
ISSN 2710 – 1673 Artificial Intelligence 2025 № 2

63

UDC: 004.9 https://doi.org/10.15407/jai2025.02.063

V. Falkevych1, A. Lisniak2
1,2Zaporizhzhya National University, Ukraine

 66, University st., Zaporizhzhia, 69600
1vitaliifalkevich@gmail.com
2kmm@znu.edu.ua
1https://orcid.org/0000-0002-1114-7206
2https://orcid.org/0000-0001-9669-7858

OPTIMIZATION OF INFRASTRUCTURE DEPLOYMENT FOR

MULTI-FRONTENDS IN MONOREPO

Abstract. Context: this study examines the optimization of CI/CD pipelines for the subsequent deployment of

containerized applications in order to enhance the efficiency of multi-frontend projects within monorepo environments.

Objective: the primary objective is to develop and evaluate the effectiveness of the proposed infrastructure de-

ployment approach by implementing specialized pipeline configurations that support parallel task execution and cach-

ing mechanisms.

Method: an empirical research methodology was adopted to analyze the impact of CI/CD pipeline optimization

techniques on build performance and resource utilization. The study includes a comparative experiment between

sequential and parallelized pipeline executions, demonstrating a measurable reduction in total build timewhen parallel

processing and caching are employed effectively. These results highlight the practical benefits of task decomposition

and concurrency in complex, component-driven architectures. Additionally, the study explores automation strategies for

managing the CI/CD lifecycle, including artifact storage, cleanup policies, and deployment orchestration.

Results: this research contributes to the field of software engineering by providing a validated methodology for

CI/CD optimization in large-scale, monorepo-based multi-frontend systems. The findings offer actionable insights for

developers and DevOps practitioners seeking to modernize their deployment processes and can be extended to broader

software delivery pipelines to improve maintainability and operational efficiency.

Conclusions: the results obtained underscore the importance of aligning architectural decisions with CI/CD de-

sign. In particular, the use of parallelization and modular builds not only enhances performance but also promotes better

separation of concerns and system modularity. These findings encourage further exploration of optimization strategies

that integrate architectural and infrastructural improvements in tandem.

Keywords: CI/CD, Pipelines, Frontend, Monorepo, Development Infrastructure, GIT Flow.

Introduction

The design and optimization of infra-

structure for modern web systems constitute a

critical research area in software engineering,

particularly in the context of scalable, multi-

frontend architectures.

Although numerous ready-made solu-

tions exist, bespoke software projects require

tailored and optimized approaches to infra-

structure deployment. This research examines

the architectural and methodological founda-

tions for developing infrastructure in multi-

frontend environments, with a focus on mon-

orepo-based development methodologies. In

this context, a multi-frontend project is de-

fined as a collection of analogous frontend

applications that share or customize common

packages to achieve brand-specific adapta-

tions. The primary advantage of such an ap-

proach is its adaptability, allowing both func-

tional and stylistic customization while ensur-

ing code reusability and modularity. Shared

features can be leveraged across multiple

brands while maintaining the flexibility to ad-

just styling and branding independently. This

modularity ensures that distinct features can

be activated or deactivated within each project

as required, enhancing scalability and main-

tainability.

Infrastructure design for multi-frontend

projects encompasses the entire lifecycle of

CI/CD processes, from build orchestration to

deployment and monitoring. A key challenge

in this domain is the efficient configuration of

multi-frontend build pipelines capable of as-

sembling shared libraries, constructing brand-

specific builds, and generating Docker images

for deployment. The deployment process, in

turn, demands robust automation mechanisms

that ensure stability, scalability, and monitor-

ing efficiency.

An essential aspect of this research is

the implementation of data caching between

pipeline steps, enabling the reuse of interme-

diate build results, such as dependency instal-

lations and compiled assets, which signifi-

https://doi.org/10.15407/jai2025.02.063

ISSN 2710 – 1673 Artificial Intelligence 2025 № 2

64

cantly reduces build times and resource con-

sumption. Furthermore, effective artifact

management plays a crucial role in optimizing

CI/CD workflows. By preserving essential

build outputs, such as compiled packages, and

making them available for subsequent pipe-

line stages, the overall efficiency of the de-

ployment process can be enhanced. Proper

retention policies further optimize storage us-

age, while automated cleanup mechanisms

prevent storage bloat, ensuring optimal re-

source utilization in shared environments.

Additionally, optimizing the usage of

CI/CD runners is a critical factor in minimiz-

ing pipeline execution latency. This involves

strategies such as reusing runners for con-

secutive commits within the same branch,

skipping redundant builds for unchanged

components, and prioritizing lightweight tasks

to reduce computational bottlenecks. These

measures collectively improve resource effi-

ciency and accelerate the deployment cycle.

By integrating these practices, the pro-

posed methodology enhances the efficiency,

modularity, and scalability of modern web

system architectures, allowing development

teams to focus on innovation rather than re-

petitive infrastructure-related tasks. The re-

search employs a combination of experi-

mental evaluation, architectural design, and

analytical modeling to validate the proposed

approaches.

The object of this work is the infra-

structure deployment process for multi-

frontend projects, while the subject of this

study is the optimization of CI/CD pipelines

and containerized deployment strategies using

reusable libraries.

The subject of this study is the optimi-

zation of CI/CD pipelines and containerized

deployment strategies using reusable libraries.

The purpose of this study is to propose

an efficient and scalable approach to infra-

structure deployment by integrating reusable

library builds, CI/CD pipelines.

1. Problem statement

Multi-frontend architecture enables the

development and maintenance of multiple

frontend applications within a shared infra-

structure, promoting consistency, reusability,

and centralized management. However, this

approach introduces several challenges, par-

ticularly in library reuse, dependency man-

agement, and build optimization. Ensuring

efficient development processes requires the

creation of reusable packages that can be

seamlessly integrated into various projects

while maintaining adaptability for brand-

specific customizations. Monorepo-based de-

velopment simplifies dependency tracking

and version control but also increases the risk

of unintended cross-project dependencies and

potential conflicts arising from shared library

modifications.

A critical aspect of multi-frontend de-

sign is the clear separation between business

logic and styling, allowing for the consistent

implementation of shared features while pre-

serving brand-specific flexibility. Achieving

this modularity, however, presents significant

technical complexities, necessitating a well-

structured architecture that maintains both

maintainability and extensibility. Further-

more, build optimization remains a pressing

challenge, as shared libraries often introduce

unused dependencies, inflating the final bun-

dle size. Implementing tree-shaking and other

optimization techniques is crucial to eliminat-

ing redundant code, improving application

performance, and ensuring scalability.

To address these challenges, this study

aims to:

− design pipeline configurations tailored

for multi-frontend architectures within a

monorepo environment to ensure an efficient

and scalable development process;

− conduct an experiment and measure the

efficiency of the proposed build method for

projects in a multi-frontend architecture.

2. Review of the literature

The study presented in [1] explores an

approach to automating software deployment

pipelines through the integration of Continu-

ous Integration, Continuous Security, and

Continuous Deployment. The research

demonstrates that this methodology contrib-

utes to improved code quality, mitigates secu-

rity vulnerabilities, and reduces deployment

time by leveraging tools such as Jenkins and

Veracode. However, despite these benefits,

the study does not address the optimization of

CI/CD processes for multi-frontend projects

ISSN 2710 – 1673 Artificial Intelligence 2025 № 2

65

within a monorepo architecture, as its primary

focus lies in broader CI/CD automation strat-

egies rather than specific implementation sce-

narios.

Similarly, the study [2], which investi-

gates the restructuring of CI/CD pipelines,

provides valuable insights into the evolution

of CI/CD practices within open-source pro-

jects. The study introduces a taxonomy com-

prising 34 restructuring actions that impact

the maintainability, performance, and security

of CI/CD pipelines. While this research high-

lights the growing adoption of Docker as a

containerization technology, it does not exam-

ine the integration of reusable libraries within

a monorepo structure, which represents a

more specialized case within the broader con-

text of CI/CD pipeline optimization.

The research presented in [3] examines

the automated deployment of web applica-

tions within cloud infrastructures, specifically

utilizing AWS CodePipeline. The findings

indicate that AWS CodePipeline significantly

enhances deployment efficiency and reduces

time-to-market by streamlining process man-

agement. However, the study primarily focus-

es on AWS-specific solutions and does not

address broader scalability concerns in CI/CD

for multi-frontend projects.

Additionally, prior research on cloud

deployment methodologies incorporating

Docker and Kubernetes underscores the effec-

tiveness of cloud-native CI/CD solutions.

These studies outline practices for integrating

containerization within CI/CD pipelines;

however, they do not specifically aim to ad-

dress the complexities associated with manag-

ing multi-frontend monorepos and the effi-

cient reuse of shared libraries, as these aspects

pertain to a particular subset of deployment

challenges rather than the primary scope of

the research.

A more recent study [4] explores the

impact of CI/CD automation on developer

productivity, demonstrating that automated

pipelines can reduce deployment errors by

70% and unplanned work by 22%. The re-

search draws on real-world case studies from

the technology, finance, and e-commerce sec-

tors, illustrating how CI/CD implementation

accelerates release cycles and improves soft-

ware quality. However, this study does not

address the complexities of deploying multi-

component frontend systems within mon-

orepos or optimizing CI/CD pipelines for

scalable frontend deployment.

The study [5] investigates CI/CD pipe-

lines in cloud infrastructure deployment, fo-

cusing on the integration of orchestration

tools like Terraform and Kubernetes. While

this research highlights the efficiency gains

from DevOps automation, it does not consider

the optimization of CI/CD processes for

frontend development or the reuse of shared

libraries, making its findings less applicable

to multi-frontend monorepos.

In the work [6] is discussed the ad-

vantages of micro-frontend architecture, em-

phasizing its benefits in modularity, scalabil-

ity, and independent team workflows. The

study argues that micro-frontends allow teams

to develop and deploy different parts of an

application independently, improving main-

tainability and release efficiency. However,

despite these advantages, the study does not

explore how micro-frontends can be effective-

ly integrated into CI/CD pipelines or orches-

trated within containerized environments,

leaving a gap in the understanding of deploy-

ment automation for scalable frontend sys-

tems.

In summary, while existing studies pro-

vide valuable insights into CI/CD optimiza-

tion, containerization strategies, and deploy-

ment automation, a comprehensive frame-

work that holistically addresses the challenges

of multi-frontend infrastructure deployment in

monorepos remains underexplored. This high-

lights the need for further research into devel-

oping an efficient and scalable infrastructure

deployment strategy that optimizes CI/CD

pipelines and containerized deployments

while ensuring the effective reuse of libraries.

3. Materials and methods

This study addresses to design pipeline

configurations tailored for multi-frontend ar-

chitectures within a monorepo environment to

ensure an efficient and scalable development

process.

The following tools and technologies

were employed in the experimental frame-

work of this research:

ISSN 2710 – 1673 Artificial Intelligence 2025 № 2

66

− GitLab & GitLab CI: GitLab serves as

the primary platform for version control and

continuous integration/continuous deploy-

ment (CI/CD). GitLab CI facilitates the auto-

mation of the entire CI/CD pipeline, including

building, testing, and deployment processes;

− YAML: YAML files were used exten-

sively for defining infrastructure and applica-

tion configurations, including CI/CD pipeline

stages in GitLab.

To optimize CI/CD pipelines, caching

mechanisms were implemented within GitLab

CI to reduce build time and optimize resource

utilization. These mechanisms specifically

target dependencies and build artifacts, ensur-

ing faster rebuilds by caching intermediate

build steps. Additionally, a novel approach to

multi-frontend development was introduced

by adopting a monorepo structure, which fa-

cilitates shared package management and

modular library reuse. Unlike traditional se-

quential build processes, the proposed method

enables parallel package builds, significantly

reducing overall build times and improving

efficiency. This structured approach ensures

seamless dependency management across

multiple frontend applications, leading to a

more maintainable and scalable architecture.

Cache storage mechanisms were inte-

grated into GitLab CI to securely store build

outputs. This cache is utilized across multiple

pipeline stages, enabling the reuse of previ-

ously generated outputs and minimizing re-

dundant builds. Furthermore, a strategic

cleanup mechanism was introduced to man-

age storage efficiently, ensuring that outdated

build artifacts and logs are regularly purged to

prevent excessive storage consumption and

system bloat [7].

This study contributes to the field of in-

formatics by proposing an optimized ap-

proach for multi-frontend CI/CD pipelines

that enhances efficiency through structured

monorepo management and parallelized build

execution. By shifting from traditional se-

quential builds to parallelized package pro-

cessing, the research provides a scalable

methodology that can be applied to other

complex frontend architectures. Additionally,

the integration of caching and modular library

strategies demonstrates a systematic way to

optimize resource utilization while maintain-

ing consistency across multiple frontend ap-

plications. These findings offer a practical

framework that can be extended to various

CI/CD environments, promoting best practic-

es in pipeline optimization for large-scale

software projects [8].

The development of multi-frontend

pipeline configurations was facilitated by

adopting a monorepo architecture, which

houses multiple frontend applications, librar-

ies, and shared components. This structure

promotes code reuse and maintains consisten-

cy in dependency management, as all projects

within the monorepo reference a unified set of

libraries and components. To accommodate

multiple frontend applications efficiently,

GitLab CI pipelines were configured to han-

dle build and deployment processes in paral-

lel. This setup ensures that each frontend ap-

plication can be developed and deployed in-

dependently while still leveraging shared li-

braries and components across the entire

monorepo [9].

By implementing these methodologies,

the research demonstrates the practical impact

of CI/CD pipeline optimizations in a real-

world multi-frontend development environ-

ment.

4. Experiments

To validate the proposed optimizations,

a series of controlled CI/CD pipeline execu-

tion tests were conducted. The experiments

aimed to compare the efficiency of pipeline

execution before and after applying optimiza-

tions. The following conditions were main-

tained to ensure test consistency:

− each test was conducted within the same

time frame to avoid variations due to external

factors;

− the same package versions and condi-

tions were used across all test executions;

− the same virtual machine instance was

utilized for all tests to eliminate hardware-

related discrepancies;

− all experiments were executed on free-

tier GitLab runners to reflect real-world usage

scenarios;

− caches and artifacts were cleared before

each test run to ensure a clean environment

and eliminate residual effects from previous

executions.

ISSN 2710 – 1673 Artificial Intelligence 2025 № 2

67

5. Results

In a monorepo setup, shared libraries

and packages are extensively utilized to opti-

mize the build pipelines of all applications

within the repository. The build process is

structured to maximize efficiency while min-

imizing both time and cost (Figure 1).

The process begins with installing third-

party dependencies required for subsequent

stages of usage and building. To optimize this

step, caching mechanisms are employed to

retain previously installed dependencies un-

less library updates occur. This prevents re-

dundant downloads and speeds up the build

process.

Once dependencies are installed, the

next stage involves building the necessary

packages. Since packages in a monorepo are

typically independent, they can be built in

parallel, significantly reducing the overall

build time. Each build produces artifacts that

are cached per commit, ensuring they can be

reused in subsequent stages without requiring

a full rebuild.

Following the build process, testing is

executed immediately for each package. Run-

ning tests in parallel ensures that potential is-

sues are caught early while maintaining a con-

tinuous feedback loop for developers. This

approach enhances stability and reliability, as

faulty builds are detected before they impact

the next stages.

After successful package builds and

tests, applications within the monorepo are

built. These applications rely on the previous-

ly built and tested packages but, similar to

packages, are often independent of each other.

As a result, the application build process can

also be parallelized. The generated artifacts

are cached per commit, improving efficiency

in future runs and avoiding unnecessary

recompilations.

The final stage involves assembling and

packaging the applications, typically by creat-

ing Docker images for deployment. Depend-

ing on the architecture, a single Docker image

may contain multiple applications, or separate

images may be built for each. Caching at this

stage further enhances deployment efficiency,

ensuring that only modified components are

rebuilt.

By leveraging caching strategies and

parallel execution at both the package and ap-

plication levels, the CI/CD pipeline signifi-

cantly reduces build time and improves re-

source utilization. This optimization enables

faster iteration cycles, minimizes bottlenecks,

and ensures a streamlined deployment pro-

cess, making monorepo-based development

more scalable and efficient [10].

Fig. 1. CI Pipelines stages and jobs

ISSN 2710 – 1673 Artificial Intelligence 2025 № 2

68

A series of experiments were conducted

to evaluate the impact of optimizing CI/CD

pipelines by introducing parallel execution

strategies. The pipeline consists of multiple

stages, including dependency installation,

package building, testing, application compi-

lation, and Docker image creation. The initial

configuration (sequential execution) was

compared against an optimized version that

leveraged parallelism in key stages. The re-

sults are summarized (Figure 2) with the rep-

resenting the baseline sequential execution

and the optimized parallel execution. In cases

where multiple jobs were executed in parallel,

the total stage duration was determined by the

longest-running job.

The sequential pipeline required 1661

seconds (27 minutes and 41 seconds) to com-

plete, whereas the optimized parallel pipeline

completed in 1150 seconds (19 minutes and

10 seconds), representing a 30.7% reduction

in total execution time.

The time required for installing depend-

encies showed a marginal improvement, de-

creasing from 47 seconds to 45 seconds. This

suggests that this stage has only one task, and

the optimization did not bring significant ben-

efits. The 2-second difference can be consid-

ered within the margin of error due to the

runner's expected execution

time for this stage.

Fig. 2. Comparing CI/CD pipelines in sequential and parallel modes

The initial sequential build of the three

packages took 614 seconds, while parallel ex-

ecution distributed the load across three paral-

lel tasks (232s, 278s, and 224s). The total

time for this stage was determined by the

slowest task (278 seconds), resulting in an

improvement of 54.7%. The 278-second time

was longer than the others due to the runner's

waiting time to execute the task, but this time

was not eliminated to reflect the task's execu-

tion under real conditions.

The sequential execution of testing re-

quired 283 seconds. In the parallel approach,

three separate test jobs ran simultaneously

(104s, 246s, and 115s), with the longest job

completing in 246 seconds, reducing the time

spent in this stage by 13.1%. The 246-second

time can be explained by the runner's waiting

time to prepare for the task, similar to the

previous case.

The sequential execution for two appli-

cations required 564 seconds, while the paral-

lel execution resulted in job durations of 291s

and 428s, with the longest job determining the

total stage time (428 seconds). This optimiza-

tion led to a 24.1% reduction in execution

time.

The Docker image build process re-

mained unchanged at 153 seconds, indicating

that this stage was not parallelized or opti-

mized further.

The experimental results demonstrate

that implementing parallel execution in

CI/CD pipelines significantly reduces total

build time. The optimized approach reduced

the overall execution time by approximately

511 seconds (30.7%), with the most substan-

ISSN 2710 – 1673 Artificial Intelligence 2025 № 2

69

tial improvements observed in the package

building and application compilation stages,

when tasks were in parallel.

6. Discussion

The integration of caching mechanisms

throughout the CI/CD pipeline significantly

reduces redundant computational tasks, there-

by improving build and deployment efficien-

cy. This approach is particularly effective in

large-scale systems, where minimizing build

times directly contributes to overall system

responsiveness and productivity. The ability

to execute independent jobs concurrently not

only accelerates processing but also optimizes

the utilization of computational resources.

These advantages align with previous re-

search findings, which highlight the effec-

tiveness of caching and parallelization in

CI/CD workflows for reducing latency and

operational overhead [11].

The experimental results confirm the ef-

ficiency of parallel execution strategies,

demonstrating an overall 30.7% reduction in

total pipeline execution time. The most sub-

stantial improvements were observed in the

package building (54.7% improvement) and

application compilation (24.1% improvement)

stages, where parallelization allowed tasks to

be distributed efficiently across multiple jobs.

Notably, the testing stage exhibited a more

modest 13.1% reduction, suggesting that fur-

ther refinements in test execution strategies

could yield additional performance gains.

These findings reinforce the practical benefits

of parallelism, particularly in monorepo-based

multi-frontend architectures where independ-

ent components can be processed concurrent-

ly.

However, despite its advantages, the

proposed methodology is not without limita-

tions. The reliance on efficient caching mech-

anisms necessitates robust cache invalidation

strategies to prevent inconsistencies in de-

ployments. Additionally, the effectiveness of

parallelized job execution is contingent upon

the granularity of task decomposition; im-

proper segmentation may lead to synchroniza-

tion issues or resource bottlenecks. This is

particularly relevant in stages where depend-

encies between tasks are not entirely inde-

pendent, as observed in the testing phase

where parallel execution yielded only a mod-

erate improvement. These limitations under-

score the necessity for further empirical re-

search into the impact of caching granularity

and job segmentation strategies on CI/CD

performance across varying system architec-

tures [12].

From a practical standpoint, the adop-

tion of this methodology is particularly rele-

vant for projects involving complex multi-

frontend architectures. By employing mon-

orepos and automated CI/CD pipelines, de-

velopment teams can achieve streamlined

workflows, faster release cycles, and im-

proved scalability. The implications extend

beyond individual software projects, as these

principles can be adapted to broader software

engineering practices to enhance deployment

reliability and system maintainability. Future

research should focus on refining optimiza-

tion techniques, investigating alternative

caching policies, and exploring hybrid de-

ployment strategies that balance automation

with manual oversight to further enhance sys-

tem robustness [13].

Conclusions

This research has addressed the chal-

lenges of infrastructure deployment in multi-

frontend architectures by proposing an effi-

cient and scalable approach that integrates

reusable library builds, CI/CD pipelines. The

scientific problem of optimizing deployment

workflows in multi-frontend systems has been

effectively tackled through the introduction of

a structured monorepo-based development

strategy, enabling better management of

shared libraries and reducing code duplica-

tion. This represents an improvement over

existing methodologies, enhancing consisten-

cy across projects and facilitating more effi-

cient collaboration within development teams.

A key scientific contribution of this re-

search is the advancement of CI/CD pipeline

optimization techniques. The integration of

caching mechanisms at all stages of the pipe-

line and the parallelization of pipeline jobs

have been systematically implemented, lead-

ing to measurable reductions in build and de-

ployment times. This optimization has al-

lowed for improved resource utilization, re-

ISSN 2710 – 1673 Artificial Intelligence 2025 № 2

70

ducing operational costs and enhancing sys-

tem scalability.

The scientific novelty of these results

lies in the comprehensive integration of mon-

orepo practices including CI/CD pipeline op-

timizations in a unified approach. Unlike prior

research, which primarily focused on isolated

aspects of deployment efficiency, this study

provides a holistic methodology that ensures

both speed and reliability. The findings

demonstrate that parallelization and caching

strategies, when systematically applied, sig-

nificantly decrease build times and increase

deployment stability.

From a practical perspective, the pro-

posed methodology enables organizations to

streamline their development workflows, re-

duce operational overhead, and achieve faster,

more reliable deployments. The recommend-

ed framework can be adapted for various

large-scale projects, ensuring consistent and

efficient infrastructure management. Future

research should explore further refinements in

caching invalidation strategies, adaptive

CI/CD pipeline configurations, and hybrid

deployment models that balance automation

with manual oversight. Additionally, investi-

gating the impact of these optimizations on

security and compliance within multi-

frontend architectures will be essential for

broader industry adoption.

References

1. Deepak, R.D. and Swarnalatha, P., 2019. Con-

tinuous Integration-Continuous Security-Continuous

Deployment Pipeline Automation for Application

Software (CI-CS-CD). International Journal of Com-

puter Science and Software Engineering, 8(10),

pp.247-253.

2. Zampetti, F., Geremia, S., Bavota, G. and Di

Penta, M., 2021, September. CI/CD pipelines evolution

and restructuring: A qualitative and quantitative study.

In 2021 IEEE International Conference on Software

Maintenance and Evolution (ICSME) (pp. 471-482).

IEEE.

3. Singireddy, S.R., 2024, Analysis of continuous

integration/continuous deployment (ci/cd) pipelines for

automated cloud infrastructure management. Interna-

tional Journal of Core Engineering & Management, 7

(10), pp. 45-57.

4. Chittala, S., 2024. Enhancing developer produc-

tivity through automated ci/cd pipelines: a comprehen-

sive analysis. International journal of computer engi-

neering and technology (ijcet), 15(5), pp.882-891.

5. Slagsvold, A.F., 2023. Exploring CI/CD pipe-

lines for cloud infrastructure deployment: Can one in-

crease efficiency through amalgamation? Master's the-

sis. OsloMet – Oslo Metropolitan University, Depart-

ment of Computer Science, Faculty of Technology, Art

and Design.

6. Gashi, E., Hyseni, D., Shabani, I. and Çiço, B.,

2024, June. The advantages of Micro-Frontend archi-

tecture for developing web application. In 2024 13th

Mediterranean Conference on Embedded Computing

(MECO) (pp. 1-5). IEEE.

7. Ghaleb, T.A., Abduljalil, O. and Hassan, S.,

2024. CI/CD Configuration Practices in Open-Source

Android Apps: An Empirical Study. arXiv preprint

arXiv: 2411.06077.

8. Thatikonda, V.K., 2023. Beyond the buzz: A

journey through CI/CD principles and best practices.

European Journal of Theoretical and Applied Sciences,

1(5), pp. 334-340.

9. MUSTYALA, A., 2022. CI/CD Pipelines in

Kubernetes: Accelerating Software Development and

Deployment. EPH-International Journal of Science

And Engineering, 8(3), pp. 1-11.

10. Jani, Y., 2023. Implementing continuous inte-

gration and continuous deployment (ci/cd) in modern

software development. International Journal of Science

and Research (IJSR), 12(6), pp. 2984-2987.

11. Reddy, S., Catharine, A. and Shanthamalar, J.J.,

2024, May. Efficient Application Deployment: GitOps

for Faster and Secure CI/CD Cycles. In 2024 Interna-

tional Conference on Advances in Modern Age Tech-

nologies for Health and Engineering Science

(AMATHE) (pp. 1-7). IEEE.

12. Brousse, N., 2019, April. The issue of mon-

orepo and polyrepo in large enterprises. In Companion

proceedings of the 3rd international conference on the

art, science, and engineering of programming (pp. 1-4).

13. Shabu, S.J., Kumar, S.P., Pranav, R. and Re-

fonaa, S., 2023, April. Development of an E-

Commerce System using MEAN Stack with NX Mon-

orepo. In 2023 7th International Conference on Trends

in Electronics and Informatics (ICOEI) (pp. 58-62).

IEEE.

The article has been sent to the editors 29.04.25.

After processing 07.05.25.

Submitted for printing 30.06.25.

Copyright under license CCBY-SA4.0.

