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Abstract. Left-censored data with one or more detection limits occur frequently
in many application areas. In this paper, the computational procedure for
calculation of maximum likelihood estimates of the parameters for type I
multiply left-censored data from underlying Weibull distribution is suggested and
used considering various numbers of detection limits. The expected Fisher
information matrix is analytically determined and its performance is compared
with sample (observed) Fisher information matrix using simulations. Simulations
are focused primarily on the properties of estimators for small sample sizes.
Real data illustration is included.
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INTRODUCTION

Left-censored data occur frequently in analyses of environmental or chemical data

when for a given experimental unit the attribute being measured is not present above

the detection limit (DL) d. In case the DL is fixed, we talk about type I (time) cen-

soring. The number of experimental units under DL d , i.e. the number of left-censored

experimental units, is a random variable. In case the number of censored units is fixed,

we talk about type II (failure) censoring. This paper will be focused on the type I left

censoring which can be described as follows. Assume that n experimental units are ob-

served, and X X n1, ,� are independent and identically distributed random variables.

As a result of the experiment we get only measurements X di � and the number of

observations under the detection limit d . Most authors usually focus on right censor-

ing. However, type I left-censored data are very frequent in real applications, and

a brief overview of application areas can be found in [1]. In addition to that, multiply

left-censored data often occur, mostly in environmental applications. They arise in case

there are more, say k, detection limits d d dk1 2� � �� , k �1, and only observations

above the highest detection limit dk and the numbers of observations between detec-

tion limits di�1 and di , i k�1, ,� , d0 0� , are available [2–6]. In case k � 2, we talk

about doubly left-censored data [7].

Various censoring techniques and statistical analyses of censored data are de-

scribed in more details in many monographs [4, 8]. In order to estimate unknown param-

eters of particular distributions, the maximum likelihood (ML) approach is usually ap-

plied [9–11]. The ML method for estimating unknown parameters of the left-censored

normal and log-normal distributions is well developed [5, 12, 13]. However, the interest

in statistical analyses of censored data with asymmetric distributions which cannot be

easily transformed into symmetric ones (e.g. normal distribution) has increased in many

application areas recently. An overview of such distributions together with description

of their properties can be found, for example, in [14]. Due to the monotonicity property

of the hazard function and various shapes of the probability density function, Weibull

distribution is very popular. Various approaches to inference on the parameters of the

Weibull distribution can be found, for example, in [15–18]. A demonstration of parame-

ters estimates properties based on numerical study for censored and uncensored Weibull
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distribution can be found in [19]. Moreover, the generalized exponential (GE) distribu-

tion [20], which is similar to Weibull distribution, has been of great interest lately. ML es-

timates of unknown parameters in case of censored GE distribution [1, 21, 22] were stud-

ied as well. In addition to that, some authors deal with comparison of censored Weibull

and GE distributions with each other ([23] and references inside) and also with gamma

and log-normal distributions [1, 24].

An advantage of the ML approach lies (under certain regularity conditions) in good

asymptotic properties of the obtained estimates. The speed of convergence of estimators

distribution to normal distribution and the asymptotic bias can be quite easily assessed in

practical situations using simulations. The properties of ML estimates in case of singly,

doubly and triply left-censored exponential distributions (a special case of the GE distri-

bution) based on simulations can be found in [6]. On the other hand, ML approach often

requires special numerical algorithms for solving likelihood equations [25]. In case of

Weibull distribution, a simple fixed point type algorithm for calculating the ML esti-

mates of unknown parameters was proposed in [19]. A proper optimization procedures

often based on EM algorithm [26, 27] can also be used. This approach is rather benefi-

cial when calculating ML estimates of unknown parameters. However, estimation of pa-

rameters variances using the Fisher information matrix (FIM) is computationally de-

manding. This inconvenience can be overcome using the exact formulas for calculating

the (expected) FIM proposed in this paper.

This contribution is organized as follows: in Section 1, a derivation of a computa-

tional procedure for determination of ML estimates of parameters of type I multiply

left-censored Weibull distribution is described. In Section 2, the expected FIM is ana-

lytically determined. In Section 3, bias of the estimates of Weibull distribution parame-

ters considering various DLs (censoring schemes) and censoring multiplicity k �1 2 3, ,

(single, double and triple censoring) is described. Furthermore, the sample (observed)

FIM and the expected FIM are compared and the bias of the FIM estimates is analyzed

using simulations. Simulations focus primarily on estimator properties for small sam-

ple sizes and also on comparing the estimates from singly (k �1), doubly ( )k � 2 and

triply ( )k � 3 left-censored samples. The paper was motivated by the need to process

real environmental data described in [28]. The application of the derived method is

presented in the last section.

1. ML ESTIMATION

Let X X n1, ,� be a random sample from Weibull distribution with scale parameter

� � 0, shape parameter �� 0, cumulative distribution function (cdf)

F x

x
x

x

( , , )
exp ,

,

� � �

�

�
� � �

�
�

	



�

�



�
�

�

�
�
�

�

�

�

�
�1 0

0 0

for

for�
�

(1)

probability density function (pdf)

f x
x

x
x

x

( , , )
exp ,

� �
�

� ��

�
�

�
��

�
�

	



�

�



�
�

�

�
�
�

�

�

�1 0

0

for

for 0,

�

�
�

�
�

(2)

and skewness

� � �
� � � �

( , ) �

��

�
�

	



�� ��

�
�

	



� ��

�
�

	



�� �2 1

1
3 1

1
1

2
1

33� � � ��

�
�

	



�

��

�
�

	



�� ��

�
�

	



�

�



�

�

�
�� �1

2
1

12
3 2

� �

/
.

82 ISSN 1019-5262. Êèáåðíåòèêà è ñèñòåìíûé àíàëèç, 2019, òîì 55, ¹ 4



Furthermore, let X X n( ) ( ), ,1 � be the ordered sample of X X n1, ,� which is type I

multiply left-censored with detection limits d dk1, ,� and we put d0 0� . Moreover, N i

is the number of observations in the interval ( ,d di i� �1 and N 0 is the number of uncen-

sored observations X Xn N n( ) ( ), ,� �0 1 � . Considering the type I censoring, the random

vector ( , , , )N N N k0 1 � has multinomial distribution Mu k kn�1 0 1( , , , , )� � �� , where

� � � � �i i iF d F d� � �( , , ) ( , , )1 , i k�1, ,� , � � �0 1� �F dk( , , ) and n N N� � �0 1 �

� � N k . Particular marginal frequencies N i have binomial distribution Bi ( , )n i� ,

i k� 0 1, , ,� .

Using the results from [4], the log-likelihood function of the censored sample can

be written in the form of

l N N X X
n

N N
k n N n

k
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and we put

i n N

n

if X

� � �
� �

0 1

0log [ ( )]( ) for N 0 0� .

The usual approach to estimation of parameters �, � is to derive likelihood equations

and solve them numerically using, for example, the Newton–Raphson method or other

methods for searching of extremes (see e.g. [29]) can be used. However, it was found

out that in case the shape parameter value is low, there are numerical difficulties with

obtaining the solution. For that very reason, ML estimates �� and �� were obtained by maxi-

mizing the log-likelihood function (3) using the Nelder–Mead simplex algorithm [30].

When using this type of algorithm, it is necessary to select initial values of the parameters

that need to be estimated. Starting values of the algorithm were selected using the moment

estimator of parameters of the Weibull distribution based on samples in which the cen-

sored observations were replaced by a constant lying between the detection limits.

2. FISHER INFORMATION MATRIX

In this section, the expected FIM for type I multiply left-censored samples will be

derived. According to [9], the sample FIM can be defined (under the regularity

conditions) using formula

~
~ ~

~ ~J n
J J

J J

l l

l
�
�



�

�

�
� �

�
�

�
�
�

� �

�
�

� �

11 12

21 22

2

2

2

2

� � �

� �
�
�

�

�




�
�
�
�
�

�

�

�
�
�
�
�

2

2

l

�

. (4)

The sample FIM
~
J n is an unbiased estimator of the expected FIM J n and

~
( , ) ( , )J Jn n� � � �� in probability for n � � . On that account, in many applica-

tions when the exact determination of the expected FIM is complicated, the sample

FIM is used instead [3, 31]. One major disadvantage of this approach is the rather

extensive variability of the sample FIM. Many authors prefer another approach like

bootstrap or Bayesian methods [19] for description of variability of parameters esti-

mates. The expected FIM can be used for statistical inference and more precise de-

scription of the asymptotic variability of obtained estimates. On that account, our atten-

tion will now be paid to determination of the expected FIM. Similar problems were

solved, for example, in [6] for exponential distribution, in [1] for GE distribution or

in [22] and [23] using the hazard function according to [32].
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The expected FIM can be calculated using formula
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The explicit expressions for E1, E2 , E3 and details of the derivation can be found

in the Appendix 1.
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The expected FIM can be used for statistical inference of parameters � and �.

Considering the asymptotic properties of the ML estimator �� (�� respectively), accord-

ing to [10], n( � )� �� ( n(� )� �� respectively) has asymptotically normal distribution

N( , )0 2�
�

(N( , )0 2� � respectively), where �
�
2

11
1� �J (� �

2
22

1� �J respectively). The prop-

erties of estimators ��, �� considering various sample sizes n, various number of detec-

tion limits k and various censoring schemes will be analyzed using simulations in the

next section.

3. ESTIMATORS BEHAVIOR BASED ON SIMULATIONS

The estimates of parameters and parametric functions derived in the previous sec-

tion will be analyzed and compared using simulations. Firstly, 20,000 Type I sin-

gly, doubly and triply left-censored random samples with size n �10 20 30 50 100, , , ,

from Weibull distribution were generated. Since � is the scale parameter, and the

maximum likelihood estimators are scale invariant, we take � �1 without loss of

generality. In order to describe various shapes of Weibull distribution, we take

� � 0.5, 1.5, 3, which corresponds to skewnesses � � 6.62, 1.07, 0.17. Limits of de-

tection di , i k�1, ,� , k �1 2 3, , , were chosen as quantiles of the Weibull distribu-

tion using equations q F di i� ( , , )� � , where qi are given in Table 1. Particular cen-

soring schemes are denoted as c c1 9, ,� , and correspond to various quantiles which

determine detection limits for k �1 2 3, , . Thus, for example, the q1 given in column

“Double” in Table 1 denotes the proportion of doubly censored observations, and

describes the given censoring scheme. The censoring scheme c1 represents the

smallest proportion (10%) of censored data, and the censoring scheme c9 represents

the largest proportion (90%) of censored data in case of singly, doubly and triply

censored samples. The large proportion of censored data corresponds to real data

which will be analyzed later on.

Next, ML estimates of parameters �, � from 20,000 samples were calculated by

maximization of (3), and their mean values ��, �� were determined. It was found out (see

Fig. 1) that the estimate of parameter � has lower bias for higher values of parameter �

(i.e. for lower skewness) considering various censoring schemes from Table 1.

In all the following tables, only results for censoring schemes c c c c c1 3 5 7 9, , , , are pre-

sented. Moreover, estimates �� are similar bias-wise for various values of � (not shown

in figures). It can be seen from Table 2 (only results for single and double censoring
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T a b l e 1

Censoring

Quantiles for determination of DL values considering single, double and triple
censoring and various censoring schemes

Single Double Triple

q1 q1 q2 q1 q2 q3

c1 0.10 0.05 0.10 0.03 0.07 0.10

c2 0.20 0.10 0.20 0.07 0.13 0.20

c3 0.30 0.15 0.30 0.10 0.20 0.30

c4 0.40 0.20 0.40 0.13 0.27 0.40

c5 0.50 0.25 0.50 0.17 0.33 0.50

c6 0.60 0.30 0.60 0.20 0.40 0.60

c7 0.70 0.35 0.70 0.23 0.47 0.70

c8 0.80 0.40 0.80 0.27 0.53 0.80

c9 0.90 0.45 0.90 0.30 0.60 0.90



are shown), where the average ML esti-

mates �� , �� and their average mean

square errors (MSE) can be found, that

the ML estimate �� is rather satisfying

until the censoring scheme c7 even

when the sample size is small (n �10).

For n�10, the bias of �� is very small,

and from the practical point of view

negligible for the censoring scheme c7

and lower. The effect of multiplicity of

the censoring on the estimation of pa-

rameter � is noticeable only for higher

detection limits depending on the sam-

ple size. For n � 30, the differences

among the single, double and triple

censoring are almost negligible until

scheme c8 when, in accordance with

expectations, the highest bias of esti-

mate is present in case of single censor-

ing. The ML estimate �� is significantly

biased even when the censoring is low,

and sample size n �100 (see Table 2).

Variances of the ML estimators ��,
�� of parameters �, � were estimated by

means of sample variances s2 ( � )� , s2 (� )�

of simulated values. Furthermore, the as-

ymptotic variances � � � �2
11

1( ) ( , )� �J ,

� � � �2
22

1( ) ( , )� �J were compared with

their est imates � � � �2
11

1( � ) ( � , � )� �J ,

� � � �2
22

1(� ) ( � , � )� �J based on the ex-

pected FIM (5) and ~ ( � )
~

( � , � )� � � �2
11

1� �J ,

~ (� )
~

( � , � )� � � �2
22

1� �J based on the sample

FIM (4) using simulations. The esti-

mates � �2 ( � ), � �2 (� ) and ~ ( � )� �2 , ~ (� )� �2

were averaged over 20,000 repetitions,
and from now on when speaking about

the estimates � �2 ( � ), � �2 (� ), ~ ( � )� �2 ,

~ (� )� �2 of the asymptotic variances

� �2 ( ), � �2 ( ), we will have in mind the

estimates averaged over 20,000 repetitions. These estimates together with the corre-

sponding empirical sample variances S ns2 2( � ) ( � )� �� , S ns2 2(� ) (� )� �� will be further

compared with the asymptotic variances considering various sample sizes n. Due to

a rather large number of samples, the estimators S 2 ( � )� , S 2 (� )� allow us to assess the

bias of estimators � �2 ( � ), � �2 (� ), ~ ( � )� �2 , ~ (� )� �2 , and the bias of asymptotic variances

� �2 ( ), � �2 ( ) from the true (simulation-based) variances S 2 ( � )� , S 2 (� )� of the esti-

mates.

86 ISSN 1019-5262. Êèáåðíåòèêà è ñèñòåìíûé àíàëèç, 2019, òîì 55, ¹ 4

Fig. 1. The average ML estimates of parameter � con-
sidering various values of � and single (index S), dou-
ble (index D), triple (index T) censoring; � � 0.5 (a),
� � 1.5 (b), � � 3 (c); sample size n � 30
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It can be seen from Fig. 2 that behavior of estimates � �2 ( � ), ~ ( � )� �2 is significantly

influenced by the value of parameter �. In case �� 1, i.e. the skewness of the sample is

high (� 2), both estimates are higher than the asymptotic variance � �2 ( ). When ��1,

i.e. the skewness of the sample is low (� 2), both estimates are lower than the asymp-

totic variance � �2 ( ). The comparison of above mentioned characteristics of variance

(see Table 3 in case of double censoring) shows that the anticipated bias of estimator

� �2 ( � ) is substantial for small sample sizes. Furthermore, the estimator S 2 ( � )� is of

lower (higher respectively) values than asymptotic variance � �2 ( ) for ��1 (�� 1 re-

spectively). All of the estimators of variance almost coincide for ��1 and the sample

size n � 100. Furthermore, the asymptotic variance � �2 ( ) (obtained from the expected

FIM) was analyzed considering various sample sizes and censoring schemes. With the

exception of schemes c1– c3 , variability of the estimators is, as expected, the lowest for

triple censoring for an arbitrary sample size.
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Fig. 2. Comparison of the estimates of variance S 2 (� )� , � �2 (� ), ~ (� )� �2 and the asymptotic variance � �2 ( )
considering double censoring and sample size n � 30; � � 0.5 (a), � � 1.5 (b); logarithmic scale on the
y-axis
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S D
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� �D
2 (� )

S D
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� �D
2 ( )

T a b l e 2

Censoring

The average ML estimates ��, �� and their average MSE (in the parenthesis)
considering single (S) and double (D) censoring and sample size n

� � 1, n � 10 � � 1, n � 30 � � 1, n � 100

S D S D S D

c1 1.00 (0.050) 1.00 (0.050) 1.00 (0.017) 1.00 (0.017) 1.00 (0.005) 1.00 (0.005)

c3 0.99 (0.052) 1.00 (0.050) 1.00 (0.017) 1.00 (0.017) 1.00 (0.005) 1.00 (0.005)

c5 0.99 (0.058) 0.99 (0.051) 1.00 (0.020) 1.00 (0.017) 1.00 (0.006) 1.00 (0.005)

c7 1.03 (0.071) 1.00 (0.053) 1.00 (0.029) 1.00 (0.018) 1.00 (0.009) 1.00 (0.005)

c9 1.33 (0.214) 1.07 (0.066) 1.10 (0.112) 1.00 (0.020) 1.02 (0.038) 1.00 (0.006)

Censoring
� � 1.5, n � 10 � � 1.5, n � 30 � � 1.5, n � 100

S D S D S D

c1 1.75 (0.355) 1.75 (0.350) 1.57 (0.067) 1.57 (0.065) 1.52 (0.016) 1.52 (0.016)

c3 1.78 (0.446) 1.76 (0.382) 1.58 (0.081) 1.57 (0.069) 1.52 (0.019) 1.52 (0.016)

c5 1.96 (58.58) 1.77 (0.408) 1.60 (0.119) 1.58 (0.076) 1.53 (0.028) 1.52 (0.019)

c7 2.76 (161.9) 1.77 (0.442) 1.67 (0.273) 1.59 (0.091) 1.54 (0.051) 1.52 (0.022)

c9 6.59 (558.9) 1.62 (0.418) 2.84 (80.11) 1.58 (0.095) 1.66 (0.278) 1.53 (0.026)



The behavior of �� variance estimators is similar for various values of �. The com-

parison of the characteristics of variance (see Table 4 in case of double censoring)

shows that the anticipated bias of estimator � �2 (� ) is substantial for small sample sizes.

Furthermore, the estimator S 2 (� )� is of higher values than asymptotic variance � �2 ( )

for all sample sizes and censoring schemes. Furthermore, the asymptotic variance

� �2 ( ) (obtained from the expected FIM) was analyzed considering various sample

sizes and censoring schemes. With the exception of schemes c1– c2 , the variability of

the estimators is, as expected, the lowest for triple censoring for arbitrary sample size.

Finally, using the variance estimators � �2 ( � ), � �2 (� ), ~ ( � )� �2 , ~ (� )� �2 , the lower and

the upper confidence limits of the estimate of parameters � and � can be obtained.

The coverage probability of 95% confidence interval, computed as the proportion

of the number of times, out of 20,000 replications, the estimated 95% confidence inter-

val contains the true parameter value, is calculated. In general, the coverage probability

of � is better with higher values of �, because the estimator of parameter � performs

better for higher values of parameter �. When �� 1, i.e. the skewness of the sample is

high (� 2), the estimator based on expected FIM (5) performs better than the estimator

based on sample FIM (4) for all censoring schemes, especially for small sample sizes
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T a b l e 3

Censoring

Comparison of the estimates of variance S
2 ( � )� , � �2 ( � ) , ~ ( � )� �2 and the asymptotic

variance � �2 ( ) considering double censoring and sample size n

� � 0.5, n � 10 � � 0.5, n � 100

S 2 (� )� � �2 ( ) � �2 (� ) ~ (� )� �2 S 2 (� )� � �2 ( ) � �2 (� ) ~ (� )� �2

c1 6.2696 4.6015 6.8042 6.6231 4.4943 4.4680 4.6574 4.6416

c3 6.0831 4.9152 6.9288 6.4813 4.5989 4.5557 4.7488 4.7115

c5 6.0369 5.2786 7.2980 6.5860 4.8258 4.7072 4.9366 4.8834

c7 6.3032 5.7804 8.2039 7.1779 5.1093 4.9976 5.1648 5.1014

c9 8.7636 6.6003 13.0720 11.0980 5.7891 5.6527 5.8591 5.7752

Censoring
� � 1.5, n � 10 � � 1.5, n � 100

S 2 (� )� � �2 ( ) � �2 (� ) ~ (� )� �2 S 2 (� )� � �2 ( ) � �2 (� ) ~ (� )� �2

c1 0.4954 0.5036 0.4560 0.4474 0.5004 0.4957 0.4904 0.4894

c3 0.4982 0.5205 0.4707 0.4551 0.4955 0.5039 0.4988 0.4971

c5 0.5093 0.5391 0.4884 0.4723 0.5191 0.5189 0.5139 0.5122

c7 0.5257 0.5664 0.5235 0.5144 0.5484 0.5489 0.5434 0.5430

c9 0.6064 0.6271 0.7248 0.7230 0.6156 0.6176 0.6104 0.6120

T a b l e 4

Censoring

Comparison of the estimates of variance S
2 ( � )� , � �2 ( � ) , ~ ( � )� �2 and the asymptotic

variance � �2 ( ) considering double censoring and sample size n; � � 1.5

n � 10 n � 100

S 2 (� )� � �2 ( ) � �2 (� ) ~ (� )� �2 S 2 (� )� � �2 ( ) � �2 (� ) ~ (� )� �2

c1 2.8844 1.4203 2.0839 2.1990 1.5242 1.4187 1.4668 1.4764

c3 3.1440 1.5105 2.2399 2.4523 1.6002 1.5485 1.5978 1.6169

c5 3.3591 1.6513 2.4820 2.8280 1.8402 1.7315 1.7901 1.8214

c7 3.6670 1.9000 2.9202 3.2968 2.1143 1.9827 2.0569 2.0976

c9 4.0300 2.4558 3.1862 3.6107 2.5537 2.3383 2.4623 2.4876
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Fig. 3. Coverage probabilities for parameter �� considering various estimates of variance and double cen-
soring; n � 10 (a), n � 30 (b), n � 100 (c); � � 0.5

�

~ (� )� �2

� �2 (� )

a

�

b

c

�

T a b l e 5

Censoring

Coverage probabilities (CP) for parameter �� based on expected FIM (5) considering
single (S), double (D) and triple (T) censoring and sample size n; � � 1.5

n � 10, S n � 10, D n � 10, T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 0.593 1.398 0.888 0.596 1.398 0.887 0.592 1.403 0.890

c3 0.580 1.406 0.896 0.589 1.402 0.894 0.588 1.406 0.898

c5 0.562 1.428 0.909 0.580 1.408 0.898 0.584 1.407 0.901

c7 0.549 1.515 0.912 0.572 1.432 0.918 0.581 1.425 0.923

c9 0.729 1.926 0.599 0.554 1.588 0.942 0.576 1.565 0.955

Censoring
n � 30, S n � 30, D n � 30, T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 0.754 1.245 0.930 0.755 1.245 0.931 0.752 1.249 0.935

c3 0.745 1.248 0.935 0.750 1.245 0.932 0.750 1.246 0.934

c5 0.730 1.266 0.939 0.747 1.250 0.933 0.751 1.246 0.933

c7 0.685 1.322 0.940 0.741 1.257 0.935 0.749 1.250 0.934

c9 0.570 1.631 0.791 0.725 1.278 0.949 0.739 1.266 0.947

Censoring
n � 100, S n � 100, D n � 100, T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 0.863 1.137 0.944 0.863 1.137 0.944 0.861 1.139 0.947

c3 0.859 1.140 0.947 0.862 1.137 0.945 0.861 1.138 0.947

c5 0.850 1.149 0.947 0.860 1.140 0.943 0.862 1.137 0.942

c7 0.819 1.182 0.948 0.856 1.143 0.946 0.860 1.139 0.944

c9 0.671 1.371 0.899 0.846 1.151 0.944 0.854 1.145 0.949

� �2 (� )
~ (� )� �2

� �2 (� )
~ (� )� �2



(see Fig. 3 for double censoring and � � 0.5). For ��1, coverage probabilities of both

estimators almost coincide. The results showed that the coverage probability of � are

very similar considering double and triple censoring for all sample sizes and various

values of � (see Table 5 for � � 1.5; the average lower (LCL) and upper (UCL) confi-

dence limits are included). The coverage probability gets higher with a higher censor-

ing scheme for small sample sizes (n� 50). In case of single censoring, the behavior is

similar until censoring scheme c7 .

The coverage probability of � is similar considering double and triple censoring

for all values of � (see Table 6 for � � 1.5; the average lower (LCL) and upper (UCL)

confidence limits are included), because all the estimates of � are similar bias-wise. The

coverage probabilities are quite close to the prescribed significance level for both estima-

tors (based on the expected and the sample FIM) and practically coincide for n� 50.

4. REAL DATA EXAMPLE

Statistical methods derived in previous sections were used in the analysis of the

worldwide commonly used synthetic musk compounds (e.g. galaxolide, musk

ketone, musk xylene, etc.) present in fish muscle (see [28] for more details). Here

we show one example, specifically modeling of galaxolide concentration using dou-

bly left-censored Weibull distribution (see Fig. 4). The real sample consists of

30 fish from the carp family (Leuciscus cephalus). Fish tissue samples were an-

alyzed, and, among others, polycyclic musk compound called galaxolide was

explored with N 0 4� , N1 3� , N 2 23� , d1 � 8.9488 �g kg/ , d2 29 8294� . �g / kg

and X ( ) .27 30 3630� �g / kg, X ( ) .28 39 2597� �g / kg, X ( ) .29 48 9161� �g / kg,

X ( ) .30 79 7756� �g / kg. The level of censoring is high, and approximately corre-
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T a b l e 6

Censoring

Coverage probabilities (CP) for parameter �� based on expected FIM (5) considering
single (S), double (D) and triple (T) censoring and sample size n; � � 1.5

n � 10, S n � 10, D n � 10, T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 0.876 2.620 0.942 0.889 2.605 0.942 0.861 2.637 0.949

c3 0.813 2.751 0.937 0.870 2.650 0.939 0.855 2.660 0.957

c5 0.688 3.233 0.933 0.831 2.706 0.943 0.835 2.676 0.960

c7 0.384 5.137 0.937 0.760 2.789 0.950 0.772 2.719 0.967

c9 0.000 13.689 0.967 0.605 2.642 0.961 0.632 2.577 0.976

Censoring
n � 30, S n � 30, D n � 30, T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 1.119 2.029 0.946 1.126 2.020 0.946 1.111 2.036 0.954

c3 1.075 2.085 0.946 1.109 2.038 0.947 1.110 2.036 0.954

c5 1.003 2.200 0.944 1.087 2.069 0.948 1.100 2.049 0.953

c7 0.864 2.483 0.938 1.058 2.114 0.945 1.071 2.085 0.954

c9 0.391 5.290 0.953 0.996 2.166 0.958 1.014 2.121 0.971

Censoring
n � 100, S n � 100, D n � 100, T

LCL UCL CP LCL UCL CP LCL UCL CP

c1 1.280 1.763 0.950 1.285 1.758 0.951 1.277 1.766 0.958

c3 1.254 1.790 0.949 1.274 1.768 0.951 1.275 1.765 0.956

c5 1.212 1.846 0.948 1.261 1.784 0.950 1.270 1.773 0.954

c7 1.127 1.963 0.947 1.244 1.805 0.948 1.253 1.792 0.957

c9 0.861 2.467 0.942 1.223 1.836 0.947 1.231 1.820 0.964



sponds to censoring scheme c9 . The un-

known parameters of the Weibull distri-

bution were estimated, and particular

95% confidence intervals were calculated

using estimators of variance based on the

expected and the sample FIM. Specifi-

cally, the ML estimate �� � 23.98

(�� � 1.61 respectively) with confidence in-

terval � "# �17 91 30 05. , . ( . , .�"# �1 10 2 12

respectively) with estimate of variance

based on the expected FIM, and

� "# �17 82 30 13. , . (�"# �1 17 2 06. , . re-

spectively) with estimate of variance

based on the sample FIM.

From the practical point of view, it would be more interesting to have confidence

limits for the mean concentration. In order to obtain them, results from the previous

section can be utilized, and the delta method can be used [28, 33].

CONCLUSIONS

This paper dealt with type I multiply left-censored Weibull distribution. It was de-

scribed how to estimate parameters of censored Weibull distribution using the method

of maximum likelihood, and the expected FIM was analytically determined. Moreover,

simulation results showed what bias of estimators �� , �� and � �2 ( � ), � �2 (� ) can be ex-

pected considering various sample sizes, various censoring schemes, and degree of

censoring. Furthermore, it is shown what change in the variance estimate can be ex-

pected when the sample FIM is used instead of the expected FIM. Using different

variance estimators, the lower and the upper confidence limits of the parameters esti-

mates were obtained and the coverage probabilities of 95% confidence intervals were

calculated. It was shown that the coverage probability of � is better with higher values

of �, and when �� 1, i.e. the skewness of the sample is high ( )� 2 , the estimator based

on the expected FIM performs better than the estimator based on the sample FIM for

all censoring schemes, especially for small sample sizes.

The problem of measured values found below the detection limits is common in

many application areas. The methods derived in this paper can be favorably used in-

stead of various ad hoc methods (e.g. replacing censored values with a constant) when-

ever dealing with type I multiply left-censored data from Weibull distribution. All the

procedures used were implemented in the Matlab environment (version R2015a),

and are available from the first author upon request.

APPENDIX 1. DERIVATION OF THE EXPECTED FIM

The expected FIM is calculated using formula
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Fig. 4. Histogram of galaxolide concentration with
Weibull density
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Furthermore, it remains to derive the expectations
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where X i( ) is the i-th ordered statistic.

Using properties of the conditional expectation E E E( ( | )) ( )X Y X� (X Y, are random vari-

ables), and due to the fact that N n0 0~ Bi ( , )� , one gets
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and analogically
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The pdf of the variable X i( ) is in the form of (see [34])
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where F is cdf (1) and f is pdf (2) of the uncensored Weibull distribution. Gradually, one
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(see [35]), the expectations (8) are obtained in the form of
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where � e �� 0.57722 is Euler’s constant. Substituting (12)–(14) into (9)–(11), one gets
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Moreover, substituting (7) and (15)–(17) into (6), the elements of the FIM (5) are obtained.

94 ISSN 1019-5262. Êèáåðíåòèêà è ñèñòåìíûé àíàëèç, 2019, òîì 55, ¹ 4



REFERENCES

1. Mitra S., Kundu D. Analysis of left censored data from the generalized exponential distribution.

J. Stat. Comput. Simul. 2008. Vol. 78. P. 669–679. DOI: https://doi.org/10.1080/00949650701344158.

2. Aboueissa A.E.-M.A., Stoline M.R. Maximum likelihood estimators of population parameters from

doubly left-censored samples. Environmetrics. 2006. Vol. 17. P. 811–826. DOI: https://doi.org/

10.1002/env.795.

3. Aboueissa A.E.-M.A. Maximum likelihood estimators of population parameters from multiply

censored samples. Environmetrics. 2009. Vol. 20. P. 312–330. DOI: https://doi.org/10.1002/env.931.

4. Cohen A.C. Truncated and censored samples. New York: Marcel Dekker, 1991. 328 p.

5. El-Shaarawi A.H., Naderi A. Statistical inference from multiply censored environmental data.

Environ. Monit. Assess. 1991. Vol. 17. P. 339–347. DOI: https://doi.org/10.1007/BF00399313.

6. Fusek M., Mich�lek J. Statistical analysis of type I multiply left-censored samples from exponential

distribution. J. Stat. Comput. Simul. 2015. Vol. 85. P. 2148–2163. DOI: https://doi.org/10.1080/

00949655.2014.923886.

7. Fusek M., Mich�lek J. Statistical methods for analyzing musk compounds concentration based on

doubly left-censored samples. Int. J. Math. Model. Method. Appl. Sci. 2013. Vol. 7. P. 755–763.

8. Cox D.R., Oakes D. Analysis of survival data. New York: Chapman and Hall/CRC, 1984. 201 p.

9. Barndorff-Nielsen O.E., Cox D.R. Inference and asymptotics. London: Chapman and Hall/CRC,

1994. 360 p.

10. Lehmann E.L., Casella G. Theory of point estimation, second ed. New York: Springer-Verlag, 1998.

617 p.

11. Samosonok O.S. Analysis of empirical estimates obtained for Gibbs distribution parameters by the

maximum likelihood method. Cybernetics and Systems Analysis. 2013. Vol. 49, N 2. P. 316–324.

DOI: https://doi.org/10.1007/s10559-013-9514-3.

12. El-Shaarawi A.H., Dolan D.M. Maximum likelihood estimation of water concentrations from

censored data. Can. J. Fish. Aquat. Sci. 1989. Vol. 46. P. 1033–1039. DOI: https://doi.org/10.1139/

f89-134.

13. El-Shaarawi, A.H., Esterby, S.R. Replacement of censored observations by a constant: an evaluation.

Water Res. 1992. Vol. 26. P. 835–844. DOI: https://doi.org/10.1016/0043-1354(92)90015-V.

14. Johnson N.L., Kotz S., Balakrishnan N. Continuous univariate distributions, Vol. 1, 2nd ed. New

York: John Wiley and Sons, 1994. 784 p.

15. Banerjee A., Kundu D. Inference based on type-II hybrid censored data from a Weibull distribution.

IEEE Trans. Reliab. 2008. Vol. 57. P. 369–378. DOI: https://doi.org/10.1109/TR.2008.916890

16. Kundu D. On hybrid censored Weibull distribution. J. Stat. Plan. Inference. 2007. Vol. 137.

P. 2127–2142. DOI: https://doi.org/10.1016/j.jspi.2006.06.043.

17. Kundu D. Bayesian inference and life testing plan for the Weibull distribution in presence of

progressive censoring. Technometrics. 2008. Vol. 50. P. 144–154. DOI: https://doi.org/10.1198/

004017008000000217.

18. Shoari N., Dub� J.S., Chenouri S. Estimating the mean and standard deviation of environmental data with

below detection limit observations: Considering highly skewed data and model misspecification.

Chemosphere. 2015. Vol. 138. P. 599–608. DOI: https://doi.org/10.1016/ j.chemosphere.2015.07.009.

19. Joarder A., Krishna H., Kundu D. Inferences on Weibull parameters with conventional type-I

censoring. Comput. Stat. Data Anal. 2011. Vol. 55. P. 1–11. DOI: https://doi.org/10.1016/

j.csda.2010.04.006.

20. Gupta R.D., Kundu D. Generalized exponential distribution. Aust. N. Z. J. Stat. 1999. Vol. 41.

P. 173–188. DOI: https://doi.org/10.1111/1467-842X.00072.

21. Gupta R.D., Kundu D. Generalized exponential distribution: Existing results and some recent

developments. J. Stat. Plan. Inference. 2007. Vol. 137. P. 3537–3547. DOI: https://doi.org/10.1016/

j.jspi.2007.03.030.

22. Zheng G. On the Fisher information matrix in type II censored data from the exponentiated

exponential family. Biom. J. 2002. Vol. 44, Iss. 3. P. 353–357. DOI: https://doi.org/10.1002/

1521-4036(200204)44:3<353::AID-BIMJ353>3.0.CO;2-7.

23. Gupta R.D., Kundu D. On the comparison of Fisher information of the Weibull and GE distributions.

J. Stat. Plan. Inference. 2006. Vol. 136. DOI: P. 3130–3144. https://doi.org/10.1016/j.jspi. 2004.11.013.

24. Dube S., Pradhan B., Kundu D. Parameter estimation of the hybrid censored log-normal distribution.

J. Stat. Comput. Simul. 2011. Vol. 81. DOI: P. 275–287. https://doi.org/10.1080/ 00949650903292650.

25. Chen D., Lu J.C., Li C.S., Park J. Parameter estimation for bivariate shock models with singular

distribution for censored data with concomitant order statistics. Aust. N. Z. J. Stat. 2000. Vol. 42.

P. 323–336. DOI: https://doi.org/10.1111/1467-842X.00129.

26. Helsel D.R. Fabricating data: How substituting values for nondetects can ruin results, and what can

be done about it. Chemosphere. 2006. Vol. 65. P. 2434–2439. DOI: https://doi.org/10.1016/

j.chemosphere.2006.04.051.

ISSN 1019-5262. Êèáåðíåòèêà è ñèñòåìíûé àíàëèç, 2019, òîì 55, ¹ 4 95



27. Helsel D.R. Statistics for censored environmental data using Minitab® and R. New York: John Wiley

and Sons, 2012. 344 p.

28. Fusek M., Mich�lek J., V�vrov� M. Evaluation of contamination data with non-detects using

censored distributions. Fresenius Environ. Bull. 2015. Vol. 24. P. 4165–4172.

29. Voronin A.N. A compromise method in constrained optimization problems. Cybernetics and Systems

Analysis. 2013. Vol. 49, N 1. P. 77–80. DOI: https://doi.org/10.1007/s10559-013-9487-2.

30. Lagarias J.C., Reeds J.A., Wright, M.H., Wright, P.E. Convergence properties of the Nelder–Mead

simplex method in low dimensions. SIAM J. Optim. 1998. Vol. 9. P. 112–147. DOI: https://doi.org/

10.1137/S1052623496303470.

31. Fahrmeier L., Tutz G. Multivariate statistical modelling based on generalized linear models, second

ed. New York: Springer-Verlag, 2001. 518 p.

32. Efron B., Johnstone I.M. Fisher’s information in terms of the hazard rate. Ann. Stat. 1990. Vol. 18.

P. 38–62. DOI: https://doi.org/10.1214/aos/1176347492.

33. Fusek M., Mich�lek J. On the confidence intervals for mean of left-censored Weibull distribution.

22nd International Conference on Soft Computing MENDEL 2016, Brno, Czech Republic. 2016.

P. 249–254.

34. Hogg R.V., McKean, J.W., Craig, A. Introduction to Mathematical Statistics, sixth ed. Upper Saddle

River (NJ): Pearson Education, 2005. 694 p.

35. Fichtengoltz G.M. Course on the differential and integral calculus, Vol. 2 [in Russian]. Moscow:

Fiz.-Math.-Giz., 1959.

Íàä³éøëà äî ðåäàêö³¿ 08.11.2018

Ì. Ôóñåê, ß. Ì³õàëåê
ÑÒÀÒÈÑÒÈ×ÍÅ ÂÈÂÅÄÅÍÍß ÄËß ÁÀÃÀÒÎÐÀÇÎÂÎ ÖÅÍÇÓÐÎÂÀÍÎ¯ ÇË²ÂÀ ÂÈÁ²ÐÊÈ
ÒÈÏÓ I ÄËß ÐÎÇÏÎÄ²ËÓ ÂÅÉÁÓËËÀ

Àíîòàö³ÿ. Ó áàãàòüîõ ãàëóçÿõ íàóêè ÷àñòî çóñòð³÷àþòüñÿ çàäà÷³ ç öåíçóðî-
âàíèìè çë³âà äàíèìè ç îäí³ºþ àáî ê³ëüêîìà ìåæàìè âèÿâëåííÿ. Ó ö³é ðî-
áîò³ çàïðîïîíîâàíî ïðîöåäóðó äëÿ îá÷èñëåííÿ îö³íîê ìàêñèìàëüíî¿ ïðàâäî-
ïîä³áíîñò³ ïàðàìåòð³â áàãàòîðàçîâîãî öåíçóðóâàííÿ çë³âà òèïó I ç ðîçïîä³ëó
Âåéáóëëà ç óðàõóâàííÿì ð³çíî¿ ê³ëüêîñò³ ìåæ âèÿâëåííÿ. Î÷³êóâàíó ³íôîð-
ìàö³éíó ìàòðèöþ Ô³øåðà âèçíà÷åíî àíàë³òè÷íî òà ¿¿ âèãëÿä ïîð³âíÿíî ç
âèá³ðêîâîþ (ñïîñòåðåæóâàíîþ) ³íôîðìàö³éíîþ ìàòðèöåþ Ô³øåðà. Ìîäåëþ-
âàííÿ çäåá³ëüøîãî ´ðóíòóºòüñÿ íà âëàñòèâîñòÿõ îö³íîê âèá³ðîê ìàëèõ
ðîçì³ð³â. Ïðèêëàäè ïðî³ëþñòðîâàíî íà ðåàëüíèõ äàíèõ.

Këþ÷îâ³ ñëîâà: áàãàòîðàçîâî öåíçóðîâàíà çë³âà âèá³ðêà, îö³íêà ìàêñèìàëü-
íî¿ ïðàâäîïîä³áíîñò³, ðîçïîä³ë Âåéáóëëà, ³íôîðìàö³éíà ìàòðèöÿ Ô³øåðà,
öåíçóðóâàííÿ òèïó ².

Ì. Ôóñåê, ß. Ìèõàëåê
ÑÒÀÒÈÑÒÈ×ÅÑÊÈÉ ÂÛÂÎÄ ÄËß ÌÍÎÃÎÊÐÀÒÍÎ ÖÅÍÇÓÐÈÐÎÂÀÍÍÎÉ ÑËÅÂÀ
ÂÛÁÎÐÊÈ ÒÈÏÀ I ÄËß ÐÀÑÏÐÅÄÅËÅÍÈß ÂÅÉÁÓËËÀ

Àííîòàöèÿ. Âî ìíîãèõ îáëàñòÿõ íàóêè ÷àñòî âñòðå÷àþòñÿ çàäà÷è ñ öåíçóðèðî-
âàííûìè ñëåâà äàííûìè ñ îäíîé èëè íåñêîëüêèìè ãðàíèöàìè îáíàðóæåíèÿ. Â
äàííîé ðàáîòå ïðåäëîæåíà ïðîöåäóðà äëÿ âû÷èñëåíèÿ îöåíîê ìàêñèìàëüíîé
ïðàâäîïîäîáíîñòè ïàðàìåòðîâ ìíîãîêðàòíîãî öåíçóðèðîâàíèÿ ñëåâà òèïà I äëÿ
ðàñïðåäåëåíèÿ Âåéáóëëà ñ ó÷åòîì ðàçíîãî ÷èñëà ãðàíèö îáíàðóæåíèÿ. Îæèäàå-
ìàÿ èíôîðìàöèîííàÿ ìàòðèöà Ôèøåðà îïðåäåëåíà àíàëèòè÷åñêè è åå âèä ñðàâ-
íåí ñ âûáîðî÷íîé (íàáëþäàåìîé) èíôîðìàöèîííîé ìàòðèöåé Ôèøåðà. Ìîäå-
ëèðîâàíèå îñíîâàíî, ãëàâíûì îáðàçîì, íà ñâîéñòâàõ îöåíîê âûáîðîê ìàëûõ
ðàçìåðîâ. Ïðèìåðû ïðîèëëþñòðèðîâàíû íà ðåàëüíûõ äàííûõ.

Këþ÷åâûå ñëîâà: ìíîãîêðàòíî öåíçóðèðîâàííàÿ ñëåâà âûáîðêà, îöåíêà
ìàêñèìàëüíîé ïðàâäîïîäîáíîñòè, ðàñïðåäåëåíèå Âåéáóëëà, èíôîðìàöèîííàÿ
ìàòðèöà Ôèøåðà, öåíçóðèðîâàíèå òèïà ².
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