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ON A QUASISTABILITY RADIUS FOR MULTICRITERIA
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Abstract. We consider a multicriteria integer linear programming problem with
a targeting set of optimal solutions given by the set of all individual criterion
minimizers (extrema). In this study, the lower and upper attainable bounds on the
quasistability radius of the set of extremum solutions are obtained when solution
and criterion spaces are endowed with different Holder’s norms. As a corollary,
an analytical formula for the quasistability radius is obtained for the case where
criterion space is endowed with Chebyshev’s norm. Some computational
challenges are also discussed.
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INTRODUCTION

While solving practical optimization problems, it is necessary to take into account
various kinds of uncertainty due to lack of input data, inadequacy of mathematical
models to real processes, rounding off, calculating errors etc. It is known that in
many cases initial data as a link between model and reality cannot be defined exp-
licitly. The initial data are defined with a certain error, generally depend on many
parameters and require to be specified during the problem solving process. In prac-
tice any problem could not be properly posed and solved without at least implicit
use of the results of stability analysis and related issues of parametric analysis.
The terms “sensitivity”, “stability” or “post-optimal analysis” are generally used
for the phase of an algorithm at which a solution (or solutions) of the problem has been
already found, and additional calculations are performed in order to investigate how
this solution depends on changes in the problem data. Recognition of the stability
problem as one of the central in mathematical research goes back to Jacques
Hadamard. In 1923, he postulated that in order to be well-posed a problem should have
three properties: existence of a solution; uniqueness of the solution; continuous de-
pendence of the solution on the data [1]. Correspondingly, ill-posed multicriteria dis-
crete optimization problem refers to this situation that it may have multiple solutions or
the feasible solution set and/or criteria functions depend on uncertain parameters.
Widespread use of discrete optimization models in the last decades stimulated
many experts to investigate different aspects of stability of scalar and vector optimiza-
tion problems. As a consequence, in the context of the operation research and mathe-
matical optimization, the most closely related lines of research have been initiated.
Despite existence of numerous approaches to stability analysis of optimization
problems, two major directions can be pointed out: quantitative and qualitative.
A qualitative sensitivity analysis is usually conducted for multicriteria optimization
problems with various (linear and nonlinear) partial criteria. The main typical results
in there are necessary and sufficient condition formulations for different types of stability
of one or a set of optimal solutions in the problems considered (see e.g. [2—11]).
Within the framework of quantitative direction various measures of solution sta-
bility are investigated. Analytical expressions, or (attainable) lower and upper bounds,
on a quantitative characteristic, called stability radius, usually constitute typical results
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of the area. The results are usually formulated for the some generalized optimality situ-
ation invariant to changes of problem parameters in the case where parameter space is
equipped with various metrics (see e.g. [12-20]). In addition to stability radius, some
papers are focusing on more general characteristics of stability, for example stability
and accuracy functions are analyzed in [21, 22]. Sensitivity analysis is also done for
some problem of scheduling theory, see e.g. [23, 24].

This paper belongs to the family of quantitative approaches. It continues a series
of publications [10, 14-16, 25-27] seeking for analytical bounds on stability radius
(different types of stability) for multicriteria problem of Integer Linear Programming
(ILP) with Pareto optimality principle.

In multicriteria optimization and decision making, we deal sometimes with choice
functions distinct from the well-known Pareto optimality principle. Such functions have
a specific merit in many real life applications (see e.g. [28-32]). In this paper, we con-
sider the multicriteria problem of ILP with extremum optimality principle, i.e. with the
set of all extremum solutions. We study the type of stability to independent perturbations
of linear function coefficients that is a discrete analogue of Hausdorff semi-continu-
ity mapping transforming any set of problem parameters into a set of extremum solu-
tions. In other words, this type of stability guarantees the existence of a neighborhood in
problem parameter space such that none of the solutions disappear within. Following ter-
minology used in [14-17], the type of stability as described above is called
quasistability. As a result of parametric analysis, the lower and upper bounds on the
quasistability radius are obtained for multicriteria ILP problem with extremum solutions
for the case where criterion space is endowed with various Holder’s norms. Attainability
of the estimates (both lower and uppers bounds) is shown. As a corollary, we deduce
a known before criterion on quasistability of multicriteria ILP problem for the case
where criterion space is endowed with Chebyshev’s norm.

PROBLEM FORMULATION, BASIC DEFINITIONS AND NOTATION

We consider an m-criteria problem of ILP problem in the following formulation.
Let C=[c;]eR™" be a real valued mxn-matrix with corresponding rows

C,eR", ieN, ={,2,...,m}, m>1. Let also X = Z", 1<| X |[<, be a set of

feasible solutions, i.e. a set of integer vectors x = (x, x5, ...,xn)T, n>2. We de-

fine a vector criterion

Cx=(Cyx,Cax, ..., Cpx) " — min,
xeX

with partial criteria being linear functions.
In this paper, Z" (C), C e R™", is a problem of finding the set of extremum so-
lutions defined in traditional way (see e.g. [29, 30]):

E™(C)={xeX:3keN, Vx' eX (Cp(x)<C\ ("))}

Thus, the choice of extremum solutions can be interpreted as finding best solu-
tions for each of m criteria, and then combining them into one set. In other words, the
set of extremum solutions contains all the individual minimizers of each objective. Ob-

viously, E ! (C),C eR", is the set of optimal solutions for scalar problem Z ! (©).
Taking into account that X is finite, the following formulae below are true for any
CeR™":

E™(C)=SI"(C)\(P" (C)\ L™ (C)) = L" (C) U (SI" (C)\ P™ (C)),
E™(C)AP™(C)=L"(C) %2,
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L™ (C)c P™(C) = SI™ (O),
L™ (C)cE™(C) = SI" (O),

where P™ (C) denotes the Pareto set [33], SI (C) denotes the Slater set [34], and

L™ (C) denotes the lexicographic set (see e.g. [28, 35-37]). Below we define all
the three sets in a traditional way:

P"(C)={reX:3x" eXx (Cx2Cx"& Cx = CxO),
SIM(C)={xeX:3x" eX VkeN,, (C,(x)>C,(x")},
L"(C)= |J L(C,9), L(C,s)={x e X :Vx' e X (C <, Cx)}.

sell,,
Here I1,, is the set of all m! permutations of numbers 1,2,...,m; s=(sy,$;,...
... Sy ) €ll,,; and the binary relation of lexicographic order between two vectors

m>
Y=V Y2 V) €R™ and ¥ = (3, )5,..., V) €R™ is defined as follows

YV o (y=y)v@EkeN, VieN; 1(y, <y, & ys =)
where N =J. Obviously all the sets, P™ (C), SI" (C), L™ (C) and E™ (C), are
non-empty for any matrix C € R™*" due to the finite number of alternatives in X .
We perturb the elements of matrix C € R™™" by adding elements of the perturb-

ing matrix C’ e R™™". Thus the perturbed problem Z™ (C +C") of finding extremum

solutions has the following form

(C+C")x — min.
xeX

The set of extremum solutions of the perturbed problem is denoted by
E™(C+C"). In the solution space R", we define an arbitrary Holder’s (also known as
Minkowski’s ) norm /,,, p €[, ], i.e. the norm of vector a = (ay,a,,..., a,,)T eR"

is defined by the number

1/p
a;:|? if 1< p< oo,
lall, = [j§\7| i p

max {|a;[:jeN,} if p=co.

The class of /,-norms generalizes additive (Manhattan or /), the Euclidean (/)
and [, (or [y, also known as Chebyshev’s) norms and has a number of applications in
various parts of mathematics, physics, and computer science. In the criterion space R™,
we define another Holder’s norm /,, ¢ €[l, c0]. The norm of matrix C e R™™" is de-

fined by the number
HC pg =IHATCUTp > 1 Collp s s 1l p ) -

It is well-known that /,, norm, defined in R", induces conjugated lp* norm in (R")

E3
For p and p", the following relations hold
l+L=I, 1< p<oo.
p p*
In addition, if p=1, then p* =oo. Obviously, if p* =1, then p=o0. Also notice

that p and p" belong to the same range [l, 0]. We also set l=0 if p=oo.
p
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It is easy to see that for any vector a =(aj,as,...,a,)€R" with la;|=0,

j€N,, it holds y
lall,=on"? M

for any p €[, ]. For any two vectors a and b of the same dimension, the follow-
ing Holder’s inequalities are well-known

Ty < . 2
la"blllall,[1b]] - )
Using the well-known condition (see [38]) that transforms (2) into equality, the
validity of the following statement becomes transparent

VbeR" VYo>0 Ja eR”(\aTb\=0|\b||p*&||a||p=0). 3)

Given £>0, let
qu(e)={C’eRmxn:||C'|\pq< &}
be the set of perturbing matrices C' with rows Cj, eR", k e N,,, and || C,

norm of C'=[cj;]eR™™.

gl 1s the

Denote
0, ={>0:VC" €Q . (¢) (EM™M(C)YcE™(C+C)}.
Following [14-16, 25], the number

sup®,, if ©,, #J,

pm(p,q)={ .
0 if ®pq=@,

is called quasistability radius (7,4-stability radius in terminology [2, 4-7, 10]) of
problem Z™ (C), m €N, with Holder’s norms /, and /, in the spaces R" and R™
respectively. Thus, the quasistability radius of problem Z™ (C) defines the extreme
level of independent perturbations of the elements of matrix C in the metric space
Rm><n

preserving all the extremum solutions of Z" (C).

The same concept of quasistability radius of Z™ (C) can also be introduced using
the definition of the stability kernel, known earlier in [2]. Indeed, it is easy to see that

p" (p.q)=sup {e>0:Ker"” (C,e) =E™ (C)},

where
Ker™ (C,e)={x eE" (C):VC" €Q p,(e) (xcE™(C+C"))}
is a stability kernel of Z”(C). Thus, the problem Z™(C) is quasistable
(p™ (p,q)>0) if and only if the stability kernel coincides with the set of original
extremum solutions.
BOUNDS ON QUASISTABILITY RADIUS
Given the multicriteria ILP problem Z” (C), me N, for any pe[l, o] we set
N1t
¢m(p)= min max min M,
x'eE™(C)ieN,, xeX\ '} Hx—x’ Hp*

where [¢]" =max {0, a} is a nonnegative projection of a € R. Obviously, we have
9" (p)=0.
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Theorem 1. Given p, g €[l, 0] and m € N, for the quasistability radius p™ (p, q)
of multicriteria ILP problem Z" (C), the following lower and upper bounds are valid
$" (p)<p" (Pg) <" (pm'"Y.

Proof. First, we prove that p™ (p,q) > ¢:=¢" (p). If ¢ =0, then it is evident.
Let ¢ >0. Then according to the definition of ¢, the following formula holds

Vx'€eE™(C) 3k eN,, VxeX\{x}([Cp(x—x)]" Z¢||x—x’||p* ).

Since ¢ >0, we have Cy (x—x")>0 for x #x'. Assuming C'eQ , (¢) and taking
into account

Ck Il <IC [l pg< @
and Holder’s inequalities (2), we deduce
(Ch +Ci)x—x") =[Cy (x=x)]* +Ch (x—x") 2
> _ ' - .
2 (@ =lICklIpNx=x"[] ,+>0
for any x=x' ie. x'eE™(C+C') for C'e€Q,,(¢), and hence we obtain

p"(p.q)=¢.
Further, we prove that p” (p, q) < q)ml/q. According to the definition of number ¢,
we have

X eE™(C) VieN,, Vx(i)eX "} (C;(x()-x")" £¢||x(i)—x0|\p*). 4
Setting ¢ with a condition
€

——>0>¢, (5)
ml/q

according to formula (3) for any index i€ N,, there exists C iO eR" such that

) @) -x) =0l x()~x"|| .. ©)

1cPll, =0

Therefore, due to (1), the norm of matrix C 0 containing rows C 1-0, ieN,,, is cal-
culated as ||CO| | pg = aml/q, ie.C° €Q ,, (¢). Using sequentially (6), (4) and (5) we

get for any index ieN,, we deduce
(C; +CH(x()-x") = C; (x(D)—x")+C (x(i)-x") <
<[C; () =x )" ~ol[x(D)=2l| » < (@ ~0)]|x(i) ~x"]] - <0.
Thus, x0 gE™ (c+C 0). Hence, the following formula is valid

ve>gm" 3C° eQ () (E"(C) g E™(C+CY)),

. 1
ie. p"(p,q)<pm’e. O

The following corollary from Theorem 1 illustrates the attainability of the lower
bound for the quasistability radius.
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Corollary 1. If g = o0, then for any p €[l, ©) and m € N for the quasistability ra-
dius p™ (p, ) of multicriteria ILP problem Z™ (C) the following formula is valid

N+
pm(p,oo)=¢m(p)= min max min M
x'eE™(C)ieN,, xeX\ik} || x—x ||p*

The next Theorem illustrates the attainability of the upper bound for the
quasistability radius specified in Theorem 1.
Theorem 2. Given p=ow, g e[l,o] and me N, there exists a class of

multicriteria ILP problem problems such that for any Z™ (C) belonging to that class
the quasistability radius of Z"™ (C) can be expressed by the following formula

m /g «m 1/ . . [C‘(JC_)C’)]Jr
p"(0,q)=m"9p" (0)=m"'Y min max min —-— =
x'eE"(C)ieN, xeX &'} |[x—x"]|;

(7

Proof. According to Theorem 1, in order to prove equation (7), it suffices to

specify a class of problems Z” (C) with p™ (0, ¢) = m"9¢™ (0). Let X = {x!, x2, ...

oux"YC E™ ={0,1}", where n=m+1, and every solution x/, jeN,, be a unit
vector, i.e. a column of identity matrix of size nx n. Let matrix C =[c;]€ R™™" with

rows C; eR", ieN,,, be constructed as follows:

0O M ... M -2«

M 0 ... M -2
C- @

M M ... 0 -2a

where M >>a >0, and M is a number large enough. Then we have
Cxl=,M,...,M,M)" eR™,
Cx? =(M,0,...,. M, M)" eR™,
" V=M, M,..,M, 00T eR™,
Cx" = (-2a,-2a, ..., -2a,-2a)T eR™.
Thus, x" e E™(C), x/ ¢ E™(C), jeN,,. Moreover, the following equality is
evident C, (x/ —x"y

¢" (00) = max min ———— " =q.
ieN,, jeN,, 2

Let C"=[cj;]1€Q (aml/ 7Y be an arbitrary perturbing matrix with rows Cj,
Chyores Cpyyiie. CTeR™ [ C || g4 < am"9. Proving by contradiction, it is easy to

show that there exists an index k € N, with |[Cj[|< a. Therefore, | ¢j; < & for any
je€N,. So, we deduce

(C +CREN —x") =2a+ g = chy = 2a~| clgl| =] | >0,
and hence for any index ie N, \{k} we obtain
(C; +CHF —x"y=C; (" —x")+Ch(xF =x") = M +2a + ¢l —cl, > 0.
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As a result, we conclude that x" e E™ (C+C') for any perturbing matrix
C'eQyy (am"9) the following inequality holds

1/
p" (0,q)2m 1" (),
and hence, taking into account Theorem 1, we get that equality (7) is true, i.e.
Theorem 2 is now proven. [
The problem Z™ (C) is called quasistable if p™ (p, ¢)>0. We introduce a set of

strict extremum solutions of Z™ (C):
SE™(C)={xeX:3keN, Vx'eX\{x} (Cp(x)< Cj (x'))}.

From Theorem 1 we get the following result.

Corollary 2. Given the multicriteria ILP problem Z™ (C), the following state-
ments are equivalent

e the problem Z™ (C) is quasistable;

e E"(C)=SE™(C)=Ker" (C);

° 9" (p)>0.

In particular case m =1, the scalar problem Z ! (C), C eR", is quasistable if and

only if it has a unique optimal solution.
Due to equivalence of any two norms in a finite dimensional linear space (see
e.g. [39, 40]), the result of Corollary 2 is true for any norms specified in the parameter

space R™"" of the problem Z™ (C).

At the end, to compare the result of Theorem 1, we present here a formula for cal-
culating the quasistability radius of multicriteria ILP problem Z ]’3” (C) of finding the set
of Pareto optimal solutions P™ (C):

. o Cx=x)1T|
p"(pg)= min min ——— - 4
x'eP™(C)xeX\ &'} || x—x ||p*

®)

+ _+ +T
1,az,...,am)
a=(aj,ay,...... ,ay,)" €R™, ie. a} =max{0,a;}, ieN,. This formula is

where [a] =(a is a nonnegative projection of vector

clearly follows from the results of [26].
Let Sm™ (C) denote the Smale set for Z™ (C) [41]:

Sm" (C)={xeX:Vx' eX \{x}Ik eN,, (C}x<Cyx")}.
From (1), we can get the following quasistability criterion, known earlier [2, 4, 14-16].

Theorem 3. The multicriteria ILP problem ZPm (C) of finding the Pareto set
P"(C) (the set of trade-off or efficient solutions) is quasistable if and only if

P"(C)=Sm" (C).

CONCLUSIONS

In this paper, the lower and upper attainable bounds on the quasistability radius of
the set of extremum solutions were obtained in the situation where solution and
criterion spaces are endowed with various Holder’s norms. As corollaries, an ana-
lytical formula for the quasistability radius is specified in the case where criterion
space is endowed with Chebyshev’s norm. One of the biggest challenges in this
area is to construct efficient algorithms to calculate the analytical expressions. To
the best of our knowledge there are no many results known in that area, and some
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of those results that have been already known, put more questions than answers.
As it was pointed out in [42], calculating exact values is an extremely difficult task
in general, so one could concentrates either on finding easy computable classes of
problems or developing general metaheuristic approaches.

Estimations of quasistability radius obtained in this paper imply complete enumera-
tion the set of feasible solutions whose cardinality may grow exponentially with n.
In the case of a single objective function, an approach to calculating the stability radius
of an e-optimal solution to the linear problem of 0 —1 programming in polynomial time
was given in [43]. They assumed that the objective function is minimized, the feasible
solution set is fixed and a given subset of the objective function coefficients is perturbed.
The approach requires that the original single objective optimization problem is
polynomially solvable, for example it can be one of the well-known graph theory prob-
lems, such as minimum spanning tree or shortest path problems. In [17], it was shown
how analytical formulae similar to (8) can be transformed into polynomial type calcula-
tion procedure in the case of Boolean variables, Chebyshev norm and polynomial

solvability of Z}) (C). However, for multicriteria case the question of existing polyno-

mial time procedures remains to be open. As it is well-known that the presence of multi-
ple criteria increases the level of complexity, for example, polynomially solvable single
objective problems become intractable even in bicriteria case, see e.g. [44], the finding of
polynomial methods seems to be unlikely in general. For some particular challenging
combinatorial problems, it was proven that the problem of finding the radii of every type
of stability is intractable unless P = NP [45]. An application of inverse optimization usu-
ally results in logarithmic number of mixed integer programs for multi-objective combi-
natorial problems, where each objective function is a maximum sum and the coefficients
are restricted to natural numbers [46].
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Haoitiwna oo peoaxyii 22.11.2018

B.O. €wmeaiuen, 10.B. HikyJin

PO _PANIYC KBA3ICTIMKOCTI JJIs1 BATATOKPHUTEPIMHOI IIVIOYMCEJBHOI 3AJAYI
JIIHIMHOI'O IMPOI'PAMYBAHHS ITPO 3HAXO/KEHHSI EKCTPEMAJIbHUX PO3B’s3KIB

AHoTamisi. Po3ryisHyTO 0araTOKpUTEpiiiHy 3amady MiJIOYUCEILHOTO JIHIHHOTO
MporpaMyBaHHs 3 LIJTHOBUM HAOOpOM ONTHMANBHUX PO3B’A3KIB, KOXKEH 3 SIKHX
MiHIMI3ye Xoua 0 OAMH 3 KpuTepiiB, TOOTO € excTpemyMmMoM. HmkHi Ta BepxHi
JOCSDKHI OLIHKHM pajiyca KBa3iCTIKOCTI MHOXHHH €KCTPEMalbHUX PO3B’S3KIiB
IIOBEZICHO y CHTYyalii, KOJIH Yy TPOCTOpax pPO3B’S3KIB Ta KPUTEPiiB 3amaHi pi3Hi
Hopmu [enmbliepa. SIK HaciiZJOK OTPUMAHO aHANTHYHY (GOpPMYyNy sl pajaiycy
KBa31CTIMKOCTI y BUMAAKY, KOJIU y MPOCTOPi KpHUTEpiiB 3amaHa HopMa YeOurrona.
VY po6oTi Takok KOPOTKO OOTOBOPIOFOTHCS NESIKI MUTAHHS OB SI3aHI 3 0OYHCIIIO-
BAHHICTIO.

KarouoBi cioBa: minouncenbHe IiHiffHE NporpaMyBaHHsA, OaraToKpuTepiiiHa
ONTHMi3alisi, EKCTpeMallbHi pO3B’SI3KM, ONTUMANbHICTH 3a [lapero, aHami3
CTIHKOCTI, paziyc KBasicTilikocTi, HopMu [enbaepa, Hopma Yebwuinosa.

B.A. Emeanues, 10.B. Huxkyiaun

O PAJIMYCE KBA3UYCTOMYMBOCTH MHOTOKPHUTEPHAJIBHOM 3AJAYH
HNEJTOYUCJTEHHOTO JIMHEMHOI'O NMPOIT'PAMMUPOBAHUS HAXOXKIEHUSI
DKCTPEMAJIBHBIX PELIEHUWIT

AuHoTaumusi. PaccMaTpuBaeTCss MHOTOKPHTEpHAJbHas 3ajada [EeJIOYHCICHHOIO
JMHEWHOT0 HPOrPaMMHPOBAHHS C IEJIEBBIM HAOOPOM ONTHMAJBHBIX pEIICHUH,
KaK/10€ U3 KOTOPBIX MHHMMM3HPYET XOTS Obl OJMH W3 KPUTEPHEB, T.C. SBIACTCA
SKCTpeMyMOM. B maHHON paboTe HIKHUE W BEpXHHE JOCTIKHMBIC OIEHKH PajH-
yca KBa3HyCTOWYHMBOCTH MHOXKECTBA IKCTPEMAIIbHBIX PELICHUH JOKa3aHbl B CHTY-
aluM, KOTAa B TPOCTPAHCTBAX PEIICHUH M KPUTEPUEB 3a/IaHbl PA3IMYHBIC HOPMBI
T'énpnepa. B kagectBe ciencTBus monydeHa aHaiuuTH4YecKas Qopmyna pagmyca
KBa3MYCTOHYMBOCTU JUIS ClIydasl, KOTAa B IPOCTPAHCTBE KPUTEPHEB 3a/laHa HOP-
Ma YeOpmméBa. B pabore Tarke KpaTKo OOCYXKIEHBI HEKOTOPHIE BOIPOCHI, CBS-
3aHHbIE C BBIYHCIMMOCTBIO.

KiroueBble c10Ba: IEIOYNCIEHHOE TMHEHHOE MPOTPaMMUPOBAHHUE, MHOTOKPUTE-
puangbHas ONTUMU3ALMA, SKCTPEMasbHbIe pEIIeHHs, onTHMaibHOCTh o Ilapero,
aHaJIM3 YCTOMYMBOCTH, paJnyC KBa3MyCTOWYMBOCTH, HOpMbI ['€npaepa, Hopma
YeOpmména.
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