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Abstract. Left-censored data with one or more detection limits occur frequently

in many application areas. In this paper, the computational procedure for
calculation of maximum likelihood estimates of the parameters for type I
multiply left-censored data from underlying Weibull distribution is suggested and
used considering various numbers of detection limits. The expected Fisher
information matrix is analytically determined and its performance is compared
with sample (observed) Fisher information matrix using simulations. Simulations
are focused primarily on the properties of estimators for small sample sizes.
Real data illustration is included.
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INTRODUCTION

Left-censored data occur frequently in analyses of environmental or chemical data
when for a given experimental unit the attribute being measured is not present above
the detection limit (DL) d. In case the DL is fixed, we talk about type I (time) cen-
soring. The number of experimental units under DL d, i.e. the number of left-censored
experimental units, is a random variable. In case the number of censored units is fixed,
we talk about type II (failure) censoring. This paper will be focused on the type I left
censoring which can be described as follows. Assume that # experimental units are ob-
served, and X,..., X, are independent and identically distributed random variables.
As a result of the experiment we get only measurements X ; >d and the number of
observations under the detection limit d. Most authors usually focus on right censor-
ing. However, type I left-censored data are very frequent in real applications, and
a brief overview of application areas can be found in [1]. In addition to that, multiply
left-censored data often occur, mostly in environmental applications. They arise in case
there are more, say k, detection limits dy < d, <...< dj, k>1, and only observations
above the highest detection limit d;, and the numbers of observations between detec-
tion limits d;_; and d;, i=1,...,k, dy =0, are available [2-6]. In case k =2, we talk
about doubly left-censored data [7].

Various censoring techniques and statistical analyses of censored data are de-
scribed in more details in many monographs [4, 8]. In order to estimate unknown param-
eters of particular distributions, the maximum likelihood (ML) approach is usually ap-
plied [9-11]. The ML method for estimating unknown parameters of the left-censored
normal and log-normal distributions is well developed [5, 12, 13]. However, the interest
in statistical analyses of censored data with asymmetric distributions which cannot be
easily transformed into symmetric ones (e.g. normal distribution) has increased in many
application areas recently. An overview of such distributions together with description
of their properties can be found, for example, in [14]. Due to the monotonicity property
of the hazard function and various shapes of the probability density function, Weibull
distribution is very popular. Various approaches to inference on the parameters of the
Weibull distribution can be found, for example, in [15-18]. A demonstration of parame-
ters estimates properties based on numerical study for censored and uncensored Weibull
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distribution can be found in [19]. Moreover, the generalized exponential (GE) distribu-
tion [20], which is similar to Weibull distribution, has been of great interest lately. ML es-
timates of unknown parameters in case of censored GE distribution [1, 21, 22] were stud-
ied as well. In addition to that, some authors deal with comparison of censored Weibull
and GE distributions with each other ([23] and references inside) and also with gamma
and log-normal distributions [1, 24].

An advantage of the ML approach lies (under certain regularity conditions) in good
asymptotic properties of the obtained estimates. The speed of convergence of estimators
distribution to normal distribution and the asymptotic bias can be quite easily assessed in
practical situations using simulations. The properties of ML estimates in case of singly,
doubly and triply left-censored exponential distributions (a special case of the GE distri-
bution) based on simulations can be found in [6]. On the other hand, ML approach often
requires special numerical algorithms for solving likelihood equations [25]. In case of
Weibull distribution, a simple fixed point type algorithm for calculating the ML esti-
mates of unknown parameters was proposed in [19]. A proper optimization procedures
often based on EM algorithm [26, 27] can also be used. This approach is rather benefi-
cial when calculating ML estimates of unknown parameters. However, estimation of pa-
rameters variances using the Fisher information matrix (FIM) is computationally de-
manding. This inconvenience can be overcome using the exact formulas for calculating
the (expected) FIM proposed in this paper.

This contribution is organized as follows: in Section 1, a derivation of a computa-
tional procedure for determination of ML estimates of parameters of type I multiply
left-censored Weibull distribution is described. In Section 2, the expected FIM is ana-
lytically determined. In Section 3, bias of the estimates of Weibull distribution parame-
ters considering various DLs (censoring schemes) and censoring multiplicity k =1, 2, 3
(single, double and triple censoring) is described. Furthermore, the sample (observed)
FIM and the expected FIM are compared and the bias of the FIM estimates is analyzed
using simulations. Simulations focus primarily on estimator properties for small sam-
ple sizes and also on comparing the estimates from singly (k =1), doubly (k =2) and
triply (k =3) left-censored samples. The paper was motivated by the need to process
real environmental data described in [28]. The application of the derived method is
presented in the last section.

1. ML ESTIMATION

Let X{,..., X, be a random sample from Weibull distribution with scale parameter
A>0, shape parameter 7>0, cumulative distribution function (cdf)
l—exp|—| & ' for x>0
Fran=4 "7\ - (1
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Furthermore, let X(tyseoos Xy be the ordered sample of X, ..., X, which is type I
multiply left-censored with detection limits dy, ..., d;, and we put d, =0. Moreover, N;
is the number of observations in the interval (d;_;,d;) and N is the number of uncen-
sored observations X (,_y 1 1)s---» X (). Considering the type I censoring, the random
vector (N, Ny, ..., N ) has multinomial distribution Mu . (n, 6,0, ..., 0 ), where
0,' =F(dl‘,},, T)—F(dl;l,i, T), i=1...,k, 00 =1—F(dk,l, ‘L') and n = NO +N1 +...
...+ Nj. Particular marginal frequencies N; have binomial distribution Bi(n, 0;),
i=0,1,..., k.

Using the results from [4], the log-likelihood function of the censored sample can
be written in the form of

n!
l(l,l’, No,... , Nk>X(n7N0+1)’ R, X(n)) = log(wj-i-
n k
+ > loglf(Xp)+ XN, log[F(d, A D)~F(di 1, A D], (3)
i=n—Ngy+1 i=1
n
and we put Y log[f (X ;)]=0 for No =0.
i=n—Ny+1
The usual approach to estimation of parameters A, 7 is to derive likelihood equations
and solve them numerically using, for example, the Newton—Raphson method or other
methods for searching of extremes (see e.g. [29]) can be used. However, it was found
out that in case the shape parameter value is low, there are numerical difficulties with
obtaining the solution. For that very reason, ML estimates 7 and 7 were obtained by maxi-
mizing the log-likelihood function (3) using the Nelder—Mead simplex algorithm [30].
When using this type of algorithm, it is necessary to select initial values of the parameters
that need to be estimated. Starting values of the algorithm were selected using the moment
estimator of parameters of the Weibull distribution based on samples in which the cen-
sored observations were replaced by a constant lying between the detection limits.

2. FISHER INFORMATION MATRIX

In this section, the expected FIM for type I multiply left-censored samples will be
derived. According to [9], the sample FIM can be defined (under the regularity
conditions) using formula

o

o B o
L= )
o Il | 8% _6721
OtoA or?

The sample FIM .7,1 is an unbiased estimator of the expected FIM J, and
J (4, 7) > J, (A, 7) in probability for n — co. On that account, in many applica-

tions when the exact determination of the expected FIM is complicated, the sample
FIM is used instead [3, 31]. One major disadvantage of this approach is the rather
extensive variability of the sample FIM. Many authors prefer another approach like
bootstrap or Bayesian methods [19] for description of variability of parameters esti-
mates. The expected FIM can be used for statistical inference and more precise de-
scription of the asymptotic variability of obtained estimates. On that account, our atten-
tion will now be paid to determination of the expected FIM. Similar problems were
solved, for example, in [6] for exponential distribution, in [1] for GE distribution or
in [22] and [23] using the hazard function according to [32].
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The expected FIM can be calculated using formula
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The explicit expressions for £y, E,, E5 and details of the derivation can be found
in the Appendix 1.
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The expected FIM can be used for statistical inference of parameters 4 and 7.
Considering the asymptotic properties of the ML estimator A (7 respectively), accord-
ing to [10], Jn (A=4) (\/; (7 —7) respectively) has asymptotically normal distribution
N(O, ai) (N(O, 03 ) respectively), where o i =J 1_11 (0% =J 2_21 respectively). The prop-

erties of estimators A, T considering various sample sizes n, various number of detec-
tion limits £ and various censoring schemes will be analyzed using simulations in the
next section.

3. ESTIMATORS BEHAVIOR BASED ON SIMULATIONS

The estimates of parameters and parametric functions derived in the previous sec-
tion will be analyzed and compared using simulations. Firstly, 20,000 Type I sin-
gly, doubly and triply left-censored random samples with size n =10, 20, 30, 50,100
from Weibull distribution were generated. Since A is the scale parameter, and the
maximum likelihood estimators are scale invariant, we take A =1 without loss of
generality. In order to describe various shapes of Weibull distribution, we take
7=0.5, 1.5, 3, which corresponds to skewnesses y =6.62, 1.07, 0.17. Limits of de-
tection d;, i=1,..., k, k=1,2,3, were chosen as quantiles of the Weibull distribu-
tion using equations ¢; = F'(d;,A,7), where ¢g; are given in Table 1. Particular cen-
soring schemes are denoted as ¢y, ..., ¢y, and correspond to various quantiles which
determine detection limits for & =1,2,3. Thus, for example, the ¢; given in column
“Double” in Table 1 denotes the proportion of doubly censored observations, and
describes the given censoring scheme. The censoring scheme c¢; represents the
smallest proportion (10%) of censored data, and the censoring scheme cg represents
the largest proportion (90%) of censored data in case of singly, doubly and triply
censored samples. The large proportion of censored data corresponds to real data
which will be analyzed later on.

Next, ML estimates of parameters A, T from 20,000 samples were calculated by

maximization of (3), and their mean values j., 7 were determined. It was found out (see
Fig. 1) that the estimate of parameter A has lower bias for higher values of parameter t
(i.e. for lower skewness) considering various censoring schemes from Table 1.
In all the following tables, only results for censoring schemes ¢, c3, c5, ¢7, cg are pre-
sented. Moreover, estimates 7 are similar bias-wise for various values of 7 (not shown
in figures). It can be seen from Table 2 (only results for single and double censoring

Table 1

Quantiles for determination of DL values considering single, double and triple
censoring and various censoring schemes
Censoring - -
Single Double Triple

9 4 92 4 92 93
q 0.10 0.05 0.10 0.03 0.07 0.10
o 0.20 0.10 0.20 0.07 0.13 0.20
G 0.30 0.15 0.30 0.10 0.20 0.30
¢y 0.40 0.20 0.40 0.13 0.27 0.40
s 0.50 0.25 0.50 0.17 0.33 0.50
s 0.60 0.30 0.60 0.20 0.40 0.60
¢ 0.70 0.35 0.70 0.23 0.47 0.70
g 0.80 0.40 0.80 0.27 0.53 0.80
Cgy 0.90 0.45 0.90 0.30 0.60 0.90
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Fig. 1. The average ML estimates of parameter A con-
sidering various values of 7 and single (index S), dou-
ble (index D), triple (index T) censoring; 7 =0.5 (a),
T =15 (b), T =3 (c); sample size n =30

are shown), where the average ML esti-
mates A, 7 and their average mean
square errors (MSE) can be found, that
the ML estimate 4 is rather satisfying
until the censoring scheme c¢; even
when the sample size is small (n=10).
For n>10, the bias of 4 is very small,
and from the practical point of view
negligible for the censoring scheme ¢
and lower. The effect of multiplicity of
the censoring on the estimation of pa-
rameter A is noticeable only for higher
detection limits depending on the sam-
ple size. For n>30, the differences
among the single, double and triple
censoring are almost negligible until
scheme cg when, in accordance with
expectations, the highest bias of esti-
mate is present in case of single censor-
ing. The ML estimate 7 is significantly
biased even when the censoring is low,
and sample size n =100 (see Table 2).
Variances of the ML estimators ;1,
7 of parameters A, T were estimated by
means of sample variances s (;1), s (@)
of simulated values. Furthermore, the as-
ymptotic variances o? )=J 1_11 A, 7),

o? r)=J 2_21 (4,7) were compared with
their estimates o (1)=J; (L7,
o? (1?):]2_21 (A,7) based on the ex-
pected FIM (5) and 3 (4) = 7., (1. D),
X (@)=J 2_21 (1,7) based on the sample
FIM (4) using simulations. The esti-
mates 02 (1), 0% (%) and 3% (1), &% (7)
were averaged over 20,000 repetitions,
and from now on when speaking about

the estimates o> (1), o2 (%), o2(1),
52(%) of the asymptotic variances

02 (), 0% (v), we will have in mind the

estimates averaged over 20,000 repetitions. These estimates together with the corre-
sponding empirical sample variances S 2 (;l) = ns? (;l), 52 (7)= ns’ (7) will be further
compared with the asymptotic variances considering various sample sizes n. Due to
a rather large number of samples, the estimators S 2 (i), s? (7) allow us to assess the
bias of estimators o> (i), o? (@), o2 (i), o2 (7), and the bias of asymptotic variances
o’ 1), o? (r) from the true (simulation-based) variances s? (i), s? (7) of the esti-
mates.
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Table 2

The average ML estimates 1 7 and their average MSE (in the parenthesis)
considering single (S) and double (D) censoring and sample size n
Censoring
A=1,n=10 A=1, n=30 A=1, n=100
S D S D S D
q 1.00 (0.050) | 1.00 (0.050) | 1.00 (0.017) | 1.00 (0.017) | 1.00 (0.005) | 1.00 (0.005)
c3 0.99 (0.052) | 1.00 (0.050) [ 1.00 (0.017) | 1.00 (0.017) | 1.00 (0.005) | 1.00 (0.005)
s 0.99 (0.058) | 0.99 (0.051) | 1.00 (0.020) | 1.00 (0.017) | 1.00 (0.006) | 1.00 (0.005)
< 1.03 (0.071) | 1.00 (0.053) | 1.00 (0.029) | 1.00 (0.018) | 1.00 (0.009) | 1.00 (0.005)
Cgy 1.33 (0.214) | 1.07 (0.066) | 1.10 (0.112) | 1.00 (0.020) | 1.02 (0.038) | 1.00 (0.006)
. =15 n=10 =15 n=30 T =15, n=100
Censoring S D S D S D
q 1.75 (0.355) | 1.75 (0.350) | 1.57 (0.067) | 1.57 (0.065) | 1.52 (0.016) | 1.52 (0.016)
g 1.78 (0.446) | 1.76 (0.382) | 1.58 (0.081) | 1.57 (0.069) | 1.52 (0.019) | 1.52 (0.016)
Cs 1.96 (58.58)| 1.77 (0.408) [ 1.60 (0.119) | 1.58 (0.076) | 1.53 (0.028) | 1.52 (0.019)
< 2.76 (161.9) | 1.77 (0.442) | 1.67 (0.273) | 1.59 (0.091) | 1.54 (0.051) | 1.52 (0.022)
Cy 6.59 (558.9) | 1.62 (0.418) [ 2.84 (80.11) | 1.58 (0.095) | 1.66 (0.278) | 1.53 (0.026)
y y
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Fig. 2. Comparison of the estimates of variance S z(ﬁ), 02(;1), & (;l) and the asymptotic variance o? )
cons.idering double censoring and sample size n = 30; 7 =0.5 (a), T = 1.5 (b); logarithmic scale on the
y-axis

It can be seen from Fig. 2 that behavior of estimates o? (;1), o2 (;1) is significantly
influenced by the value of parameter 7. In case 7< 1, i.e. the skewness of the sample is
high (> 2), both estimates are higher than the asymptotic variance o? (1). When t>1,
i.e. the skewness of the sample is low (< 2), both estimates are lower than the asymp-
totic variance o (4). The comparison of above mentioned characteristics of variance
(see Table 3 in case of double censoring) shows that the anticipated bias of estimator

o’ (i) is substantial for small sample sizes. Furthermore, the estimator s? (;1) is of

lower (higher respectively) values than asymptotic variance o? (A) for >1 (r< 1 re-
spectively). All of the estimators of variance almost coincide for 7>1 and the sample
size n > 100. Furthermore, the asymptotic variance o2 (1) (obtained from the expected

FIM) was analyzed considering various sample sizes and censoring schemes. With the
exception of schemes ¢;—c3, variability of the estimators is, as expected, the lowest for
triple censoring for an arbitrary sample size.
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Table 3

Comparison of the estimates of variance Sz(;l), 02(;1), 52(;1) and the asymptotic
variance 02(1) considering double censoring and sample size n
Censoring
=05, n=10 T =0.5, n=100
S2h) | 2 | 2R ) | S*Q | Ph | P ()
q 6.2696 4.6015 6.8042 6.6231 4.4943 4.4680 4.6574 4.6416
G 6.0831 49152 6.9288 6.4813 4.5989 4.5557 4.7488 47115
s 6.0369 5.2786 7.2980 6.5860 4.8258 4.7072 4.9366 4.8834
< 6.3032 5.7804 8.2039 7.1779 5.1093 4.9976 5.1648 5.1014
Cy 8.7636 6.6003 13.0720 | 11.0980 | 5.7891 5.6527 5.8591 5.7752
. =15 n=10 T =15, n=100
cosomie "2 [ Q2w | o2k | &) | ') | @) | ok | 8k
q 0.4954 0.5036 0.4560 0.4474 0.5004 0.4957 0.4904 0.4894
a 0.4982 0.5205 0.4707 0.4551 0.4955 0.5039 0.4988 0.4971
s 0.5093 0.5391 0.4884 0.4723 0.5191 0.5189 0.5139 0.5122
< 0.5257 0.5664 0.5235 0.5144 0.5484 0.5489 0.5434 0.5430
Cy 0.6064 0.6271 0.7248 0.7230 0.6156 0.6176 0.6104 0.6120
Table 4
Comparison of the estimates of variance Sz(%), 02(‘?), 5 () and the asymptotic
variance oz(r) considering double censoring and sample size n; 7 =1.5
Censoring
n=10 n =100
S2@) | o*@) | o’®) @) | S2@®) | o) | o*®) )
q 2.8844 1.4203 2.0839 2.1990 1.5242 1.4187 1.4668 1.4764
[ 3.1440 1.5105 2.2399 2.4523 1.6002 1.5485 1.5978 1.6169
s 3.3591 1.6513 2.4820 2.8280 1.8402 1.7315 1.7901 1.8214
< 3.6670 1.9000 2.9202 3.2968 2.1143 1.9827 2.0569 2.0976
Cg 4.0300 2.4558 3.1862 3.6107 2.5537 2.3383 2.4623 2.4876

The behavior of 7 variance estimators is similar for various values of 7. The com-
parison of the characteristics of variance (see Table 4 in case of double censoring)

shows that the anticipated bias of estimator o? (7) is substantial for small sample sizes.

Furthermore, the estimator S 2 (7) is of higher values than asymptotic variance o? (1)
for all sample sizes and censoring schemes. Furthermore, the asymptotic variance
Oz(t) (obtained from the expected FIM) was analyzed considering various sample

sizes and censoring schemes. With the exception of schemes ¢;—c,, the variability of
the estimators is, as expected, the lowest for triple censoring for arbitrary sample size.
Finally, using the variance estimators o? (/Al), o? (@), o2 (/AI), o2 (7), the lower and
the upper confidence limits of the estimate of parameters 4 and 7 can be obtained.
The coverage probability of 95% confidence interval, computed as the proportion
of the number of times, out of 20,000 replications, the estimated 95% confidence inter-
val contains the true parameter value, is calculated. In general, the coverage probability
of 1 is better with higher values of 7, because the estimator of parameter A performs
better for higher values of parameter 7. When 7< 1, i.e. the skewness of the sample is
high (>2), the estimator based on expected FIM (5) performs better than the estimator
based on sample FIM (4) for all censoring schemes, especially for small sample sizes
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Fig. 3. Coverage probabilities for parameter 2 considering various estimates of variance and double cen-
soring; n =10 (a), n=30 (b), n=100 (¢); T =0.5

Table S
Coverage probabilities (CP) for parameter 7 based on expected FIM (5) considering
single (S), double (D) and triple (T) censoring and sample size n; v =1.5
Censoring
n=10, S n=10, D n=10, T
LCL UCL CP LCL UCL CP LCL UCL CP
q 0.593 1.398 0.888 0.596 1.398 0.887 0.592 1.403 0.890
g 0.580 1.406 0.896 0.589 1.402 0.894 0.588 1.406 0.898
s 0.562 1.428 0.909 0.580 1.408 0.898 0.584 1.407 0.901
< 0.549 1.515 0.912 0.572 1.432 0.918 0.581 1.425 0.923
Cy 0.729 1.926 0.599 0.554 1.588 0.942 0.576 1.565 0.955
. n =30, S n=230, D n=230, T
Censoring
LCL UCL CP LCL UCL CP LCL UCL CP
q 0.754 1.245 0.930 0.755 1.245 0.931 0.752 1.249 0.935
G 0.745 1.248 0.935 0.750 1.245 0.932 0.750 1.246 0.934
s 0.730 1.266 0.939 0.747 1.250 0.933 0.751 1.246 0.933
< 0.685 1.322 0.940 0.741 1.257 0.935 0.749 1.250 0.934
Cy 0.570 1.631 0.791 0.725 1.278 0.949 0.739 1.266 0.947
. n =100, S n =100, D n=100, T
Censoring
LCL UCL CP LCL UCL CP LCL UCL CP
q 0.863 1.137 0.944 0.863 1.137 0.944 0.861 1.139 0.947
G 0.859 1.140 0.947 0.862 1.137 0.945 0.861 1.138 0.947
5 0.850 1.149 0.947 0.860 1.140 0.943 0.862 1.137 0.942
< 0.819 1.182 0.948 0.856 1.143 0.946 0.860 1.139 0.944
Cy 0.671 1.371 0.899 0.846 1.151 0.944 0.854 1.145 0.949
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Table 6

Coverage probabilities (CP) for parameter 7 based on expected FIM (5) considering
single (S), double (D) and triple (T) censoring and sample size n; 7 =1.5
Censoring
n=10, S n=10, D n=10, T
LCL UCL CP LCL UCL CP LCL UCL CP
q 0.876 2.620 0.942 0.889 2.605 0.942 0.861 2.637 0.949
G 0.813 2.751 0.937 0.870 2.650 0.939 0.855 2.660 0.957
5 0.688 3.233 0.933 0.831 2.706 0.943 0.835 2.676 0.960
< 0.384 5.137 0.937 0.760 2.789 0.950 0.772 2.719 0.967
Cy 0.000 13.689 | 0.967 0.605 2.642 0.961 0.632 2.577 0.976
) n=730, S n=230, D n=230, T
Censoring
LCL UCL CP LCL UCL CP LCL UCL CP
q 1.119 2.029 0.946 1.126 2.020 0.946 1.111 2.036 0.954
& 1.075 2.085 0.946 1.109 2.038 0.947 1.110 2.036 0.954
5 1.003 2.200 0.944 1.087 2.069 0.948 1.100 2.049 0.953
< 0.864 2.483 0.938 1.058 2.114 0.945 1.071 2.085 0.954
Co 0.391 5.290 0.953 0.996 2.166 0.958 1.014 2.121 0.971
) n =100, S n =100, D n=100, T
Censoring
LCL UCL CP LCL UCL CP LCL UCL CP
q 1.280 1.763 0.950 1.285 1.758 0.951 1.277 1.766 0.958
c 1.254 1.790 0.949 1.274 1.768 0.951 1.275 1.765 0.956
5 1.212 1.846 0.948 1.261 1.784 0.950 1.270 1.773 0.954
< 1.127 1.963 0.947 1.244 1.805 0.948 1.253 1.792 0.957
Cg 0.861 2.467 0.942 1.223 1.836 0.947 1.231 1.820 0.964

(see Fig. 3 for double censoring and 7 =0.5). For 7> 1, coverage probabilities of both
estimators almost coincide. The results showed that the coverage probability of 4 are
very similar considering double and triple censoring for all sample sizes and various
values of 7 (see Table 5 for T = 1.5; the average lower (LCL) and upper (UCL) confi-
dence limits are included). The coverage probability gets higher with a higher censor-
ing scheme for small sample sizes (n< 50). In case of single censoring, the behavior is
similar until censoring scheme c;.

The coverage probability of 7 is similar considering double and triple censoring
for all values of 7 (see Table 6 for 7 =1.5; the average lower (LCL) and upper (UCL)
confidence limits are included), because all the estimates of 7 are similar bias-wise. The
coverage probabilities are quite close to the prescribed significance level for both estima-
tors (based on the expected and the sample FIM) and practically coincide for > 50.

4. REAL DATA EXAMPLE

Statistical methods derived in previous sections were used in the analysis of the
worldwide commonly used synthetic musk compounds (e.g. galaxolide, musk
ketone, musk xylene, etc.) present in fish muscle (see [28] for more details). Here
we show one example, specifically modeling of galaxolide concentration using dou-
bly left-censored Weibull distribution (see Fig. 4). The real sample consists of
30 fish from the carp family (Leuciscus cephalus). Fish tissue samples were an-
alyzed, and, among others, polycyclic musk compound called galaxolide was
explored with Ny =4, Ny =3, N, =23, d; =89488 ug/kg, d, =29.8294 ug/kg
X (30) =79.7756 ug/kg. The level of censoring is high, and approximately corre-
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sponds to censoring scheme cy. The un-
known parameters of the Weibull distri- 0:0¢
bution were estimated, and particular 0.035+
95% confidence intervals were calculated
using estimators of variance based on the
expected and the sample FIM. Specifi-
cally, the ML estimate 7 =23.98
(T =1.61 respectively) with confidence in- 0.01
terval A €(17.91,30.05) (7 (1.10,2.12) 0,005
respectively) with estimate of variance |
based on the expected FIM, and o LOD  LOQ
2€(17.82,30.13) (re(1.17,2.06) re- Concentration, ug/kg
spectively) with estimate of variance Fig 4. Histogram of galaxolide concentration with
based on the sample FIM. Weibull density

From the practical point of view, it would be more interesting to have confidence
limits for the mean concentration. In order to obtain them, results from the previous
section can be utilized, and the delta method can be used [28, 33].

0.03
0.025
0.02

0.0154

Normalized frequency

CONCLUSIONS

This paper dealt with type I multiply left-censored Weibull distribution. It was de-
scribed how to estimate parameters of censored Weibull distribution using the method
of maximum likelihood, and the expected FIM was analytically determined. Moreover,

simulation results showed what bias of estimators 4, 7 and 02 (1), 62 (%) can be ex-

pected considering various sample sizes, various censoring schemes, and degree of
censoring. Furthermore, it is shown what change in the variance estimate can be ex-
pected when the sample FIM is used instead of the expected FIM. Using different
variance estimators, the lower and the upper confidence limits of the parameters esti-
mates were obtained and the coverage probabilities of 95% confidence intervals were
calculated. It was shown that the coverage probability of A is better with higher values
of 7, and when 7< 1, i.e. the skewness of the sample is high (>2), the estimator based
on the expected FIM performs better than the estimator based on the sample FIM for
all censoring schemes, especially for small sample sizes.

The problem of measured values found below the detection limits is common in
many application areas. The methods derived in this paper can be favorably used in-
stead of various ad hoc methods (e.g. replacing censored values with a constant) when-
ever dealing with type I multiply left-censored data from Weibull distribution. All the
procedures used were implemented in the Matlab environment (version R2015a),
and are available from the first author upon request.

APPENDIX 1. DERIVATION OF THE EXPECTED FIM

The expected FIM is calculated using formula

2 2
_Ei; gt

J :[Ju le}: oA oAot
"o lJa Im e Foal| _Eail
OToA 61’2

where

k 2 n
E(Ngyt t°+7
Iy ==L HM AL DEW ) - (/120) T E[ > X(Ti)J’
i=1 i=n—N y+1
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i=1,..., k. Since the frequencies N;, i =0,..., k, have binomial distribution, their expectations

n{exp{_tdflljr}—exp[—(?)r:l} for i=1,...,k,

T
nexp[—[(i{‘) ] for i=0.

are

Furthermore, it remains to derive the expectations

n n n
EI:E{ > X(’l)],EZ:E[ > X(Tl)lnX(l)],E3:E{ > X(T,»)(lnX@)z}, ®)

i=n—Ng+l1 i=n—Ny+1 i=n—N+1
where X(;y is the i-th ordered statistic.

Using properties of the conditional expectation E(E(X |Y))=E(X) (X,Y are random vari-
ables), and due to the fact that Ny ~Bi(n,60,), one gets

n n
E=E| > Xi|=E|E Y XINg||=
i=n—ny+1 i=n—No+1

- ZE[ > X{i)nojp(Nozno)z Z[ > E(X(Ti))l(’:]jego(l—eo)nno:
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and analogically
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The pdf of the variable X ;) is in the form of (see [34])
n-1 i-1 n-i
Soy@=n| " L F@OF@ITI-FE T, =120,

where F is cdf (1) and f is pdf (2) of the uncensored Weibull distribution. Gradually, one
gets pdf of fi;)(x) in the form of
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: - o j p)

o0 o0 0 2
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(see [35]), the expectations (8) are obtained in the form of
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where y, =0.57722 is Euler’s constant. Substituting (12)—(14) into (9)—(11), one gets
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Moreover, substituting (7) and (15)—(17) into (6), the elements of the FIM (5) are obtained.
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Haoituna oo peoaxyii 08.11.2018

M. ®ycek, SI. Mixanek

CTATUCTHYHE BUBEJEHHS )15 BATATOPA30BO IEH3YPOBAHOI 3JIIBA BUBIPKH
TUITY 1 JJs1 PO3IOJALITY BEUBYJUIA

AHoTauisi. Y 6aratbox raiys3sx HayKd 4acToO 3yCTpidarThCs 3ajadi 3 LEH3Ypo-
BaHMMHM 3J1iBa JaHUMHU 3 OJHi€I0 ab0 KiJbKOMa MeXaMH BHsBICHHs. Y wiil po-
60Ti 3arpONOHOBAHO MPOLEAYPY AT OOYHMCIICHHS OLIHOK MaKCHMaJbHOI MpaBJo-
MoAiIOHOCTI mapameTpiB 0araTopa3oBOro IEH3ypyBaHHs 3iiBa THUIy | 3 po3mojiny
BeiiOymnna 3 ypaxyBaHHSIM pi3HOI KiTbKOCTI MeX BusiBieHHs. OuikyBaHy iHGOp-
Maniiiny Matpumio @imrepa BH3HAUYEHO AHAITHYHO Ta I BHUIVISA MOPIBHSIHO 3
BHOIpKOBOIO (crocrepexyBaHoro) iHdopmariiiHoro Marpuieto dimepa. Mopento-
BaHHA 31eOLIBIIOr0 TIPYHTYETHCS Ha BIACTHBOCTAX OIHOK BHOIPOK MaMX
po3mipiB. TIpuKIaan MPOLTIOCTPOBAHO HA PEATBHHUX JAHUX.

KurouoBi ciioBa: 6aratopa3oBo IleH3ypoBaHa 3iiBa BHOiIpKa, OLIHKA MaKCHMalb-
HOI TpaBromoniOHOCTI, posmoxin BeitOymra, indopmamiiina marpuns @imepa,
LIeH3ypyBaHHs THUIy [.

M. ®ycek, 1. Muxajiek

CTATUCTUYECKHWI BBIBOJ JJISA MHOTI'OKPATHO HEH3YPUPOBAHHOWM CJIEBA
BBIBOPKU THUIIA 1 AJISI PACHPEJEJEHUSI BEUBYJLJIA

Annotanus. Bo MHOTEX 00NacTsX HAyKH 4acTo BCTPEYAIOTCS 33/1a4ud C LICH3YPHPO-
BAaHHBIMM CJIEBA JAHHBIMH C OJHOW WM HECKOJIbKMMH TpaHHLAMM OOHapykeHus. B
JaHHOM paboTe IpeyIoKeHa MPOLEdypa Ul BEIMHCICHHS OICHOK MaKCHMAaTbHON
MPaB/IONOJOOHOCTH TapaMeTPOB MHOI'OKPAaTHOTO IEH3ypHUpPOBaHMS cieBa Tuma | 1uis
pacnpeznenenus BeitOymna ¢ ydeToM pa3HOTO 4Hcla TpaHul oOHapyxkeHus. Oxugae-
Mast nH}opMarmonHas Matpria Oumiepa onpeseneHa aHATUTUYECKA U €€ BHUJ CpaB-
HEeH C BbIOOpOYHOH (HabmrogaemMoii) uH(opmarmonHoit Matpuieii ®umepa. Mone-
JIMPOBaHHME OCHOBAHO, IJIAaBHBIM 00pa30M, Ha CBOICTBAaX OLEHOK BBIOOPOK MalbIX
pa3MepoB. IIpuMepsl NPOMILTIOCTPUPOBAHBI HAa PEANbHBIX JaHHBIX.

KiroueBble cllI0Ba: MHOTOKPATHO IEH3ypHPOBAaHHAs cjeBa BBIOOpPKA, OIEHKA
MaKCHMaJBHOH NPaBIOIoJ00HOCTH, pacipeaesieHne Belibymia, nHpOpManoHHas
Matpuua Puiiepa, LHeH3ypupoBaHue Tuma l.
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