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CraTTs CTOCYEThCS ACUMITOTHYHUX BIACTUBOCTEN JESKOI MPOLEypH HABYAHHS B PeaJbHOMY Yaci
U ieHTHQIKalli HEMHIMHUX CHCTEM 3 BUKOPUCTAHHSM HEUPOHHHX MEPEX SK MOJAENEH X
cucreMm. IlpencraBneHi ymMoBH HMOBIPHOCHOI 30DKHOCTI Ili€l mpoueaypu A CHEIiaTbHOTO
BUITIAJIKY, KOJIN HETIHIHHICTE MOXKE 6YTI/I TOYHO aIIpOKCHMMOBAaHa HAJIC)KHOIO HeﬁpOHHOIO MCPECIKCIO.
Knrouosi cnosa: ioenmuchixayis, Heniuitina cucmema, HeUpOHHA Mepedicd, ANeOPUMM HABUAHH,
cmoxacmuuHe cepedosuuye, 30I2CHICMb.

The paper deals with the asymptotic properties of an online learning procedure for identifying non-
linear systems via neural networks models of these systems. The probabilistic convergence condi-
tions of this procedure are presented for the special case where a nonlinearity can exactly be ap-
proximated by a suitable neural network.
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Cratbs KacaeTcs aCUMITOTHYECKUX CBOMCTB HEKOTOPOH MpoleAypbl 00y4eHUs B PeaJIbHOM BpeMe-
HU JJI9 UASHTU(UKAIIMN HEJIMHEHMHBIX CHCTEM C HCIOJIb30BAHMEM HEUPOHHBIX CETEHl B KayeCTBE
Mozelnel 3Tux cucreM. [IpencraBieHuM yCioOBHS BEPOSTHOCTHOW CXOAMMOCTH 3TOW IMPOLEAYpPbI
JUTSL CTICLIUATIBHOTO CITydasi, KOTJla HETMHEHHOCTh MOXKET OBITh TOYHO anmmpOKCUMHUPOBAaHa MOIXO0-
JSALIEe HEUPOHHOM CETHIO.

Kniouesvie cnosa: uoenmugurayus, nerunennas cucmema, HeUpOHHAsL cemb, an2opumm 00yYeHusl,
cmoxacmuyecKkas cpeoa, CX00UMoCmb.

Introduction. The problem of identifying complex unknown systems in the
presence of noise remains important from both theoretical and practical point of view
up to now. Significant progress in this research area were achieved in the frameworks
of well-known group method of data handling (GMDH) advanced by A.G.
Ivakhnenko in the late 1960s to deal with a finite set of training examples to be used
for deriving mathematical models of unknown systems [1]. Over the past decades,
interest has been increasing toward the use of multilayer neural networks as models
for the adaptive identification of nonlinearly parameterized dynamic systems [2-5].
Several learning methods for updating the weights of neural networks have been
advanced in literature. Most of these methods rely on the gradient concept [5, 6].
Although this concept has been successfully used in many empirical studies, there are
very few fundamental results dealing with the convergence of gradient algorithms for
learning neural networks. One of these results is based on utilizing the Lyapunov
stability theory [3, 6].
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The asymptotic behavior of online adaptive gradient algorithms for the network
learning has been studied by many authors [7-22]. In particular, the convergence of
the learning process for the so-called feedforward network models with single hidden
layer is investigated in [7] by using the stochastic approximation theory. The conver-
gence results have been derived in [9-15] among many others provided that input
signals have a probabilistic nature. In their stochastic approach, the learning rate goes
to zero as the learning process tends to infinity. Unfortunately, this gives that the
learning goes faster in the beginning and slows down in the late stage.

The convergence analysis of learning algorithm with deterministic (non-
stochastic) nature has been given in [16-21]. In contrast to the stochastic approach,
several of these results allow to employ a constant learning rate [18, 22]. However,
they assume that learning set must be finite whereas in online identification schemes,
this set is theoretically infinite. To the best of author’s knowledge, there are no gen-
eral results in literature concerning the global convergence properties of training pro-
cedures with a fixed learning rate applicable to the case of infinite learning set.

The distinguishing feature of multi-layer neural networks is that they describe
some nonlinearly parameterized models needed to be identified. This leads to diffi-
culties in deriving their convergence properties for a general case. To avoid these dif-
ficulties in non-stochastic case, the assumption that similar nonlinear functions need
to be convex (concave) is introduced in [23]. However, such an assumption is not ap-
propriate for neural network’s description of nonlinearity.

A popular approach to analyze the asymptotic behavior of online gradient algo-
rithms in stochastic case is based on Martingale convergence theory [24]. This ap-
proach has been exploited in [25, 26] to derive some local convergence in stochastic
framework for standard online gradient algorithms with the constant learning rate.

This paper is an extension of [25, 26]. The main efforts is focused on establish-
ing sufficient conditions under which the global convergence of gradient algorithm
for learning neural networks models in the stochastic environments will be achieved.
The key idea in deriving these convergence results is based on the use of the Lyapu-
nov methodology [27].

1. System identification using a neural network model

Let

y(n) = F(x(n)) +5(n) (1)
be the nonlinear equation in the compact form describing a complex system to be
identified. In this equation, y(n) € IR and x(n) € IR" are the scalar output and the
so-called state vector, respectively, available for the measurement at each nth time
instant, £(n) is noise at some time instant (n=1,2,..), and F: IR" > IR
represents some unknown nonlinear mapping. (Note that x(n) may include the cur-
rent inputs of this system and possibly its past inputs and also outputs; see [6, sect.
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5.15].) Without loss of generality, one supposes that the nonlinearity F(x) is the con-

tinuous and smooth function on a bounded set X < IR" (diam X < ).
To approximate F(x) by a suitable nonlinearly parameterized function, the
two-layer neural network model containing M (M >1) neurons in its hidden layer is

employed. The inputs to the each jth neuron of this layer at the time instant n are the
components of x(n). Its output signal at the nth time instant is specified as

y® (n) = G(bﬁ” + iwﬁ”xi(m} j=1l...M, (2)

where x;(n) denotes the ith component of x(n), and w’ and b’ are the weight

coefficients and the bias of this jth neuron, respectively. o(-) denotes the so-called

activation function defined usually as the sigmoid functions
1
o(s)=—— 3
(s) I+ oxp(s) (3)
or
c(s) = tanh (s). (4)
There is only one neuron in the output (second) layer, whose inputs are the
outputs of the hidden layer’s neurons. The output signal of second layer, y‘®(n), at

the time instant n is determined by
M
YO () = S wyP () +b?, ©
j=1

where w? ..., w'? are the weights of this neuron and b‘® is its bias.
Since o(-)s defined by (3) and (4) are nonlinear, it follows from (2), (5) that

y@(n) is the nonlinear function depending on x(n—-1) and also on the
(M (N + 2) +1) -dimensional parameter vector

— fw® 0 @ (1) D HO @ (2) @77
W=y e WY B W e W s By W wy, BT (6)

To emphasize this fact, define the output signal of the neural network in the form
y® (n) = NN (x(n), w) (7)

using the notation NN : IR " x IRM ™" — 1R Taking into account that the neural
network plays the role of a model of the nonlinearity F(x), rewrite (7) as follows:

Ymoa (N) = NN (x(n), w). (8)
Optimal value w=w" specified by the least modulus
w’ =arg min max | F(x) — NN (x, w) | (9)
w xe X
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and also the discrepancy
e = F(x) — NN(x, w)

between F(x) and the output of its neural network’s model for a fixed w correspond-

ing to (8) are unknown.
To do an adaptation of the neural network model to the uncertain system (1),
the standard online gradient learning algorithm

w(n) =w(n-1)-n(n)V,Q(x(n), w(n-1)) (10)

taken, for example, from [5,6] is wusually utilized. In this algorithm,
V., Q(x(n), w(n—1)) represents the gradient of the quadratic loss function

Q(x, w>=§[y—NN(x, WP (11)

with respect to w at w=w(n—1) for given x = x(n), and n(n) is the learning rate
(step size) of (10). Due to (11) we have

Q(x(n), w(n—1)= %[y(n) = NN(x(n), w(n - )]’ (12)

with the variable

e(n,w(n —1)) = y(n) — NN (x(n), w(n — 1)) (13)
representing the current model error which can be measured at the nth time instant.
Now, using (11) — (13), rewrite the learning algorithm (10) as follows:

w(n) =w(n-1)+n(n) e(n,w(n—1)) V, NN (x(n—1),w(n—1)). (14)

Thus, (2), (5), (7) and (14) describe the learning system necessary for the adap-
tive identification of (1). For better understanding its performance, the structure of
this system is depicted in Fig. 1.

&(n)

x(n) Unknown y(n)
Nonlinear
System

J

Neural Network Model

%& WS
ﬂ »

1wt

|\ Leaming | &(")
— V| Algorithm [

Fig. 1. Configuration of online learning system
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2. Statement of the problem
Consider a special case where F(x) can exactly be approximated by a neural

network representation for all x € X implying
F(x)=NN(x,w"). (15)

In this case called in [5, p. 304] as the ideal case, one has e(n,w’) =0 with w" given
by (9) if only &(n) is absent. Note that this special case is similar to the so-called the

hypothesis of representation [6, p. 81] advanced by M.A. Aizerman, E.M. Braverman
and L.I. Rozonoer in the machine learning theory at the beginning 1960s.
Suppose {x(n)} is an infinite sequence of vectors belonging to the bounded X.

The aim of this paper consists in studying the asymptotic properties of the
learning procedure (14) caused by this {x(n)}. More certainty, the following problem

Is stated. It is required to derive the conditions under which {w(n)} will converge in

the sense that
lim w(n)=w,  with ||w, ||< . (16)

n—>©x

3. Preliminaries
First, recall that the condition

n(n) e(n,w(n-1)) V, NN (x(n-1),w(n -1)) ———0 (17)
followed from (14) is necessary to achieve the limit (16), for a given {x(n)} [6,

sect. 3.13]. Since V NN (x(n),w(n)) # 0, it can be observed that or the condition 1 of
the form

n(n)=const, e(n,w(n))—>0 as n—> oo
or the condition 2 of the form

n(n) = 0, e(n,w(n)) »0 as n—> o
are required to satisfy (17). Note that the condition 1 cannot take place if the noise
&(n) are present because e(n, w’) =&(n) (due to (1), (13), (15)).

It turned out that in the special case, the set W *, containing these w's becomes
not one-point [25, 26]. To show it, put N =1, M =1. Due to (6), this implies
w' e IR*. Let w" =[w;,w,,w;,w,]" be a vector satisfying (15). Then, (2) and (5)
together with (3) give that another w™ =[-w,, —w,,—w,, w, +w,]" will also satisfy
the equality (15).

Introduce the scalar variable ||w" —w||* representing the square of Euclidean
distance between w and a w", and define

V(w)=inf [lw —w|?. (18)

w eEW

50 IHOykmueHe modernogaHHs cknadHUXx cucmem, aunyck 7, 2015



Zhiteckii L.S., Nikolaienko S.A.

Denote V, :=V (w(n)). Since V, >0 (due to (18)), it is clear that if

V. <V, (19)

then the sequence {V }=V,,...,.V,,... has always a limit, V., as n tends to infinity,
i.e.,
lim V, =V, (20)

n—o

meaning that the algorithm (14) converges. On the other hand, the fact that {v } is

monotonical non-increasing sequence is not necessary to achieve (20) in principle.
Note that the existence of the limit (20) does not imply that V., =0 even when the

condition (15) is satisfied. Moreover, this limit may not exist if {x(n)} is an arbitrary

sequence leading to the violation of (19) [25]. Nevertheless, if the asymptotic proper-
ty (16) takes place, then {w(n)} converges to some w,, < lim inf W where

lim inf W, := U W, (21)

n=1 k=n
denotes the so-called limit set introduced in [24, sect.1.3] in which
W, :={w: y(n) - NN(x(n—1), w) =0}
Note that the limit set, lim inf W_, given by (21) represents a nonlinear mani-
fold on IR™N*2*! whose dimension satisfies 0 < dim lim inf W, <M (N + 2).

It can be understood that the algorithm (14) “attempts” to solve the infinite set
of the equations

y(nN)—NN(x(n—-1),w)=0, n=1,2,... (22)

with respect to unknown w e IR™(N*2* n fact, this algorithm may give the solution
w=w,, of the remainder of (22), which is determined as the limit set (21) but not as

*

W .
It was observed that the condition (19) meaning that {V,} is the monotonically

non-increasing sequence may not be satisfied if the neural network model contains
the hidden layer, in general.

To demonstrate some asymptotic properties of (14), two simulation experi-
ments with the scalar nonlinear system (1) having the nonlinearity

3.75 + 0.05exp(—7.15x)
1+ 0.19exp(—7.15x)

F(x)=

were conducted. It can be shown that this nonlinearity can explicitly be approximated
by the two-layer neural network model described by (2), (3), (5) and (7) with the

components of two w=w"®, w=w"® summarized in Table 1.
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Table 1
Parameters of neural network model
Exp. 1 1 2 (2)
No Parameter w b w? b
L o |Components of w'® 7,15 1.65 3.45 0.3
’ Components of w"?) -7.15 -1.65 -3.45 3.75
1 Initial estimate 0.53 -0.50 -0.92 1.04
Final estimate 5.41 1.32 3.82 -0.05
9 Initial estimate 0.38 -0.57 -0.98 1.14
Final estimate -5.13 -1.52 -4.20 3.78

In all of the experiments, n(n) was taken as n(n) =m=0.01. In these experi-
ments, {x(n)} was generated as sequence of independent identically distributed
(i.i.d.) pseudo random numbers on X =[-1.0, 1.0]. The duration of the learning
processes was always equal to 40 000 steps.

Simulation results of first and second experiments are presented in Fig. 2 left
and right, respectively. The initial estimated w(0) in both examples was chosen so

that the distance between w(0) and W™ was large enough, and the condition
vV & (w(0)) < V@ (w(0)) was satisfied. It was observed that at an initial stage of the
learning process, {V."} was increasing and V.’ > v ® for several n=1,2,..., as
shown in Fig. 2, left. Further, {v. "} became decreasing. Such a behavior of these se-

quence leaded to appearing the feature that V. <V ® for all sufficiently large n.
In the second example, the initial w(0) was chosen to be close to that in the

first example. One can observe that in this case, V, =V (see Fig. 2, right).

e(n)

Fig. 2. Behavior of gradient learning algorithm (14) in
Examples 1 (left) and 2 (right) in the absence of noise
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It turned out that in there simulation examples, the condition (19) is not
satisfied whereas the learning algorithm (14) remains indeed convergent.
Thus, additional assumptions with respect to {x(n)} are required to guarantee

the convergence of {w(n)}.

4. Local and global convergence results

Assumption 1. {x(n)} is a sequence of vectors appearing randomly in accor-
dance with some probability density function p(x) such that

JX p(x)dx =1
Furthermore, p(x) has the following properties:
P{x(n)e X }:= jx, p(x)dx >0
for any subset X' < X whose dimensionis N, and
P{x(n) e X "}:= jx,, p(x)dx =0

if dim X" <N, where P{} denotes the probability of corresponding random event.
Assumption 2. It is assumed that p(x) represents a continuous function which

may become zero only at some isolated points on X.
Assumption 3. The noise is absent, i.e., £(n) =0. In this case, Q(x, w) defined

in (11) becomes
1
Q(x, w) ZE[F(X)—NN(X, w)]*. (23)
Introduce the performance index
J(w) = E{Q(x, w)} (24)

which evaluates the quality of learning process with Q(x, w) given by (23). In this
expression,

E{Q(x, w)}:= IX [F () = NN (x, w)]* p(x) dx
denotes the expectation of Q(x, w) with respect to the random xs.
Let W, (w") denote an e¢-neighborhood of some w"ewW™ defined as

W, (w") ={w: ||w" —w]| <&}, which does not contain another points of W *. Suppose

a) the assumption 1 — 3 are valid;
b) the condition

oo e ENNC ) = NN G, W)V, NN (, w(w =) p ()
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= jxewg(\/\/*)[l\n\l(x’ W) = NN(x, W)]ZHVWNN(X’ W)Hz p(x) dx (25)

meaning

E{[NN (x, ") = NN (x, W]V, NN (x, w)(w" - w)}
> E{[NN (x, ') = NN (x, W]V, NN (x, w)[*}
are satisfied for all x e X and for any w, w" from IR™ N *2*1.
c) an initial w(0) satisfies w(0) eW_(w").

In the work [25] it has been established that, under the conditions a) — c), the
limit of {w(n)} exists almost sure (a.s.) as n approaches to infinity, i.e.,

lim w(n)=w" a.s. (26)

with some w™ e W~ if the step size n(n) is chosen as n(n) =n where
0o<n<2. (27)
By virtue of (15), the property (26) yields
Jw)———0 as. (28)

The proof of the probabilistic convergence of {w(n)} caused by the learning

algorithm (14) with constant n satisfying (27) utilizes essentially the Doob’s
martingale convergence theorem [24] after establishing the fact that, under the
condition (25), the random {V,} is the supermartingale defined as

E{Vn | W(n _1) """ W(O)} = Vn—l (29)
with
V, = inf lw w17 (30)
w eW

and also takes into account the Borel — Cantelli lemma [24, sect. 15.3]. (In expression
(29), E{V, |} denotes the conditional expectation of V. .)

The conditions given above are only the sufficient conditions guaranteeing the
local convergence of (14) with probability 1. Since the condition b) requires some
computation effort for its verification whereas the condition c¢) cannot be verified
before starting the learning algorithm, these local convergence results make of the
mathematical sense.
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Comparing (29) and (19), we notice that the variable V., given by (30) is a

peculiar stochastic counterpart of the Lyapunov function of (14) if w(n)ew, (w")

will be guaranteed.
At first sight, it seems that V(w) defined in (18) might be exploited as a Lyapu-
nov function for analyzing the asymptotic behavior of (14) in a stochastic framework

for any w(0) € IRMN*2*! In fact, by the definition, V(w) has the property
Vw)=0if weW" and V(W)>0 if wgW ", (31)

However, the requirement

[VV(W)=V(W) ] < Liw-w"]| (32)

with the Lipschitz constant L >0 advanced in [27] is not satisfied for any w', w"

from IRM ™2 Thus, V (w) having the form (18) is indeed not admissible to study

the global convergence properties of (14) based on results of [27].
In [26] it has been derived that the limit (26) will be achieved for an arbitrary
initial w(0) if the assumptions 1 -3 made above hold and, instead of (27), the

learning rate, n(n), is chosen as

0<n<20/Lt (33)

with

\% 2 \% 2
o int IVWEQUuWIE o EUV.QUWIY
weW E{Q(x,w)} wew” E{Q(x,w)}
The proof of this result establishing the conditions for the global probabilistic

convergence of the learning algorithm (14) utilizes the Theorem 3" of [27] after
replacing V (w) of the form (18) by

V(w) = E{Q(x,w)}. (34)

Now, let £(n) be present. Then, the requirement (33) needs to be replaced by
another requirement under which n(n) -0 as n tends to «. It can be shown that,

using the same Lyapunov function as in (34), and exploiting the Theorem 3 of [27],
the convergence properties (27), (29) will be ensured if {n(n)} satisfies the standard

requirements
Y=«  Yn*(n)<w (35)
n=0 n=0

arising first in [6]. (Notice that (35) are satisfied if n(n)=n"" with 1/2 <a <1.)
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To illustrate the asymptotic behavior of the algorithm (14) in the presence of
noise, we conducted the same simulation experiment 1 but with £(n) #0. Namely,

{&(n)} was chosen as a pseudorandom i.i.d. sequence in the range [-0.05, 0.05].

Two separate simulations were conducted. In first simulation, n(n) was chosen as

n(n) = 0.01 whereas in second simulation, n(n) = n"*** was taken.

Results of these simulation experiments are presented in Fig. 3.

EQUuwm} EQ(x, w(m)}

0.14] 14
0.12] 12
01 1
0.08] 4 08 p
0.06| 4 06 p
004 1 04 p
002 0.2 I 1
% 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 % 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2) " b)
Fig. 3. Behavior of learning algorithm (14) with noise in Example 1:

a) n=0.01; b) n(n)=n"""

It is seen that in the first case, where the learning rate remains constant, the
oscillations of E{Q(x,w(n))} are observed (Fig. 3, a). Nevertheless, this variable

converges to zero as n becomes large enough; see Fig. 3, b.

Conclusion. The main contribution of this paper consisted in theoretical and
experimental studying the asymptotical properties of standard online gradient
algorithms applicable to the learning neural networks in the stochastic framework.
Namely, sufficient conditions for the global convergence of these algorithms have
been established. It was shown that adding a penalty term to the current error function
is indeed not necessary to guarantee their convergence properties.

References

1. Hsaxuenko A.I'., Crenamko B.C. [ToMexoycTOWYMBOCTh MOJECIUPOBAHUS. —
K.: Hayk. nymka, 1985. — 216 c.

2. Suykens J., Moor B.D. Nonlinear system identification using multilayer neural
networks: some ideas for initial weights, number of hidden neurons and error criteria

56 IHOykmueHe modernogaHHs cknadHUXx cucmem, aunyck 7, 2015



Zhiteckii L.S., Nikolaienko S.A.

// Proc. 12nd IFAC World Congress (Sydney, Australia, July 1993). — 1993. — vol. 3.
—P. 49-52,

3. Kosmatopoulos E.S., Polycarpou M.M., Christodoulou M.A., loannou P.A.
High-order neural network structures for identification of dynamical systems // |IEEE
Trans. on Neural Networks. — 1995. — vol. 6. — P. 422-431.

4. Levin A.U., Narendra K. S., Recursive identification using feedforward neural
networks // Int. J. Contr. — 1995. — vol. 61. — P. 533-547.

5. Tsypkin Ya.Z., Mason J.D., Avedyan E.D., Warwick K., Levin I. K. Neural
networks for identification of nonlinear systems under random piecewise polynomial
disturbances // IEEE Trans. on Neural Networks. — 1999. — vol. 10. — P. 303-311.

6. Tsypkin Ya. Z. Adaptation and learning in automatic systems. — New-York:
Academic Press. — 1971. — 291 p.

7. White H. Some asymptotic results for learning in single hidden-layer neural
network models // J. Amer. Statist. Assoc. — 1987. —vol. 84. — P. 117-134.

8. Behera L., Kumar S., Patnaik A. On adaptive learning rate that guarantees
convergence in feedforward networks // IEEE Trans. on Neural Networks. — 2006. —
vol. 17. — P. 1116-1125.

9. Kuan C. M., Hornik K. Convergence of learning algorithms with constant
learning rates // Ibid. — 1991. — vol. 2. — P. 484 — 4809.

10. Luo Z. On the convergence of the LMS algorithm with adaptive learning rate
for linear feedforward networks // Neural Comput. — 1991. — vol. 3. — P. 226-245.

11. Finnoff W. Diffusion approximations for the constant learning rate backpro-
pagation algorithm and resistance to local minima // Ibid. — 1994. — 6. — P. 285— 295.

12. Gaivoronski A.A. Convergence properties of backpropagation for neural nets
via theory of stochastic gradient methods // Optim. Methods Software. — 1994. — 4. —
P.117-134.

13. Fine T.L., Mukherjee S. Parameter convergence and learning curves for neural
networks // Neural Comput. — 1999. — 11. — P. 749-7609.

14. Tadic V., Stankovic S. Learning in neural networks by normalized stochastic
gradient algorithm: Local convergence // Proc. 5th Seminar Neural Netw. Appl.
Electr. Eng. (Yugoslavia,Sept. 2000). — 2000. — P. 11-17.

15. Zhang H., Wu W, Liu F., Yao M. Boundedness and convergence of online
gradient method with penalty for feedforward neural networks // IEEE Trans. on
Neural Networks. — 2009. — vol. 20. — P. 1050-1054.

16. Mangasarian O.L., Solodov M.V. Serial and parallel backpropagation conver-
gence via nonmonotone perturbed minimization // Optim. Methods Software. —1994.
—P. 103-106.

IHOykmueHe moderntoeaHHs1 cknadHUx cucmem, sunyck 7, 2015 57



Convergence of sequential gradient

17. Wu W., Feng G., Li X. Training multilayer perceptrons via minimization of
ridge functions // Advances in Comput. Mathematics. — 2002. — vol. 17. — P. 331-
347.

18. Zhang N., Wu W., Zheng G. Convergence of gradient method with momen-
tum for two-layer feedforward neural networks // IEEE Trans. on Neural Networks. —
2006. —vol. 17. — P. 522-525.

19. Wu W., Feng G., Li X., Xu Y. Deterministic convergence of an online gra-
dient method for BP neural networks // Ibid. —2005. — vol. 16. — P. 1-9.

20. Xu Z.B., Zhang R., Jing W.F. When does online BP training converge? // Ibid.
—2009. —vol. 20. — P. 1529-1539.

21. Shao H., Wu W., Liu L. Convergence and monotonicity of an online gradient
method with penalty for neural networks // WSEAS Trans. Math. — 2007. — vol. 6. —
P. 469-476.

22. Ellacott S.W. The numerical analysis approach // Mathematical Approaches to
Neural Networks (J.G. Taylor, ed; B.V.: Elsevier Science Publisher). — 1993. — P.
103-137.

23. Skantze F.P., Kojic A., Loh A.P., Annaswamy A.M. Adaptive estimation of
discrete time systems with nonlinear parameterization // Automatica. — 2000. —
vol. 36. — P. 1879-1887.

24. Loeve M. Probability theory. — New-York: Springer-Verlag. — 1963. — 425 p.

25. Zhiteckii L.S., Azarskov V.N., Nikolaienko S.A. Convergence of learning al-
gorithms in neural networks for adaptive identification of nonlinearly parameterized
systems // in Proc. 16th IFAC Symposium on System Identification (Brussels, Bel-
gium). — 2012. — P. 1593-1598.

26. Azarskov V.N., Kucherov D.P, Nikolaienko S.A., Zhiteckii L.S. Asymptotic
behaviour of gradient learning algorithms in neural network models for the identifica-
tion of nonlinear systems // American Journal of Neural Networks and Applications.
—2015. - No 1(1). — P. 1-10.

27. Polyak B.T. Convergence and convergence rate of iterative stochastic algo-
rithms, I: General case // Autom. Remote Control. — 1976. — vol. 12. — P. 1858-1868.

58 IHOykmueHe modernogaHHs cknadHUXx cucmem, aunyck 7, 2015



