
Usage the operating systems multitasking

УДК 004.9
USAGE THE OPERATING SYSTEMS MULTITASKING FOR

ORGANIZATION MULTI-ACCESS TO COMPLEX SYSTEMS MODELING
COMPUTING SYSTEM

Viacheslav Zosimov

Mykolayiv V.O. Sukhomlynsky National University, 54030,

 Ukraine, Mykolayiv, Nikolska str., 24

zosimovvv@bk.ru

Описана організація мультидоступу до програмного комплексу моделювання складних
систем. Використання багатозадачних операційних систем дозволяє запускати на
багатопроцесорних (багатоядерних) комп'ютерах паралельне обчислення декількох задач,
шляхом виділення для обчислення кожної задачі окремого ядра процесора..
Ключові слова: Індуктивне моделювання, МГУА, мульти-доступ, багатозадачність,
моделювання складних систем

The paper describes multi-access method organization to computing system of complex systems
modeling. Operating system multitasking allows you to run on multiprocessor (multi-core)
computer multiple tasks in parallel by assignment a separate processor core for each task
Keywords: Inductive modeling, GMDH, multi-access, multitasking, complex systems modeling.

Описана организация мультидоступа к программному комплексу моделирования сложных
систем. Использование многозадачных операционных систем позволяет запускать на
многопроцессорных (многоядерных) компьютерах параллельное вычисление нескольких
задач, путем выделения для вычисления каждой задачи отдельного ядра процессора.
Ключевые слова: Индуктивное моделирование, МГУА, мульти-доступ, многозадачность,
моделирования сложных систем.

 Introduction

 A growing amount of research are carried out in the area of distributed large-
scale (global) calculations. Are developed middleware, libraries, and tools that allows
to share geographically distributed, but combined resources as a single powerful
platform for parallel and distributed applications. Such an approach to computing was
formerly known under several names, such as metacomputing, scalable and global
computations.

Talking about parallel computing in the article, there are two main options for
parallelization:

1) by tasks - flows performs different tasks;
2) by data - flows accomplish the same task, but each with its own part of shared

data;
This article describes the first option - parallelization by tasks.

Індуктивне моделювання складних систем, випуск 5, 2013 146

 Viacheslav Zosimov

 1. Parallelization by tasks

 Consideration of this issue is easier to start with the basic set of tasks to be
performed by the program [1, 2]:

1) Operations with the interface (rendering widgets, to change size and window
transfer responses, buttons pressing responses, changing tabs, opening and choice in
the drop-down lists, etc.).

2) Operations with the repository (create, delete, modify, retrieve a list of the
various project files, reading and decoding information from the calculations and
results files);

3) schedule construction;
4) direct calculations.
It is easy to note that these tasks are quite different by the execution time.

Calculations - the most time-consuming task and can be performed by several orders
longer than the other actions.

However, during a sequential execution the "fast" tasks will have to wait for the
end of the "slow". As a result, with calculating start user will lose the opportunity to
see other results, compare their schedules, and generally interface will hang. The
problem is compounded in multi-user environment, if the waiting time due to its
actions still possible to bear, the constant fading due the actions of other people is not
acceptable. To solve this problem it is necessary to provide the ability to perform all
actions in different threads.

The most convenient in this case is the usage of client-server model.

 2. Client-server model

 In this model (Fig. 1), the interface is engaged in client side, which sends
requests to the server for receiving data from it. The server receives the request and
every request starts a separate thread that stops the existence after receiving the
results and response client

.

Fig. 1. Client-server model [3].

Індуктивне моделювання складних систем, випуск 5, 2013 147

Usage the operating systems multitasking

 There are many options for implementing client-server model. For a software
implementation, was chosen the most universal and popular option - a web-based
application. Main advantages of this option are:

1) on the client side there is no need to install any software, all you need - a web
browser;

2) the almost total independence from the operating system and customer
equipment and a weak dependence on the server side;

3) on the server side there is no need for self-scheduling requests and generation
flow is dealt with by a web server;

4) natural multi-user environment;
5) the scaling and balancing is done by means of administration without changes in

the source code.
 Let us stop in detail on the last point. In conditions of low hardware resources

the server and client can be run on the same computer, including the case of only one
processor core. The operating system will switch tasks on its own and, though it is
not received advantage by the time of execution, but from the user interface point of
view it will be multi-tasking. During extending hardware base server can run on a
separate computer, and if it has multiple cores there will be obtained acceleration, as
several calculations can be performed simultaneously, each on its core.

 At this stage is necessary to consider the number of cores and to maximize the
efficiency not to run at the same time more calculations than the cores in the system,
and even better to leave one core to perform short-term demands and operating
system tasks. If there is the ability to dedicate for the server, several computers, this
is making under the scheme backend-frontend. (Fig. 2)

Fig. 2. Backend-frontend scheme [4].

Індуктивне моделювання складних систем, випуск 5, 2013 148

 Viacheslav Zosimov

 Most of the computers is backend and does most of the work on each of them
is running a standard web server and the program. A smaller part of the computers
are frontend. It runs the web server in the mode of reverse-proxy. Frontend accepts
user requests, distributes them to the production web server, receives and caches the
response from them, sends results to users.
 In order to ensure transparency at the file level is using a network storage that
is connected to all backend servers. This scheme allows almost linearly increase the
computing power of the cluster, as well provides continuous work in the case of
failure of some backend servers. Importantly, to achieve scalability there is no need
to make any changes to the source code.
 The use of this type of parallelization allows to organize multi-access to the
program. This is very useful for teaching students. With multi-access to the program,
they can simultaneously solve the same problem, each with its own settings of input
data, or different tasks.
 As can be seen, parallelization by tasks has many advantages, but there is one
serious drawback. Despite the ability to significantly accelerate the execution of
multiple calculations at the same time, it is completely absent the opportunity to
speed up a single calculation. No matter how many processor cores are available, a
separate calculation will be able to use only one core. To solve this problem, is
needed a different version of parallelization - parallelization by data [5]. This will
significantly accelerate the solution of a complex task by dividing the computing
process into multiple threads, each of which will run in parallel on different processor
cores.

Once it is necessary to note that this type of parallelization is not available for
all tasks. Moreover, we can not parallelize the entire task.

Each complex task will be split into three sections:
1) initial section in which there is a data separation and splitting

by groups;
2) parallel execution section, where computing threads work independently on

separate processor cores;
3) the final section, where the results of the individual streams are collected

together, analyzed, followed either by the task completion, or return to the first
section.

It is necessary to consider that the computing threads creation and data
exchange with them, requires CPU time too, and if these costs are comparable with
running time of computing the flow, then it is possible to obtain significant slowdown
instead of acceleration.

Acceleration is possible only in case of separate cores, and if possible the
separate memory subsystem. If the number of computing threads exceeds the number
of cores, then again we obtain slowing rather than accelerating.

Індуктивне моделювання складних систем, випуск 5, 2013 149

Usage the operating systems multitasking

 3. Conclusion
 The method of parallelization computing process by tasks can significantly
enhance the software package ability, that implements the generalized iterative
algorithm GMDH work. This is possible through the implementation of multiaccess
to the program, allocating for each calculating task the separate processor core.

 Application of the parallelization by tasks along with parallelization by data
allows to achieve maximum efficiency of software complex, depending on the
available computing resources and tasks.

 References
1. Volodymyr Stepashko, Oleksandra Bulgakova, Viacheslav Zosimov. Modified

multilayered GMDH algorithm with combinatorial optimization of partial
descriptions complexity. – Proceedings of the International Workshop on
Inductive Modelling IWIM-2010, Ukraine. – Yevpatoria, 2010.

2. Zosimov V., Stepashko V., Bulgakova O. Enhanced technology of efficient
Internet retrieval for relevant information using inductive processing of search
results. / Artificial Intelligence Methods and Techniques for Business and
Engineering Applications / G.Setlak, M.Alexandrov (Eds.). – Rzeszow, Poland;
Sofia, Bulgaria: ITHEA, 2012. – 345 p. / – Р. 99-112.

3. Astratyan R.A. Internet service providing information interaction in modern
distributed heterogeneous systems / R. A. Astratyan, V.N. Lebedev. – Moscow :
Lenand, 2009. – 130 p.

4. General shema «backend-frontend» - http://www.danshin.ms
5. Zosimov V., Bulgakova O. Usage of grid systems for the distribution of the

computing process by data in the inductive modeling algorithms. - Intellectual
systems for decision making and problems of computation intelligence ISDMCI-
2013, Ukraine. – Yevpatoria, 2013.

6. Stepashko V., Bulgakova O., Zosimov V. Performance of Hybrid Multilayered
GMDH Algorithm // Proceedings of IWIM 2011. 4nd International Workshop on
Inductive Modeling, July 4-10, 2011, Kyiv. – P. 109-113.

7. Bulgakova O. Comparison of prediction accuracy using different forecasting
models / Bulgakova O., Zosimov V. // Materials XIV International Conference
on Automatic Control - Sevastopol, 2007. – P. 126-128.

Індуктивне моделювання складних систем, випуск 5, 2013 150

