
ISSN  2710 – 1673   Artificial  Intelligence   2025   № 2 

 

10 

 

UDC: 004.89:005.334 https://doi.org/10.15407/jai2025.02.010  

 
M. Rokosh1, M. Striletskyi2 

1Ternopil Ivan Puluj National Technical University, Ukraine 

 56 Rus'ka Str., Ternopil, 46001 
2West Ukrainian National University, Ukraine 

 11 Lvivska Str., Ternopil, 46009 
1mike@apiko.com 
2mykola@apiko.com 
1https://orcid.org/0009-0009-0323-3735 
2https://orcid.org/0009-0009-6167-7289 

 

MODELING THE EVOLUTION OF RISK IN AI SYSTEMS THROUGHOUT 

THEIR LIFECYCLE USING THE S-CURVE 
 

Abstract. Artificial Intelligence is becoming increasingly embedded in various areas of human life, offering new 

capabilities that go beyond traditional software systems. Unlike conventional programs that follow fixed instructions, 

AI can generate its own solutions after processing large volumes of data. However, human input remains essential in 

designing AI architecture and setting its goals. While AI improves efficiency and decision-making across fields, it also 

introduces new types of risks. These risks often arise not from malicious intent, but from unpredictable system behavior 

and user errors. This paper analyzes such risks using a systems perspective and logistic S-curve modeling to examine 

the AI lifecycle. The analysis shows that the first three stages—development, scaling, and stabilization—carry the 

highest levels of vulnerability. Key issues include design flaws, insufficient debugging, and lack of continuous 

monitoring. More advanced systems may evolve through multiple S-curve phases, each introducing new challenges. 

The study emphasizes the need for stronger legal and ethical standards, drawing on regulatory efforts from the EU, 

USA, UK, Germany, and France. International cooperation is also highlighted as a key factor in ensuring that AI 

develops safely and responsibly. 
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1. Introduction 

The era of Artificial Intelligence (AI) is 

not only upon us—it is accelerating at an 

extraordinary pace. What was once 

considered a futuristic concept is now deeply 

embedded in everyday life, from personalized 

recommendations and virtual assistants to 

predictive analytics in healthcare and 

autonomous systems in logistics. The 

development of AI technologies has become 

so rapid and intensive that even researchers, 

developers, and end-users often struggle to 

adapt to its evolving capabilities. This pace of 

change introduces significant challenges: 

hesitation, lack of preparedness, and 

underestimation of AI’s transformative 

potential can lead to serious setbacks, not 

only for individuals and organizations but for 

entire sectors of society. 

AI cannot be paused, stopped, or 

meaningfully slowed without incurring 

opportunity costs that outweigh potential 

benefits. Such efforts may also encourage 

fragmentation, as global actors move at 

different speeds, leading to uneven 

development and regulation. Rather than 

resisting the momentum of AI, the focus must 

be on understanding and guiding it. We must 

overcome uncertainty with urgency—by 

embracing AI, studying it critically, building 

its capabilities responsibly, and mastering its 

real-world application. This means fostering 

interdisciplinary collaboration, investing in 

education and governance, and creating 

technical safeguards that evolve alongside 

innovation. 

At its core, AI offers a singular 

advantage: time. With the ability to analyze 

and synthesize vast datasets at speeds far 

beyond human capacity, AI can dramatically 

improve decision-making, optimize processes, 

and uncover insights that would otherwise 

remain hidden. However, this power comes 

with a growing responsibility to ensure that 

such systems are safe, fair, and aligned with 

human values. As AI continues to reshape 

industries and institutions, understanding its 

full lifecycle—including where risks emerge 

and how they can be mitigated—becomes not 

just a technical challenge but a societal 

imperative. If used wisely, AI can serve as a 

force multiplier for progress, but if 
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mismanaged, it can become a source of 

systemic vulnerability. 

 

2. Problem Statement 

As AI becomes increasingly integrated 

into the fabric of everyday life, it introduces a 

new class of risks that are distinct from 

traditional cybersecurity threats. These risks 

often stem not from intentional harm, but 

from non-malicious sources such as 

spontaneous and unpredictable software 

behaviors, opaque outputs generated by 

complex neural networks, and inadvertent 

human errors in system design, deployment, 

or operation. Unlike conventional software, 

AI systems can evolve through training data 

and feedback mechanisms, occasionally 

producing outcomes that are difficult to 

anticipate or explain. Such unpredictability, 

combined with the high-stakes environments 

in which AI is often deployed—such as 

healthcare, finance, critical infrastructure, and 

public administration—can result in system 

malfunctions, flawed decision-making, and 

unintended consequences. These 

vulnerabilities pose a significant challenge to 

existing risk management practices, which are 

often ill-equipped to account for the dynamic 

and emergent nature of AI systems. 

 

3. Related Work 

The rapid expansion of Artificial 

Intelligence has prompted extensive scholarly 

attention across multiple disciplines, 

particularly concerning the risks and 

challenges associated with its development, 

deployment, and societal integration. Existing 

literature can be broadly categorized into 

technical, ethical, and socio-political domains, 

each contributing to a deeper understanding 

of the systemic vulnerabilities introduced by 

AI. 

On the socio-political front, Crawford 

[1] offers a critical perspective on the global 

implications of AI, framing it not merely as a 

technical achievement but as an infrastructure 

embedded with power dynamics and 

environmental costs. She argues that AI 

development often reinforces existing 

inequalities, both within and between nations, 

while simultaneously consuming substantial 

ecological resources. This view shifts the 

focus away from narrow discussions of 

algorithmic design to the broader material and 

political conditions under which AI is 

produced and applied. 

From a technical standpoint, 

foundational texts such as Russell and Norvig 

[2] have provided a detailed examination of 

AI algorithms, system architectures, and 

computational logic. Their work has served as 

a cornerstone for understanding the 

capabilities and limitations of intelligent 

systems. They highlight that while AI can 

perform tasks once thought exclusive to 

human intelligence—such as natural language 

processing, strategic planning, and 

perception—it remains constrained by issues 

such as data dependency, brittleness, and lack 

of interpretability. These technical limitations 

can become significant risk vectors, 

particularly when AI systems are deployed in 

high-stakes environments like healthcare, 

finance, or law enforcement. 

Ethical concerns have received growing 

attention as AI systems become more 

autonomous and widely deployed. Shahriar et 

al. focus on algorithmic bias and data 

governance, identifying how skewed datasets 

and opaque decision-making processes can 

lead to systemic discrimination and loss of 

public trust. Their analysis emphasizes the 

need for transparent model evaluation, 

fairness-aware design practices, and robust 

legal oversight. Similarly, Luxton [3] explores 

the implications of AI in psychological and 

clinical practice, noting that while AI tools 

offer enhanced diagnostic and predictive 

capabilities, they also raise significant 

questions around consent, accountability, and 

the doctor-patient relationship. 

Other scholars have examined risk 

through the lens of system dynamics and 

software behavior. Yudkowsky [4], for 

example, discusses the existential risks posed 

by misaligned general intelligence, warning 

that even well-intentioned systems can behave 

in ways that are unpredictable and harmful 

when their objectives are not fully aligned 

with human values. While his perspective is 

often framed in long-term speculative terms, 

it has sparked important debates on safety 

mechanisms, goal specification, and the limits 

of human control in advanced AI systems. 
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Further research has emphasized the 

technical risks of operational deployment. 

Hutson [5] reports on the reproducibility 

crisis in AI research, citing that a large 

number of published models lack sufficient 

documentation and access to data, which 

hampers validation and real-world 

applicability. This lack of transparency not 

only limits scientific progress but also 

increases the risk of deploying untested or 

misunderstood systems in sensitive domains. 

In the field of system modeling, Bejan 

and Lorente [6] introduce the constructal law 

and the logistic S-curve as a way to 

understand growth dynamics in complex 

systems. Their work provides a useful 

conceptual basis for analyzing the 

development trajectories of AI systems, 

particularly in understanding how risk 

exposure may vary across different stages of 

growth and saturation. 

Taken together, the existing body of 

research illustrates that AI-related risks are 

not isolated to any one phase of development 

or type of application. Instead, they emerge 

from the interplay of technical limitations, 

design choices, data quality, regulatory gaps, 

and social context. However, while these 

studies offer valuable insights, most tend to 

address risks as static categories or focus on 

individual incidents rather than tracing their 

progression across the AI system lifecycle. 

This highlights a gap in the literature that this 

paper aims to address: a structured, lifecycle-

based approach to risk analysis that integrates 

technical, ethical, and systemic factors using a 

model such as the logistic S-curve. By 

situating risks within specific developmental 

stages—such as initial design, accelerated 

deployment, stabilization, and decline—this 

research seeks to offer a dynamic and context-

aware framework that can better inform future 

governance, design practices, and policy 

development. 

 

4. Research Objectives 

This paper aims to define and categorize 

risks inherent in the AI development lifecycle, 

apply system modeling—particularly the 

logistic S-curve model—to the AI lifecycle to 

identify high-risk phases, and recommend 

strategic, legislative, and ethical measures to 

reduce or prevent risks. In achieving this aim, 

the research intends to demonstrate that 

existing paradigms for AI risk management 

are inadequate unless contextualized within 

the evolutionary trajectory of AI systems, 

acknowledging that risks are not uniformly 

distributed but rather fluctuate depending on 

development stage, system architecture, and 

implementation context. 

 

5. AI Capabilities and Complexities 

Artificial Intelligence refers to software 

systems designed to perform cognitive tasks 

traditionally associated with human 

intelligence. These include learning from 

data, recognizing patterns, and adapting to 

dynamic conditions. The adaptability and 

complexity of these systems derive primarily 

from algorithmic models—especially neural 

networks—which simulate the functioning of 

the human brain. Importantly, AI can evolve 

in non-linear ways. Neural networks may 

generate new software elements either 

spontaneously or through incomprehensible 

internal processes. When such behavior is 

coupled with human errors in operation or 

oversight (excluding intentional sabotage), AI 

becomes a substantial risk vector. In 

medicine, AI supports both traditional and 

telemedicine by monitoring physiological 

parameters and modeling individual 

biological states [7]. This enables a shift from 

reactive to preventive healthcare, 

transforming health from a biographical to a 

biological construct [9]. In science and 

engineering, AI facilitates data analysis, 

synthesis, and iterative refinement, 

particularly in experimental physics, where 

recursive analytical loops accelerate 

hypothesis testing and discovery. In the social 

sphere, from education and culture to tourism 

and sports, AI is revolutionizing productivity 

and access, democratizing opportunities while 

introducing surveillance and bias-related 

challenges [9]. In the economy, AI integration 

reshapes manufacturing, agriculture, and 

SME operations, demanding comprehensive 

oversight to balance innovation with 

inclusivity, and economic sustainability with 

ethical responsibility. 
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6. Methodology and Theoretical 

Framework 

The methodological foundation of this 

research integrates a systems-theoretic 

perspective, comparative analysis, risk 

categorization, and graphical modeling to 

develop a comprehensive understanding of 

the AI lifecycle and the risks embedded at 

each of its distinct stages. The analytical core 

is formed around the logistic S-curve—

originally developed by Pierre Verhulst—

which offers a valuable mathematical model 

to describe the growth, stabilization, and 

eventual decline of complex dynamic systems 

such as Artificial Intelligence architectures. 

The S-curve not only allows for visualization 

of AI’s development over time, but also 

provides a diagnostic tool for identifying 

when and where specific risk categories are 

most likely to emerge. 

In the context of this paper, the S-curve 

has been subdivided into four sequential yet 

overlapping stages: Initial Development, 

Accelerated Growth, Stabilization, and 

Decline.  

Each stage on the S-curve introduces a 

unique configuration of vulnerabilities, 

requiring tailored strategies for mitigation. 

These stages align respectively with four 

fundamental types of risk: Foundational, 

Operational, Systemic, and Residual. These 

categories encapsulate the evolving nature of 

AI-related threats and form a coherent 

framework for targeted risk governance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 1. AI System Lifecycle and Risk Evolution Illustrated by the S-Curve 
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Foundational Risk characterizes the first 

stage of the AI lifecycle: the phase of Initial 

Development. This stage, positioned at the 

base of the S-curve, is deceptively calm. 

However, its relative developmental inertia 

masks an elevated level of latent 

vulnerability. Foundational risk arises 

primarily from errors in system architecture, 

inadequate data quality, biased algorithmic 

logic, or poorly formulated objectives. 

Misjudgments at this stage can embed long-

lasting flaws that cascade through every 

subsequent stage of development. A key 

contributor to foundational risk is the lack of 

interdisciplinary collaboration at the design 

level—when engineers, domain experts, 

ethicists, and legal scholars fail to converge 

on the intent, scope, and governance of AI 

functionalities. Data-related issues, such as 

selection bias, underrepresentation of 

minority groups, or insufficient volume, also 

originate at this stage, compromising fairness 

and reliability. The decisions made in the 

design and programming of AI systems—

such as model type, training regimes, and data 

input parameters—determine the latent 

potential for risk exposure. These missteps do 

not usually reveal their full consequences 

until the AI is scaled or deployed, making 

proactive quality assurance and ethical 

foresight essential. 

Operational Risk dominates the second 

phase: Accelerated Growth. Here, the AI 

system transitions from concept to real-world 

implementation, often undergoing rapid 

iteration, scaling, and exposure to 

heterogeneous data environments. The steep 

middle of the S-curve symbolizes exponential 

development, but this expansion is fraught 

with implementation challenges. Operational 

risk encompasses the volatility and 

unpredictability introduced by rapid 

deployment: system drift, misaligned 

performance metrics, or incompatibility with 

existing infrastructure [10-11]. This stage is 

often marked by aggressive timelines, market-

driven urgency, and inadequate testing. The 

opacity of neural networks, particularly in 

black-box models, exacerbates this issue—

making it difficult to trace the root cause of 

malfunctions. Furthermore, operator error 

becomes a significant factor in this phase. 

Inadequate training, overreliance on 

automation, and insufficient human oversight 

lead to misapplication of AI outputs. The 

paradox of automation bias emerges here: the 

more accurate a system appears, the more 

likely humans are to defer to it uncritically, 

even when errors occur. Additionally, this 

phase may involve initial public or client 

interaction with the AI system, exposing it to 

legal liabilities and reputational risks. 

Operational risk is, therefore, both a technical 

and organizational concern and calls for 

integrated monitoring systems, stress testing, 

and scenario planning [12]. 

Systemic Risk arises in the third phase, 

corresponding to the Stabilization segment of 

the S-curve. At this point, the AI system is 

mature, widely adopted, and deeply 

embedded in organizational workflows or 

societal infrastructures. Paradoxically, it is in 

this phase of relative calm that the most 

concealed and complex threats emerge. 

Systemic risk stems from dependencies and 

interconnections—AI systems influencing or 

depending on other critical systems such as 

healthcare, transportation, finance, and 

government administration. Hidden 

interdependencies create pathways for 

cascading failures, whereby an unnoticed 

error in one AI module may propagate 

through entire ecosystems. Additionally, 

adversarial inputs, emergent behavior, and 

feedback loops introduce new vectors of 

unpredictability. The stabilization phase is 

also where governance often becomes 

complacent, assuming the maturity of the 

system equates to safety. However, maturity 

brings scale, and scale multiplies 

consequences. Algorithms operating at 

population-level data may inadvertently 

codify structural inequalities, while long-term 

use may lead to unanticipated forms of bias, 

performance decay, or dataset obsolescence. 

Importantly, this is the stage where AI begins 

to interact symbiotically with human 

behavior, shaping decisions, preferences, and 

institutional policies—blurring the line 

between automation and authority. Systemic 

risk is therefore multidimensional and 



ISSN  2710 – 1673   Artificial  Intelligence   2025   № 2 

 

15 

 

requires continuous auditing, cross-sectoral 

policy alignment, and anticipatory regulation. 

Residual Risk defines the fourth and 

final phase: Decline. This stage on the S-

curve signifies the waning relevance or 

functionality of an AI system. However, risk 

does not disappear at the end of the 

lifecycle—it transforms. Residual risk 

emerges from legacy systems that are no 

longer maintained but still in use, outdated 

datasets that persist in training environments, 

or embedded algorithms that continue to 

influence decisions in invisible ways. In some 

instances, residual risk is the result of 

abandonment, where organizations sunset AI 

tools without thoroughly decommissioning 

their influence or removing them from 

operational processes. These abandoned tools 

may still operate with outdated logic, 

producing decisions that no longer reflect 

current ethical standards, legal frameworks, or 

technical realities. Another form of residual 

risk involves intellectual inertia—where 

institutions continue to rely on historically 

trained AI systems due to sunk costs or 

regulatory lag, despite knowing better models 

exist. Residual risks are often overlooked, yet 

they can be deeply corrosive, undermining 

trust, safety, and accountability over time. 

Addressing these requires robust offboarding 

protocols, long-term data stewardship, and 

periodic system retirements supported by 

regulatory incentives. 

Taken together, these four categories of 

risk provide a dynamic and holistic lens for 

understanding AI system vulnerabilities. The 

S-curve serves not merely as a visual 

metaphor but as a structured temporal map 

that allows researchers, engineers, 

policymakers, and stakeholders to predict and 

address risks as they emerge and evolve. It 

bridges the gap between abstract ethical 

concerns and practical implementation 

timelines. This methodological approach 

grounds the broader research in actionable 

insights that can inform future standards, 

interventions, and innovations. In doing so, it 

advocates for a lifecycle-aware, ethically 

aligned, and risk-resilient model of AI 

development. 
 

 

7. Ethical, Legal, and Strategic 

Responses 

Given the outlined vulnerabilities, 

proactive legislative and ethical strategies are 

vital. The study recommends codifying 

ethical standards and AI codes of conduct, as 

adopted by global leaders such as the USA, 

UK, Germany, and France. Risk assessments 

should be systematically integrated into every 

AI deployment. Establishing robust national 

and international regulatory frameworks is 

critical. However, excessive restrictions that 

may hinder innovation must be avoided. To 

ensure balanced development, 

multidisciplinary legislative collaboration is 

needed, involving ethicists, technologists, and 

policymakers. National regulations must be 

aligned with global standards. A 

supranational regulatory body for AI—

analogous to nuclear non-proliferation 

agreements—remains elusive but essential. 

Furthermore, ethical considerations should 

not remain aspirational; they must be 

operationalized through compliance 

protocols, enforceable standards, and 

algorithmic transparency audits. Without such 

grounding, ethical declarations risk becoming 

ceremonial rather than consequential. The 

ethical implications of AI extend beyond data 

privacy and discrimination, encompassing 

issues such as digital personhood, algorithmic 

autonomy, and long-term societal 

transformation. Each of these requires 

deliberate attention, not as peripheral matters 

but as core components of AI design [13]. 

 

8. Geopolitical and Socioeconomic 

Considerations 

Unequal access to AI technologies may 

widen existing knowledge and development 

gaps. Nations with robust economies and 

innovative capacities will continue to lead, 

increasing global inequality. In response, 

emerging states must invest in domestic AI 

development, foster public-private innovation 

partnerships, and advocate for open 

knowledge exchange at international forums. 

The potential for knowledge asymmetries 

raises concerns not only about economic 

inequality but also about sovereignty, 

autonomy, and long-term dependency. If a 

select group of nations or corporations 



ISSN  2710 – 1673   Artificial  Intelligence   2025   № 2 

 

16 

 

monopolize access to transformative AI 

technologies, others may find themselves 

locked into subordinate roles within the 

global knowledge economy. Thus, AI 

becomes not only a technological but a 

geopolitical issue, requiring diplomatic 

coordination, equitable access strategies, and 

mechanisms to avoid monopolistic dominance 

that could stifle innovation and exacerbate 

systemic inequalities across borders. 

 

Conclusions 

The swift progression of AI is both a 

beacon of progress and a source of 

unprecedented risk. The challenges addressed 

in this study stem not from malevolence, but 

from structural and procedural vulnerabilities 

that manifest across the AI lifecycle. By 

employing an S-curve model, this research 

highlights the stages most susceptible to risk, 

especially the first three phases—design, 

accelerated growth, and stabilization. To 

ensure AI’s safe integration into global 

society, legislative foresight, international 

cooperation, ethical clarity, and technical 

rigor must converge. The future of AI must be 

shaped not only by its potential for innovation 

but also by our collective responsibility to 

manage its dangers. The stakes are high, and 

while the benefits are extraordinary, so too are 

the responsibilities. This is the moment not to 

fear AI, nor to romanticize it, but to 

understand it deeply, regulate it wisely, and 

deploy it judiciously. A well-regulated AI 

future does not stifle progress; rather, it 

ensures that the progress achieved serves the 

broader goals of human well-being, social 

justice, and planetary sustainability. 
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