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Abstract

Medicinal plants can be used as reducing agents in the preparation of metal nanoparticles by green synthesis 
because of the chemotherapeutic and anti-infectious properties of natural compounds. Therefore, this 
paper reports the green synthesis of silver and iron nanoparticles from leaf and flower extracts of Nerium 
oleander and their capacity as anticancer and antimicrobial agents. Nanoparticle manufacturing and 
structural characterization of silver and iron nanoparticles are reported. The formation of nanoparticles 
is characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy, UV-Vis and 
Fourier transform infrared (FTIR) spectroscopy. Nanoparticles formation was also investigated the surface 
charge, particle size, and distribution using zeta sizer analysis by DLS. Green synthesis of silver and iron 
nanoparticles using N. oleander showed different levels of selective cytotoxicity against K562 (human 
chronic myeloid leukemia cells) in low concentrations and were not cytotoxic to the HUVEC (human 
umbilical vein endothelial cells) in the same concentrations. Silver nanoparticles showed antibacterial 
activity against multidrug pathogens, while iron nanoparticles failed to show such activity. Results of the 
present research demonstrate the potential use of green synthesized nanoparticles in various biomedicine 
and pharmaceuticals fields in the future.
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Introduction

Nanoparticles (NPs) are synthesized generally 
by expensive chemical synthesis methods 
that require the use of toxic chemicals. Thus, 
using biomolecules (i.e., bacteria, fungi, or 
plants) for NPs synthesis became a common 
method in past years that is safe, low-cost, 
and ecofriendly. Different plant extracts can 
be act as safe natural capping, reducing, and 
stabilizing agents without being a source of 
thermal or chemical hazards (Fedlheim & Foss, 
2001; Arya, 2010). Nanoparticles formation 
can be a glimmer of hope for the production 
of drugs that can be used against infectious 
diseases and cancer.

Nerium oleander L. (Apocynaceae), grown in 
wetlands of the Mediterranean region, can be 
seen wild as well cultivated as an ornamental 
plant in parks and gardens. It is an evergreen 
shrub with pink and white flowers (Baytop, 
1999). The plant grows up to 2–6  m tall. The 
leaves are in pairs or whorls of three, thick 
and leathery, dark-green, narrowly lanceolate, 
5–21  cm long, and with an entire margin. 
Flowers develop in clusters at the end of 
branches, the diameter of each flower range 
about 2.5–5 cm with a deeply 5-lobed fringed 
corolla around the central corolla tube. The 
fruit is a long narrow capsule 5–23  cm long, 
which splits open at maturity to release 
numerous downy seeds (Baytop, 1999; Kiran & 
Prasad, 2014).

The leaves and flowers of N. oleander used 
in folkloric medicine among people in Turkey 
for rheumatism and urticaria (Bulut & Tuzlaci, 
2013; Sağıroğlu et al., 2013). The latex of plant 
used for eczema (Gürdal & Kültür, 2013). Over 
the world, different parts of this plant are 
used traditionally for the treatment of various 
human ailments, including dermatitis, eczema, 
herpes, skin cancer, asthma, epilepsy, malaria, 
and tumors (Santhi, 2011). Nerium oleander is 
considered one of the most poisonous plants 
in the world which leads annually to the 
death of many people and animals (Rubini 
et al., 2019). This toxicity is due to toxins like 
oleandrin, oleandrigenin, and nerine, which 
belong to cardiac glycosides (Al-Badrani et al., 
2008; Zibbu & Batra, 2010). In addition, the 
plant contains terpenoids and steroids (Santhi, 
2011).

Despite the toxicity of plant, different 
scientific studies conducted on various parts of 

N. oleander showed its antibacterial (Chauhan 
et al., 2017), hepatoprotective and antioxidant 
(Singhal & Gupta, 2012), antiproliferative 
(Wong et al., 2011), antidiabetic (Sikarwar et al., 
2009), anti-inflammatory (Erdemoglu et  al., 
2003), and anticancer (Pathak et  al., 2000; 
Turan et  al., 2006) activities. This study was 
aimed to synthesize Ag and Fe nanoparticles 
using leaves and flowers of N.  oleander and 
then evaluate its antibacterial and anticancer 
activity against human chronic myeloid 
leukemia cell line.

Material and methods

Chemicals and reagents
An anhydrous FeCl3 with 98 % purity (Merck, 
Germany), AgNO3 with 99.5 % purity (Sigma-
Aldrich, USA) were used as metal sources. 
Dulbecco’s modified Eagle medium (DMEM) 
and fetal bovine serum (FBS) (Gibco, UK) 
and MTT (3-[4,5-dimethylthiazol-2-yl]-2,4-
diphenyltetrazolium bromide) were applied. 
All reagents used were of analytical grades.

Plant material
Nerium oleander leaves and flowers were 
collected from Servetiye Village, Sakarya 
Province, Turkey in June 2020. Plant was 
identified at the Herbarium of Faculty of 
Pharmacy, Istanbul University (voucher 
number – ISTE-117270).

Preparation of extracts
Collected dried leaves and flowers of 
N.  oleander were washed thoroughly (three 
times) in distilled water and homogenized 
using a mortar and pestle. The shade dried 
leaves and flowers of N.  oleander were 
powdered and then 10  g of both leaves and 
flowers were suspended in 100 ml of distilled 
water. Mixtures stirred for 20  min at 60 °C, 
then allowed to cool at room temperature, 
and then filtered using a Whatman no. 42 
filter paper and centrifuged at × 2000  rpm 
for 20  min (Byrne et  al., 2016). The extracts 
prepared were then transferred to a sterile 
container. The extracts were stored at 4 °C and 
freshly used.

Preliminary phytochemicals screening
Nerium oleander extracts were subjected 
to qualitative screening for the presence 
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of various phytochemicals using standard 
procedures (Tyler, 1993; Harborne, 1998).

Preparation of Nerium oleander silver 
nanoparticles (NO-AgNPs)
2.5 mL from the leaf (L) and flower (F) extract 
solutions were taken and mixed with 1  mM 
AgNO3 in 47.5  mL deionized water and a 
solution of 50 mL in amount was obtained. The 
pH values of crude leaf and flower extracts, pH 
values of samples just after mixing with AgNO3 
metal source and after 24  h were measured 
(Table  1). The pH of the prepared AgNO3 
solution was 5.28.

Preparation of Nerium oleander iron 
nanoparticles (NO-FeNPs)
Same sample preparation steps were followed 
for iron nanoparticles. Briefly, 5  mL from the 
leaf and flower extract solutions was taken 
and mixed with 0.2 M FeCl3 in 45 mL deionized 
water and a solution of 50 mL in amount was 
obtained. The pH values of crude leaf and 
flower extracts, pH values of samples just 
after mixing with FeCl3 and after 24  h were 
measured (Table  1). The pH of the prepared 
FeCl3 solution was 2.25.

Characterization of Nerium oleander AgNPs 
and FeNPs
The synthesized nanoparticles were 
characterized through a UV-Vis 
spectrophotometer Shimadzu 2600. The 
reduction of nanoparticles was monitored by 
UV-spectrophotometer range of absorbance 
from 250–480 nm. The crystalline structures 
of the green-synthesized N. oleander (AgNP) 
and (FeNP) were examined by XRD Rigaku 
Flex 600 (600 models, with λ = 1.5406 and 
with a step size of 0.02  Å) at speed of 3 ° 
min-1. Particle size and zeta potential were 
measured by Malvern Nano ZS. Morphology 
and elemental metal mapping were recorded 

using a high-resolution scanning electron 
microscope (SEM, Carl Zeiss Ultra Plus 
Gemini Fesem) were used to investigate 2D 
surface morphologies. The composition 
analyses of the samples were performed by 
EDX (EDX spectrometer attached to SEM). 
Fourier transformed infrared (FTIR) analyses 
were carried out on a liquid sample with 
Bruker Alpha FTIR spectrometer in the range 
from 4000–500 cm-1. The device had a DTGS 
detector and ten scans were conducted for 
each spectrum with resolution four.

Cytotoxic assay
K562 (human chronic myeloid leukemia 
cells) and HUVEC (human umbilical vein 
endothelial cells) cell lines were obtained 
from American Type Culture Collection 
(ATCC). Cells were cultured in DMEM with 
10 % FBS and 1 % penicillin/streptomycin in 
a 5 % CO2 humidified incubator, maintained 
at 37 °C. First, N. oleander nanoparticles were 
sterilized and diluted with DMEM to prepare 
four different dilutions which are 1, 1/2, 1/5, 
and 1/10. MTT assays were performed in 
96-well plates. The plant extract and metal 
concentrations found in these nanoparticle 
dilutions are also shown in Table  2. K562 
cells (about 105 cells per well) were seeded 
and incubated for 72  h. Then, supernatants 
were removed, and 10 µL (MTT – 5 mg/mL) 
solution was added to each well. Following 
incubation at 37 °C for 3.5 h and kept dark in 
a humidified atmosphere at 5 % CO2 in the air. 
Subsequently, the supernatant was discarded, 
and the precipitated formazan was dissolved 
in dimethyl sulfoxide (100  µL per well). The 
optical density of the solution was evaluated 
using a microplate spectrophotometer at 
a wavelength of 570  nm (Mosmann, 1983). 
GraphPad Prism was used to calculate cell 
viability and IC50 values.

Formation Extract pH Extract+Metal NO3 (0h) Extract+metal NO3 (24h)

NOL-AgNPs 6.78 6.56 4.21

NOF-AgNPs 5.42 6.12 3.74

NOL-FeNPs 6.78 2.32 2.17

NOF-FeNPs 5.42 2.33 2.25

Table 1. pH values of the NO-AgNPs and NO-FeNPs. The pH values were measured on leaf extract, after 
mixing with a metal salt, and after 24 hours of mixing.
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Antibacterial activity
The antibacterial potential was tested 
against 14 different human pathogenic 
bacteria including three Gram-negative 
bacteria (Escherichia coli ATCC 35218, clinical 
isolates of carbapenem-resistant Klebsiella 
pneumoniae (CRKpn) and carbapenem-
resistant E.  coli (CREc)) and 11 Gram-positive 
bacteria (Staphylococcus aureus ATCC 29213 
and ATCC 25923, inducible-clindamycin-
resistant S.  aureus (ICRSa) BAA976-1, hetero-
resistant S.  aureus (hVISA), clinical isolates 
of methicillin-resistant S.  aureus (MRSA), 
methicillin-resistant coagulase-negative 
S.  aureus (MR-CoNS:2), vancomycin-resistant 
Enterococcus faecium (VREf), E.  faecalis ATCC 
29212 and 51279, and vancomycin susceptible 
E. faecalis (VSEf)). The species were identified 
by using the Vitek  2 system (bioMerieux 
Vitek Inc.).

Antibacterial activity was detected by 
minimum inhibition concentrations (MICs), 
which were determined by serial microdilution 
method (MIC ranges – 2.5–0.0012  mg/L 
for NOL-AgNPs and NOF-AgNPs, and 5.0–
0.0024  mM for AgNO3) following CLSI (2018). 
Briefly, 100  μL of each concentration were 
added to a well (96-well microplate) containing 
100  μL of Mueller Hinton Broth (MHB) and 
10  μL of inoculum (0.5 McFarland; 1.5 × 108 
colony forming units/mL). Plates were then 
incubated at 37 °C for 24  h. Bacterial growth 
was determined by absorbance at 600 nm.

List of applied abbreviations
ATCC – American Type Culture Collection
CREc – carbapenem-resistant Escherichia coli
CRKpn – carbapenem-resistant Klebsiella 

pneumoniae

DLS – dynamic light scattering
DMEM – Dulbecco’s modified Eagle medium
FBS – fetal bovine serum
FTIR – Fourier transform infrared
HUVEC – human umbilical vein endothelial 

cells
hVISA – heteroresistant Staphylococcus aureus
IC50 – half maximal inhibitory concentration
ICRSa – inducible clindamycin-resistant 

S. aureus
K562 – human chronic myeloid leukemia 

cells
MIC – minimum inhibition concentrations
MR-CoNS:2 – methicillin-resistant coagulase-

negative S. aureus
MRSA – methicillin-resistant S. aureus
NO – Nerium oleander
NOF – N. oleander flowers extract
NOL – N. oleander leaves extract
NPs – nanoparticles
SEM – scanning electron microscopy
UV-Vis – Uv-Vis spectroscopy
VREf – vancomycin-resistant Enterococcus 

faecalis
VSEf – vancomycin-susceptible E. faecalis
XRD – X-ray spectroscopy

Results and discussion

Preliminary phytochemicals screening
Qualitative phytochemical analysis of 
N.  oleander extracts showed the presence 
of different active components in the 
aqueous extracts (Table  3). Previous works 
on N.  oleander revealed the presence of 
alkaloids, flavonoids, glycosides, tannins, 
terpenoids, and saponins in this plant 

Dilutions NOF-Ag NOL-Ag NOF-Fe NOL-Fe

1 500 ug/mL 500 ug/mL 1000 ug/mL 1000 ug/mL

20 uM/mL 20 uM/mL 1 mM/mL 1 mM/mL

1/2 250 ug/mL 250 ug/mL 500 ug/mL 500 ug/mL

10 uM/mL 10 uM/mL 0.5 mM/mL 0.5 mM/mL

1/5 100 ug/mL 100 ug/mL 200 ug/mL 200 ug/mL

4 uM/mL 4 uM/mL 0.02 mM/mL 0.02 mM/mL

1/10 50 ug/mL 50 ug/mL 100 ug/mL 100 ug/mL

2 uM/mL 2 uM/mL 0.01 mM/mL 0.01 mM/mL

Table 2. The nanoparticle dilutions used in cytotoxicity tests.



40 Plant Introduction • 91/92

S. Shawuti,  C. Bairam,  A. Beyatlı,  İ. A. Kariper,  I. N. Korkut,  Z. Aktaş,  M. O. Öncül et al.

(Chaudhary et  al., 2015; Saranya et  al., 2017). 
The existence of these constituents can be 
the main reason behind the biological activity.

Synthesis of Fe/Ag NPs by visual inspection
After 24  h of reaction, the reaction solution 
color changed from light to dark color, which 
can be seen in Fig.  1. The reduction of Fe3+ 

ions exhibits a dark color due to the excitation 
of surface plasmon vibration in a metal 
nanoparticle. Similarly, in the reduction of 
Ag+ ions, the solution color change from light 
pink to light yellow. Visual photo images of the 
NOF-NPs are not reported due to similarity in 
colors with NOL-NPs.

SEM and DLS measurement

The scanning electron microscopy (SEM) 
technique was used to evaluate the morphology 
and size of the green synthesized NOL-AgNPs. 
Fig.  2 represents the surface images and 
DLS size distribution of green synthesized 
nanoparticles (NO-AgNPs). Specifically, the 
nanoparticles appear aggregated and spread 
uniform shapes. Iron nanoparticles seem 
also spherical with 70  nm average diameters. 
In another study, silver nanoparticles from 
N. oleander flowers were synthesized (Bharathi 
& Shanthi, 2017). Silver particles of about 10 μm 
by SEM analysis are very small compared to 
ours, but we do not know their effectiveness 
as authors did not repot their bioactivity. 
Besides, such small particles are not suitable 
for clinical use as they will be much easier to 
eliminate by the immune system (Bharathi & 
Shanthi, 2017).

The zeta potential is an indicator of 
surface charge potential, which is an 
important parameter for understanding 
the stability of nanoparticles in aqueous 
suspensions. Table  4 summarizes DLS size 
distribution measurements carried out on 
green synthesized NPs. For the NOF-FeNPs, 
the average particle size was 1872  nm with a 
polydispersity index of 0.69 (zeta potential 
– +5.3  mV). On the other hand, particle 
sizes of NOF-AgNPs were found 76  nm size 
with relatively homogenous distribution 
(polydispersity index – 0.266, zeta potential 
– +8.1  mV). Secondly, For the NOL-FeNPs, 
the average particle size was 609  nm with a 
polydispersity index of 0.54 (zeta potential 
– +7.4  mV). On the other hand, particle 
sizes of NOL-AgNPs were found 93  nm size 
with relatively homogenous distribution 
(polydispersity index – 0.364, zeta potential 
– +8.8  mV). No aggregation of the colloidal 
was observed for several months. Therefore, 
it may suggest that all synthesized NOF-NPs 
and NOL-NPs were highly stable when stored 
at the required temperature. It was also 
observed that produced NPs had positively 
charged on their surface with zeta potential 
values above 5 mV.

UV spectroscopy
The characterization of silver and iron 
nanoparticles by UV-spectrophotometer from 
the range of 350–900  nm was performed to 
monitor the reduction of metal ions and their 

Phytochemicals Leaves Flowers

Alkaloids + +

Flavonoids – +

Saponins + +

Terpenoids – –

Steroids – –

Tannins + +

Glycosides + +

Table 3. Preliminary phytochemical screening of 
leaves and flowers of Nerium oleander extract (plus 
and minus indicate the presence and absence of 
the chemicals, respectively).

Figure 1. Synthesis of Ag and Fe nanoparticles 
exhibit color change. First row – solutions fabricated 
with leaf extracts (1 – NOL-Ag; 2 – NOL-Ag after 24 h; 
3 – crude NOL extract; 4 – NOL-Fe; 5 – NOL-Fe after 
24 h). Second row – solutions fabricated with flower 
extracts (6 – NOF-Ag; 7 NOF-Ag after 24 h; 8 – crude 
NOF extract; 9 – NOF-Fe; 10 – NOF-Fe after 24 h).
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Figure 2. SEM image and DLS size distribution of Nerium oleander related NPs. The SEM images were 
obtained on dried powder samples.
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stability. The broad absorption peaks in the 
range from 326 to 432  nm were represented 
in Fig.  3. UV-Vis spectra were performed for 
NO-AgNPs and NO-FeNPs fabricated with leaf 
and flower extracts. To observe any shift, both 
crude NOL and NOF were also investigated. 
The absorption peaks of a plant extract with an 
organic mixture were not able to record since 
they are belonging to C-C and C-H electronic 
transitions (below 250  nm wavelength). The 
absorption peaks for NOF at 326 and 384 nm 
wavelengths belong to the n-π* and π-π* 
transitions (Wang et  al., 2014). It is because 
this plant extract contains carbon-carbon 
double bonds, nitrogen-oxygen bonds, or 
cyclic aromatic structures. This absorption 
peak was only seen at 366 nm for NOL. While 
Ag nanoparticle synthesized with NOF gives 
an absorption peak at 432  nm as expected. 
The synthesized Fe NP continued to interact 
with functional groups in the plant extract, 
and while a specific 435 nm absorption peak 
was observed in the region belonging to a 
typical metal nanoparticle, an absorption 
peak appeared at 377 nm due to its interaction 
with functional groups. Another possible 

explanation for this phenomenon is that 
the Fe nanoparticle can be in Fe2O3 or Fe3O4 
structure types (Wang et  al., 2014). UV-Vis 
spectra with the NOL nanoparticles showed 
much clearer absorption peaks of metal 
nanoparticles compared to a case in NOF. 
The Ag NPs absorption peak was observed at 
437  nm whereas the Fe NPs was detected at 
408 nm.

XRD analysis
The crystalline structures of the green-
synthesized NOL-FeNPs, NOF-FeNPs NOF-
AgNPs, and NOF-AgNPs were furtherly 
examined by XRD analysis. The obtained 
patterns were demonstrated in Fig.  4 with 
labeled indices together with two theta values. 
The obtained diffraction peaks at 2θ values 
of 23.5 °, 26.6 °, 35.8 °, 39.1 °, and 46.2 ° were 
assigned to (012), (120), (110), (113) and (202) 
lattice planes, respectively. Those sets of lattice 
planes were identical to those reported for 
standard iron metal. For NOL-FeNPs, the iron 
nanoparticles are FCC and crystalline (cubic 
crystalline structure, a = 4.07100 Å; JCPDS files 
no. 84-0713 and 04-0783). NO-AgNPs are FCC 

Formation Average diameter (nm) Polydispersity index Zeta potential (mV ± SD)

NOF-FeNPs 130.0 0.690 +5.3 ± 9.3

NOF-AgNPs 76.1 0.266 +8.1 ± 0.3

NOL-FeNPs 39.1 0.251 +7.4 ± 0.4

NOL-AgNPs 92.9 0.364 +8.8 ± 0.8

Table 4. The DLS, polydispersity index, and zeta potential of NO-NPs.

Figure 3. UV-Vis of NOL and NOF extracts and NO-FeNPs and NO-AgNPs.
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Figure 4. XRD graphs of NOL-Fe, NOF-Fe, NOL-Ag, and NOF-Ag.

and crystalline (cubic crystalline structure, 
a = 4.07100 Å; JCPDS files no. 84-0713 and 04-
0783). The obtained diffraction peaks at 2θ 
values of 26.50 °, 36.78 °, and 38.40 ° were 
assigned to (220), (111), and (111) lattice planes, 
respectively. Those sets of lattice planes were 
identical to those reported for standard silver 
metal (JCPDS files no. 84-0713 and 04-0783).

FTIR analysis
FTIR spectra of NOF and NOF-NPs are 
presented in Fig.  5. The absorption band 
at 3300  cm-1 was mainly attributed to 
OH vibration. The absorption peaks were 
assigned to the stretching vibration of C=C 
(1645 cm-1). Compared to NOF extract’s FTIR, 
the disappearance of the most functional 
group is due to the successful reduction 
of metal ions. Three main bands were 
demonstrated in the FTIR spectrum of both 
NOF-FeNPs and NOF-AgNPs The presence of 

OH bonds and C=O functional groups on the 
NOF-AgNPs and NOF-AgNPs were presented 
at 3244 cm-1 and 1633 cm-1, respectively. It was 
reported in the literature that FeNPs exhibit 
a characteristic stretching Fe-O vibration 
peak at 576 cm-1 (Wang et al., 2014). For NOF-
AgNPs, stretching vibrations at 631 cm-1 can 
also be attributed to the reduction of Ag+ to 
Ag. In similar green synthesis studies also 
reported observation of reduction of Ag+ to 
Ag peak at around 538  cm-1 (Erdogan et  al., 
2019). The FTIR spectrums of NOL-Ag and 
NOL-Fe are similar to the FTIR spectrums of 
NOF-Ag and NOF-Fe. Therefore, there was 
no need to reinterpret the NOL-Ag and NOL-
Fe spectrums.

Cytotoxicity assay
NOL-AgNPs are effective in the K562 cancer 
cell line (IC50 – 2.3 uM). However, NOF-AgNPs 
are variable (IC50 – 10  uM). Similarly, NOF-
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FeNPs (IC50 – 7  uM) are more variable than 
the NOL-FeNPs (IC50 – 48  uM). Our results 
suggested that NOL-Ag, NOF-Ag, NOF-Fe, 
and NOL-Fe are effective on the K562 cell 
line in low concentrations. Furthermore, we 
may conclude that NOF-Ag and NOF-Fe NPs 
have a cytotoxic effect on the K562 cell line in 
similar concentrations. However, NOL-Fe was 
cytotoxic at concentrations approximately 20 
times higher than NOL-Ag (Fig. 6).

In other studies, N. oleander conjugated 
gold nanoparticles were synthesized to 
investigate in vitro anticancer activity 
on MCF-7 cell lines. IC50 values of these 
nanoparticles were found between 74.04 and 
130.87 μg/mL. These values are much higher 
than ours (Barai et al., 2018).

HUVECs were used in this study as a 
control. Ag and Fe NPs were not effective 
on HUVEC cells at the same concentrations. 
NOL-Ag (IC50 – 100  uM), NOF-Ag (IC50 – 
100 uM), NOF-Fe (IC50 – 390 uM), and NOL-Fe 
(IC50 – 430 uM). The concentrations of Ag and 
Fe NPs, which are cytotoxic on HUVEC cells, 
are more than ten-fold higher compared 
to K562 cells. These results show that 

Figure 5. FTIR of NOL-Ag, NOL-Fe, NOF-Ag, NOF-Fe, 
and crude NOL and NOF extracts.

nanoparticles are harmless to normal cells 
when used at low doses, which are cytotoxic 
to leukemia cells (Fig. 6).

Antibacterial activity
Based on the results in Table  4, the tested 
bacteria were able to be killed at a low 
concentration of AgNO3 (< 0.00976 mM). The 
green-synthesized NOL-Ag and NOF-Ag were 
able to inhibit bacteria including multidrug 
pathogens. As showed in Table  5, the MIC 
(mg/mL | mg/mM) values of NOL-Ag and 
NOF-Ag against Gram-negative bacteria were 
ranged from 0.019 | 0.039 to 0.3125 | 0.625 
and 0.078 | 0.156, respectively. While the 
MIC (mg/mL | mg/mM) values of NOL-Ag 
and NOF-Ag against Gram-positive bacteria 
ranged from 0.078 | 0.156 to 0.3125 | 0.625 and 
0.078 | 0.156 to 0.625 | 1.25, respectively. There 
is no significant difference observed between 
Gram-negative and Gram-positive bacteria 
including multi-resistant bacteria. The result 
of Fe-NPs was not given because the results 
were not effective.

Plant-derived essential oils and extracts 
have an antimicrobial effect with low 
toxicity and can be recommended as 
potential natural preservatives. According 
to Ríos & Recio (2005), extracts can be 
classified as significant (MIC < 100  mg/L), 
moderate (100 < MIC ≤ 512  mg/L), or 
weak (MIC > 512  mg/L) depending on 
their respective activities against the 
corresponding pathogens. An important 
advantage for the used metallic ions is that 
silver ions have relatively low toxicity to 
human cells while adversely affecting bacteria 
and fungi by different mechanisms, including 
binding to the thiol groups of protein and 
denaturing them, programmed cell death 
(apoptosis), and causing the DNA to be in the 
condensed form (Lansdown, 2006; Mohamed 
et al., 2020).

Several studies documented the green 
synthesis of AgNPs using plant extracts. 
Also, antimicrobial effects of AgNPs against 
multidrug-resistant bacteria including 
E.  coli, P.  aeruginosa, and MRSA have been 
studied by many researchers (Rai et al., 2012; 
Paredes et  al., 2014; Malik et  al., 2015; Kar 
et al., 2016; Chauhan et al., 2017; Nagababu & 
Rao, 2017).
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Figure 6. Cytotoxic activity of synthesized NOF-Ag, NOL-Ag, and NOF-Fe, NOL-Fe NPs against K562 and 
HUVEC cell lines.

Conclusions

Synthesized NPs have been successfully 
implemented in the fields of medicine 
and environmental remediation. The 
green synthesis of silver NPs was not only 
demonstrated by visual inspection and but also 
by performing systematic spectral techniques 
(UV-Vis absorption, FTIR spectroscopy, 

and SEM analysis). FTIR results proved that 
bioactive compounds responsible for silver 
bio-reduction could be proteins and flavonoids 
presumed to act as reducing and capping 
agents for the silver and iron nanoparticles. 
This research supports the idea that the 
total pH of the solution should be considered 
when making a medical evaluation. The SEM 
particle size for both NPs matches with DLS 
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No Bacteria NOL-Ag NP
(mg/mL | mg/mM)

AgNO3
(mM)

NOF-AgNP
(mg/mL | mg/mM)

1 E. coli 0.313 | 0.625 < 0.00976 0.078 | 0.156

2 CRKpn 0.078 | 0.156 < 0.00976 0.078 | 0.156

3 CREc 0.019 | 0.039 < 0.00976 0.078 | 0.156

4 S. aureus (ATCC 29213) 0.156 | 0.313 < 0.00976 0.625 | 1.250

5 S. aureus (ATCC 25923) 0.156 | 0.313 < 0.00976 0.313 | 0.625

6 ICRSa 0.313 | 0.625 < 0.00976 0.313 | 0.625

7 hVISA 0.313 | 0.625 < 0.00976 0.313 | 0.625

8 MRSA 0.313 | 0.625 < 0.00976 0.313 | 0.625

9 MR-CoNS 0.039 | 0.078 < 0.00976 0.078 | 0.156

10 MR-CoNS 0.039 | 0.078 < 0.00976 0.078 | 0.156

11 VREf 0.156 | 0.313 < 0.00976 0.156 | 0.313

12 E. faecalis (ATCC 51279) 0.078 | 0.156 < 0.00976 0.156 | 0.313

13 VSEf 0.039 | 0.078 < 0.00976 0.078 | 0.156

14 E. faecalis (ATCC 29212) 0.3125 | 0.625 < 0.00976 0.313 | 0.625

Table 5. The MICs of AgNO3, NOL-AgNPs, and NOF-AgNPs against Gram-negative and Gram-positive 
bacteria.

Note. CRKpn – clinical isolates of carbapenem-resistant Klebsiella pneumoniae; CREc – carbapenem-resistant 
Escherichia coli; ICRSa – inducible clindamycin-resistant Staphylococcus aureus BAA976-1; hVISA – hetero-
resistant S. aureus; MRSA – clinical isolates of methicillin-resistant S. aureus; MR-CoNS:2  –  methicillin-
resistant coagulase-negative S. aureus; VREf – vancomycin-resistant Enterococcus faecium; VSEf – vancomycin-
susceptible E. faecalis.

analysis, which was around 100  nm. The 
green synthesized NO-AgNPs and NO-FeNPs 
are cytotoxic to the human chronic myeloid 
leukemia cells in low concentrations and not 
cytotoxic to the HUVEC cell line in the same 
concentrations. The tested bacteria were able 
to be killed at a low concentration of AgNO3 
(< 0.00976  mM). The green synthesized NOL-
AgNPs and NOF-AgNPs were able to inhibit 
bacteria including multidrug pathogens. We 
can hypothesize here that green synthesis 
AgNPs can be decreased the cytotoxic effects 
of AgNO3 in vivo and the possible use of high 
doses of AgNO3 as antimicrobial drugs.
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Зелений синтез та характеристика наночастинок срібла та заліза отриманих 
з використанням екстрактів Nerium oleander та їх антибактеріальна та 
протипухлинна активність
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Лікарські рослини можуть використовуватися як відновники при одержанні наночастинок металів 
шляхом зеленого синтезу. Отримані наночастинки характеризуються хіміотерапевтичним та 
протиінфекційним властивостям природних сполук. Зокрема, у цій праці йдеться про зелений 
синтез наночастинок срібла та заліза з використанням екстрактів листя та квіток Nerium oleander, а 
також аналізується їх властивості як протипухлинних та протимікробних засобів. Повідомляється 
про особливості виготовлення наночастинок загалом та структурну характеристику наночастинок 
срібла та заліза зокрема. Формування наночастинок досліджено за допомогою сканувальної 
електронної мікроскопії та енергодисперсійної рентгенівської спектроскопії, UV-Vis та інфрачервоної 
спектроскопії з перетворенням Фур’є (FTIR). Окрім того, також було досліджено поверхневим заряд, 
розміри і розподілом наночастинок за допомогою DLS аналізу. Зелений синтез наночастинок срібла 
та заліза з використанням N. oleander показав різні рівні селективної цитотоксичності щодо K562 
(клітини хронічної мієлоїдної лейкемії людини) у низьких концентраціях і не був цитотоксичним для 
HUVEC (ендотеліальні клітини пупкової вени людини) у тих же концентраціях. Наночастинки срібла 
виявляли антибактеріальну активність по відношенню до мультирезистентних патогенів, тоді як 
наночастинки заліза не виявляли такої активності. Результати цього дослідження підтверджують 
потенціал використання наночастинок зеленого синтезу у різних сферах біомедицини та 
фармацевтики в майбутньому.

Ключові слова: Nerium oleander, зелений синтез, Ag-наночастинки, Fe-наночастинки, клітинна цитотоксичність, 
антибактеріальний ефект


