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Стаття стосується асимптотичних властивостей деякої процедури навчання в реальному часі 

для ідентифікації нелінійних систем з використанням нейронних мереж як моделей цих 

систем. Представлені умови ймовірносної збіжності цієї процедури для спеціального 

випадку, коли нелінійність може бути точно апроксимована належною нейронною мережею. 

Ключові слова: ідентифікація, нелінійна система, нейронна мережа, алгоритм навчання, 

стохастичне середовище, збіжність.  

The paper deals with the asymptotic properties of an online learning procedure for identifying non-

linear systems via neural networks models of these systems. The probabilistic convergence condi-

tions of this procedure are presented for the special case where a nonlinearity can exactly be ap-

proximated by a suitable neural network. 

Keywords: identification, nonlinear system, neural network, learning algorithm, stochastic 

environment, convergence. 

Статья касается асимптотических свойств некоторой процедуры обучения в реальном време-

ни для идентификации нелинейных систем с использованием нейронных сетей в качестве 

моделей этих систем. Представлении условия вероятностной сходимости этой процедуры 

для специального случая, когда нелинейность может быть точно аппроксимирована подхо-

дящей нейронной сетью. 

Ключевые слова: идентификация, нелинейная система, нейронная сеть, алгоритм обучения, 

стохастическая среда, сходимость.  
 

 Introduction. The problem of identifying complex unknown systems in the 

presence of noise remains important from both theoretical and practical point of view 

up to now. Significant progress in this research area were achieved in the frameworks 

of well-known group method of data handling (GMDH) advanced by A. G. 

Ivakhnenko in the late 1960s to deal with a finite set of training examples to be used 

for deriving mathematical models of unknown systems [1]. Over the past decades, 

interest has been increasing toward the use of multilayer neural networks as models 

for the adaptive identification of nonlinearly parameterized dynamic systems [2–5]. 

Several learning methods for updating the weights of neural networks have been 

advanced in literature. Most of these methods rely on the gradient concept [5, 6]. 

Although this concept has been successfully used in many empirical studies, there are 

very few fundamental results dealing with the convergence of gradient algorithms for 

learning neural networks. One of these results is based on utilizing the Lyapunov 

stability theory [3, 6].  
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The asymptotic behavior of online adaptive gradient algorithms for the network 

learning has been studied by many authors [7–22]. In particular, the convergence of 

the learning process for the so-called feedforward network models with single hidden 

layer is investigated in [7] by using the stochastic approximation theory. The conver-

gence results have been derived in [9–15] among many others provided that input 

signals have a probabilistic nature. In their stochastic approach, the learning rate goes 

to zero as the learning process tends to infinity. Unfortunately, this gives that the 

learning goes faster in the beginning and slows down in the late stage. 

The convergence analysis of learning algorithm with deterministic (non-

stochastic) nature has been given in [16–21]. In contrast to the stochastic approach, 

several of these results allow to employ a constant learning rate [18, 22]. However, 

they assume that learning set must be finite whereas in online identification schemes, 

this set is theoretically infinite. To the best of author’s knowledge, there are no gen-

eral results in literature concerning the global convergence properties of training pro-

cedures with a fixed learning rate applicable to the case of infinite learning set. 

The distinguishing feature of multi-layer neural networks is that they describe 

some nonlinearly parameterized models needed to be identified. This leads to diffi-

culties in deriving their convergence properties for a general case. To avoid these dif-

ficulties in non-stochastic case, the assumption that similar nonlinear functions need 

to be convex (concave) is introduced in [23]. However, such an assumption is not ap-

propriate for neural network’s description of nonlinearity. 

A popular approach to analyze the asymptotic behavior of online gradient algo-

rithms in stochastic case is based on Martingale convergence theory [24]. This ap-

proach has been exploited in [25, 26] to derive some local convergence in stochastic 

framework for standard online gradient algorithms with the constant learning rate. 

This paper is an extension of [25, 26]. The main efforts is focused on establish-

ing sufficient conditions under which the global convergence of gradient algorithm 

for learning neural networks models in the stochastic environments will be achieved. 

The key idea in deriving these convergence results is based on the use of the Lyapu-

nov methodology [27].  

 

1. System identification using a neural network model 

 

Let 

 )())(()( nnxFny  (1) 

be the nonlinear equation in the compact form describing a complex system to be 

identified. In this equation, IR)(ny  and 
N

nx IR)(  are the scalar output and the 

so-called state vector, respectively, available for the measurement at each nth time 

instant, )(n  is noise at some time instant ),,2,1( n  and IRIR
N

F :  

represents some unknown nonlinear mapping. (Note that )(nx  may include the cur-

rent inputs of this system and possibly its past inputs and also outputs; see [6, sect. 
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5.15].) Without loss of generality, one supposes that the nonlinearity )(xF  is the con-

tinuous and smooth function on a bounded set N
X IR  ).( Xdiam  

To approximate )(xF  by a suitable nonlinearly parameterized function, the 

two-layer neural network model containing M  )1(M  neurons in its hidden layer is 

employed. The inputs to the each jth neuron of this layer at the time instant n  are the 

components of ).(nx  Its output signal at the nth time instant is specified as 

 ,)()(
1

)1()1()1(
N

i

iijjj nxwbny  ,,,1 Mj   (2) 

where )(nxi  denotes the ith component of ),(nx  and )1(

ijw  and )1(

jb  are the weight 

coefficients and the bias of this jth neuron, respectively. )(  denotes the so-called 

activation function defined usually as the sigmoid functions 

 
)exp(1

1
)(

s
s  (3) 

or 

 ).(tanh)( ss  (4) 

There is only one neuron in the output (second) layer, whose inputs are the 

outputs of the hidden layer’s neurons. The output signal of second layer, ),(
)2(

ny  at 

the time instant n  is determined by 

 ,)()(
)2(

1

)1()2()2(
bnywny

M

j

jj  (5) 

where 
)2()2(

1 ,, Mww   are the weights of this neuron and 
)2(

b  is its bias. 

Since s)(  defined by (3) and (4) are nonlinear, it follows from (2), (5) that 

)(
)2(

ny  is the nonlinear function depending on )1(nx  and also on the 

)1)2(( NM -dimensional parameter vector 

 .],,,,,,,,,,,[
)2()2()2(

1

)1()1()1(

1

)1(

1

)1(

1

)1(

11

T

MMNMMN bwwbwwbwww   (6) 

To emphasize this fact, define the output signal of the neural network in the form 

 )),(()(
)2(

wnxny NN  (7) 

using the notation .:
1)2(

IRIRIRNN
NMN

 Taking into account that the neural 

network plays the role of a model of the nonlinearity ),(xF  rewrite (7) as follows: 

 ).),(()(mod wnxny NN  (8) 

Optimal value ww  specified by the least modulus  

 |),()(|maxminarg wxxFw
Xxw

NN  (9) 
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and also the discrepancy  

 ),()( wxxFe NN   

between )(xF  and the output of its neural network’s model for a fixed w  correspond-

ing to (8) are unknown. 

To do an adaptation of the neural network model to the uncertain system (1), 

the standard online gradient learning algorithm  

 ))1(),(()()1()( nwnxQnnwnw w  (10) 

taken, for example, from [5,6] is usually utilized. In this algorithm, 

))1(),(( nwnxQw  represents the gradient of the quadratic loss function 

 2
)],([

2

1
),( wxywxQ NN  (11) 

with respect to w  at )1(nww  for given ),(nxx  and )(n  is the learning rate 

(step size) of (10). Due to (11) we have  

 2
))]1(),(()([

2

1
)1(),(( nwnxnynwnxQ NN  (12) 

with the variable 

 ))1(),(()())1(,( nwnxnynwne NN  (13) 

representing the current model error which can be measured at the nth time instant. 

Now, using (11) – (13), rewrite the learning algorithm (10) as follows:  

 )).1(),1(())1(,()()1()( nwnxnwnennwnw wNN  (14) 

Thus, (2), (5), (7) and (14) describe the learning system necessary for the adap-

tive identification of (1). For better understanding its performance, the structure of 

this system is depicted in Fig. 1.  

Learning

Algorithm

Neural Network Model

)(nx )(ny

)(nw

)(ne

)(mod ny

Unknown

Nonlinear

System

+

_

+

+

)(n

 

Fig. 1. Configuration of online learning system 
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2. Statement of the problem 

Consider a special case where )(xF  can exactly be approximated by a neural 

network representation for all Xx  implying 

 ).,()( wxxF NN  (15) 

In this case called in [5, p. 304] as the ideal case, one has 0),( wne  with w  given 

by (9) if only )(n  is absent. Note that this special case is similar to the so-called the 

hypothesis of representation [6, p. 81] advanced by M.A. Aizerman, E.M. Braverman 

and L.I. Rozonoer in the machine learning theory at the beginning 1960s. 

Suppose )}({ nx  is an infinite sequence of vectors belonging to the bounded .X  

The aim of this paper consists in studying the asymptotic properties of the 

learning procedure (14) caused by this )}.({ nx  More certainty, the following problem 

is stated. It is required to derive the conditions under which )}({ nw  will converge in 

the sense that 

 wnw
n

)(lim      with .|||| w  (16) 

 

3. Preliminaries  

First, recall that the condition 

 0))1(),1(())1(,()(
nw nwnxnwnen NN  (17) 

followed from (14) is necessary to achieve the limit (16), for a given )}({ nx  [6, 

sect. 3.13]. Since ,0))(),(( nwnxwNN  it can be observed that or the condition 1 of 

the form 

 ,)( constn      0))(,( nwne   as  n   

or the condition 2 of the form 

 ,0)(n         0))(,( nwne   as  n   

are required to satisfy (17). Note that the condition 1 cannot take place if the noise 

)(n  are present because )(),( nwne  (due to (1), (13), (15)). 

It turned out that in the special case, the set ,W  containing these sw  becomes 

not one-point [25, 26]. To show it, put ,1N  .1M  Due to (6), this implies 

.
4

IRw  Let 
T

wwwww ],,,[ 4321  be a vector satisfying (15). Then, (2) and (5) 

together with (3) give that another 
T

wwwwww ],,,[ 43321  will also satisfy 

the equality (15). 

Introduce the scalar variable 
2

|||| ww  representing the square of Euclidean 

distance between w  and a ,w  and define 

 .||||inf)(
2

wwwV
Ww

 (18) 
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Denote )).((: nwVVn  Since 0nV  (due to (18)), it is clear that if 

 1nn VV  (19) 

then the sequence ,...,...,:}{ 0 nn VVV  has always a limit, ,V  as n  tends to infinity, 

i.e., 

 ,lim VVn
n

 (20) 

meaning that the algorithm (14) converges. On the other hand, the fact that }{ nV  is 

monotonical non-increasing sequence is not necessary to achieve (20) in principle.  

Note that the existence of the limit (20) does not imply that 0V  even when the 

condition (15) is satisfied. Moreover, this limit may not exist if )}({ nx  is an arbitrary 

sequence leading to the violation of (19) [25]. Nevertheless, if the asymptotic proper-

ty (16) takes place, then )}({ nw  converges to some nWw inflim  where  

  
1

:inflim
n nk

kn WW  (21) 

denotes the so-called limit set introduced in [24, sect. 1.3] in which 

}.0)),1(()(:{: wnxnywWn NN  

Note that the limit set, ,inflim nW  given by (21) represents a nonlinear mani-

fold on 
1)2( NM

IR  whose dimension satisfies ).2(inflimdim0 NMWn  

It can be understood that the algorithm (14) “attempts” to solve the infinite set 

of the equations 

 ,0)),1(()( wnxny NN  ,2,1n  (22) 

with respect to unknown .
1)2( NM

w IR  In fact, this algorithm may give the solution 

ww  of the remainder of (22), which is determined as the limit set (21) but not as 

.W   

It was observed that the condition (19) meaning that }{ nV  is the monotonically 

non-increasing sequence may not be satisfied if the neural network model contains 

the hidden layer, in general. 

To demonstrate some asymptotic properties of (14), two simulation  experi-

ments with the scalar nonlinear system (1) having the nonlinearity  

)15.7exp(19.01

)15.7exp(05.075.3
)(

x

x
xF  

were conducted. It can be shown that this nonlinearity can explicitly be approximated 

by the two-layer neural network model described by (2), (3), (5) and (7) with the 

components of two 
)2()1(

, wwww  summarized in Table 1.  
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Table 1 

Parameters of neural network model 

Exp. 

No 
Parameter  )1(

11w  
)1(

1b  
)2(

1w  
)2(

b  

1, 2 
Components of 

)1(
w  7,15

 
1.65

 
3.45

 
0.3

 

Components of 
)2(

w  -7.15
 

-1.65
 

-3.45
 

3.75
 

1 
Initial estimate 0.53 -0.50 -0.92 1.04 

Final estimate 5.41 1.32 3.82 -0.05 

2 
Initial estimate 0.38 -0.57 -0.98 1.14 

Final estimate -5.13 -1.52 -4.20 3.78 

 

In all of the experiments, )(n  was taken as .01.0)(n  In these experi-

ments, )}({ nx  was generated as sequence of independent identically distributed 

(i.i.d.) pseudo random numbers on ].0.1,0.1[X  The duration of the learning 

processes was always equal to 40 000 steps. 

Simulation results of first and second experiments are presented in Fig. 2 left 

and right, respectively. The initial estimated )0(w  in both examples was chosen so 

that the distance between )0(w  and W  was large enough, and the condition 

))0(())0((
)2()1(

wVwV was satisfied. It was observed that at an initial stage of the 

learning process, }{
)1(

nV  was increasing and 
)2()1(

nn VV  for several ,,2,1 n  as 

shown in Fig. 2, left. Further, }{
)1(

nV  became decreasing. Such a behavior of these se-

quence leaded to appearing the feature that )2()1(

nn VV  for all sufficiently large .n   

In the second example, the initial )0(w  was chosen to be close to that in the 

first example. One can observe that in this case, 
)1(

nn VV  (see Fig. 2, right). 

  

  

Fig. 2. Behavior of gradient learning algorithm (14) in  

Examples 1 (left) and 2 (right) in the absence of noise 
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It turned out that in there simulation examples, the condition (19) is not 

satisfied whereas the learning algorithm (14) remains indeed convergent.  

Thus, additional assumptions with respect to )}({ nx  are required to guarantee 

the convergence of )}.({ nw  

 

4. Local and global convergence results  
 

Assumption 1. )}({ nx  is a sequence of vectors appearing randomly in accor-

dance with some probability density function )(xp  such that  

 .1)(
X

dxxp   

Furthermore, )(xp  has the following properties: 

 
X

dxxpXnxP 0)(:})({    

for any subset XX  whose dimension is ,N  and 

 
X

dxxpXnxP 0)(:})({   

if ,dim NX  where }{P  denotes the probability of corresponding random event. 

Assumption 2. It is assumed that )(xp  represents a continuous function which 

may become zero only at some isolated points on .X  

Assumption 3. The noise is absent, i.e., .0)(n  In this case, ),( wxQ  defined 

in (11) becomes  

 .)],()([
2

1
),(

2
wxxFwxQ NN  (23) 

Introduce the performance index 

 )},({)( wxQEwJ  (24) 

which evaluates the quality of learning process with ),( wxQ  given by (23). In this 

expression, 

 
X

dxxpwxxFwxQE )()],()([:)},({
2

NN   

denotes the expectation of ),( wxQ  with respect to the random s.x  

Let )(wW  denote an -neighborhood of some Ww  defined as 

},||||:{:)( wwwwW  which does not contain another points of .W  Suppose 

a) the assumption 1 – 3 are valid; 

b) the condition  

dxxpwwwxwxwx
wWx

T

w )())(,()],(),([
)(

NNNNNN  
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)(

22
)(),()],(),([

wWx
w dxxpwxwxwx NNNNNN  (25) 

meaning  

 
}),()],(),(

)})(,()],(),({[

22
wxwxwxE

wwwxwxwxE

w

T

w

NNNN{[NN

NNNNNN
  

are satisfied for all Xx  and for any ww,  from ;
1)2( NM

IR   

c) an initial )0(w  satisfies ).()0( wWw  

In the work [25] it has been established that, under the conditions a) – c), the 

limit of )}({ nw  exists almost sure (a.s.) as n  approaches to infinity, i.e.,  

 wnw
n

)(lim      a.s. (26) 

with some Ww  if the step size )(n  is chosen as )(n  where 

 .20  (27) 

By virtue of (15), the property (26) yields  

 0)(
n

wJ      a.s. (28) 

The proof of the probabilistic convergence of )}({ nw  caused by the learning 

algorithm (14) with constant  satisfying (27) utilizes essentially the Doob’s 

martingale convergence theorem [24] after establishing the fact that, under the 

condition (25), the random }{ nV  is the supermartingale defined as 

 1)}0(,),1(|{ nn VwnwVE   (29) 

with 

 ,||||inf
2

n
Ww

n wwV  (30) 

and also takes into account the Borel – Cantelli lemma [24, sect. 15.3]. (In expression 

(29), }|{ nVE  denotes the conditional expectation of nV .)  

The conditions given above are only the sufficient conditions guaranteeing the 

local convergence of (14) with probability 1. Since the condition b) requires some 

computation effort for its verification whereas the condition c) cannot be verified 

before starting the learning algorithm, these local convergence results make of the 

mathematical sense. 



  Zhiteckii L.S., Nikolaienko S.A. 

Індуктивне моделювання складних систем, випуск  7, 2015 55 

Comparing (29) and (19), we notice that the variable nV  given by (30) is a 

peculiar stochastic counterpart of the Lyapunov function of (14) if )()( wWnw  

will be guaranteed.  

At first sight, it seems that V(w) defined in (18) might be exploited as a Lyapu-

nov function for analyzing the asymptotic behavior of (14) in a stochastic framework 

for any .)0(
1)2( NM

w IR  In fact, by the definition, V(w) has the property 

 .0)(0)( WwwVWwwV ifandif  (31) 

However, the requirement  

 ||||||)()(|| wwLwwV  (32) 

with the Lipschitz constant 0L  advanced in [27] is not satisfied for any ,w w  

from .
1)2( NM

IR  Thus, )(wV  having the form (18) is indeed not admissible to study 

the global convergence properties of (14) based on results of [27]. 

In [26] it has been derived that the limit (26) will be achieved for an arbitrary 

initial )0(w  if the assumptions 1 – 3 made above hold and, instead of (27), the 

learning rate, ),(n  is chosen as  

 L/20  (33) 

with 

 ,0
)},({

||)},({||
inf:

2

wxQE

wxQEw

Ww

     .
)},({

}||),({||
sup:

2

wxQE

wxQE w

Ww

  

The proof of this result establishing the conditions for the global probabilistic 

convergence of the learning algorithm (14) utilizes the Theorem 3´ of [27] after 

replacing )(wV  of the form (18) by 

 )}.,({)( wxQEwV  (34) 

Now, let )(n  be present. Then, the requirement (33) needs to be replaced by 

another requirement under which 0)(n  as n  tends to .  It can be shown that, 

using the same Lyapunov function as in (34), and exploiting the Theorem 3 of [27], 

the convergence properties (27), (29) will be ensured if )}({ n  satisfies the standard 

requirements 

 ,)(
0n

n      
0

2
)(

n

n  (35) 

arising first in [6]. (Notice that (35) are satisfied if nn)(  with .12/1 ) 
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To illustrate the asymptotic behavior of the algorithm (14) in the presence of 

noise, we conducted the same simulation experiment 1 but with .0)(n  Namely, 

)}({ n  was chosen as a pseudorandom i.i.d. sequence in the range ].05.0,05.0[  

Two separate simulations were conducted. In first simulation, )(n  was chosen as 

01.0)(n  whereas in second simulation, 51.0
)( nn  was taken. 

Results of these simulation experiments are presented in Fig. 3. 
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Fig. 3. Behavior of learning algorithm (14) with noise in Example 1: 

a) ;01.0  b) 
51.0

)( nn  

It is seen that in the first case, where the learning rate remains constant, the 

oscillations of ))}(,({ nwxQE  are observed (Fig. 3, a). Nevertheless, this variable 

converges to zero as n  becomes large enough; see Fig. 3, b. 

 

Conclusion. The main contribution of this paper consisted in theoretical and 

experimental studying the asymptotical properties of standard online gradient 

algorithms applicable to the learning neural networks in the stochastic framework. 

Namely, sufficient conditions for the global convergence of these algorithms have 

been established. It was shown that adding a penalty term to the current error function 

is indeed not necessary to guarantee their convergence properties.  
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