 

For the training data, one should aim to gather 

data for at least two full seasonality periods to 

allow the model to learn the seasonality 

pattern. The prediction horizon should be as 

short as the applied problem allows, 

especially in the cases when predictions of the 

model have to be included in the inputs of the 

following step prediction process inside the 

prediction horizon, as this helps to limit 

uncertainty multiplication in the forecasting 

process.  

The scientific novelty of the obtained 

results is that the recommendations regarding 

the ML application to the forecasting problem 

were formulated based on the real-world 

scenario with daily forecasting frequency. 

Moreover, it was considered in the context of 

decision-making support for a prosumer at the 

level of individual household size. The 

corresponding applied experiments justify 

these recommendations and allow for better 
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development of the forecasting solutions in 

the energy prosumer-related use cases. 

The practical significance of the results 

consists of two components. First, the results 

were obtained from an applied forecasting 

problem using real-world data, where the 

entire experiment pipeline was implemented 

and the experiments conducted. Second, 

results are general applicability due to 

experiments conducted using real-world data 

from a specific prosumer use case. This way, 

the derived suggestions on the application of 

ML models to the daily forecasting problem 

are relevant to similar use cases and can be 

employed there to improve. In particular, the 

considered use case includes additional 

uncertainty from other parts of the system, 

which makes it different from the purely 

theoretical studies, e.g. considered historical 

data suffers from missing values and gap 

periods the same way as may happen in 

various real-world scenarios. 

Prospects for future research are to 

extend the number of considered decision-

making support scenarios and use cases. This 

extension may allow for the extraction of 

general patterns in the ML models application 

and give both general rules for different 

scenarios and specific recommendations for 

them, e.g. daily and hourly forecasting. 

One specific research direction that may 

result in a universal tool applicable to various 

use cases would be automated detection of the 

recommended minimum training period 

and/or prediction horizon based on the 

available historical data, specific problem 

parameters, and business problem constraints. 

Lastly, it may be possible to achieve 

different results using more advanced models 

and significant efforts to improve their 

performance in each specific use case, e.g. 

combining attention-based, tree-based, and 

time series trend models in a sophisticated 

system that may shift recommendations for 

the amount of training data, evaluation 

methodology or prediction horizon. Thus, any 

work that aims at a generic solution for a 

certain type of use case would be of 

significant value to the research and industrial 

community. 
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