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ON A QUASISTABILITY RADIUS FOR MULTICRITERIA
INTEGER LINEAR PROGRAMMING PROBLEM OF FINDING
EXTREMUM SOLUTIONS

Abstract. We consider a multicriteria integer linear programming problem with
a targeting set of optimal solutions given by the set of all individual criterion
minimizers (extrema). In this study, the lower and upper attainable bounds on the
quasistability radius of the set of extremum solutions are obtained when solution
and criterion spaces are endowed with different H��older’s norms. As a corollary,
an analytical formula for the quasistability radius is obtained for the case where
criterion space is endowed with Chebyshev’s norm. Some computational
challenges are also discussed.
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INTRODUCTION

While solving practical optimization problems, it is necessary to take into account

various kinds of uncertainty due to lack of input data, inadequacy of mathematical

models to real processes, rounding off, calculating errors etc. It is known that in

many cases initial data as a link between model and reality cannot be defined exp-

licitly. The initial data are defined with a certain error, generally depend on many

parameters and require to be specified during the problem solving process. In prac-

tice any problem could not be properly posed and solved without at least implicit

use of the results of stability analysis and related issues of parametric analysis.

The terms “sensitivity”, “stability” or “post-optimal analysis” are generally used

for the phase of an algorithm at which a solution (or solutions) of the problem has been

already found, and additional calculations are performed in order to investigate how

this solution depends on changes in the problem data. Recognition of the stability

problem as one of the central in mathematical research goes back to Jacques

Hadamard. In 1923, he postulated that in order to be well-posed a problem should have

three properties: existence of a solution; uniqueness of the solution; continuous de-

pendence of the solution on the data [1]. Correspondingly, ill-posed multicriteria dis-

crete optimization problem refers to this situation that it may have multiple solutions or

the feasible solution set and/or criteria functions depend on uncertain parameters.

Widespread use of discrete optimization models in the last decades stimulated

many experts to investigate different aspects of stability of scalar and vector optimiza-

tion problems. As a consequence, in the context of the operation research and mathe-

matical optimization, the most closely related lines of research have been initiated.

Despite existence of numerous approaches to stability analysis of optimization

problems, two major directions can be pointed out: quantitative and qualitative.

A qualitative sensitivity analysis is usually conducted for multicriteria optimization

problems with various (linear and nonlinear) partial criteria. The main typical results

in there are necessary and sufficient condition formulations for different types of stability

of one or a set of optimal solutions in the problems considered (see e.g. [2–11]).

Within the framework of quantitative direction various measures of solution sta-

bility are investigated. Analytical expressions, or (attainable) lower and upper bounds,

on a quantitative characteristic, called stability radius, usually constitute typical results
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of the area. The results are usually formulated for the some generalized optimality situ-

ation invariant to changes of problem parameters in the case where parameter space is

equipped with various metrics (see e.g. [12–20]). In addition to stability radius, some

papers are focusing on more general characteristics of stability, for example stability

and accuracy functions are analyzed in [21, 22]. Sensitivity analysis is also done for

some problem of scheduling theory, see e.g. [23, 24].

This paper belongs to the family of quantitative approaches. It continues a series

of publications [10, 14–16, 25–27] seeking for analytical bounds on stability radius

(different types of stability) for multicriteria problem of Integer Linear Programming

(ILP) with Pareto optimality principle.

In multicriteria optimization and decision making, we deal sometimes with choice

functions distinct from the well-known Pareto optimality principle. Such functions have

a specific merit in many real life applications (see e.g. [28–32]). In this paper, we con-

sider the multicriteria problem of ILP with extremum optimality principle, i.e. with the

set of all extremum solutions. We study the type of stability to independent perturbations

of linear function coefficients that is a discrete analogue of Hausdorff semi-continu-

ity mapping transforming any set of problem parameters into a set of extremum solu-

tions. In other words, this type of stability guarantees the existence of a neighborhood in

problem parameter space such that none of the solutions disappear within. Following ter-

minology used in [14–17], the type of stability as described above is called

quasistability. As a result of parametric analysis, the lower and upper bounds on the

quasistability radius are obtained for multicriteria ILP problem with extremum solutions

for the case where criterion space is endowed with various H��older’s norms. Attainability

of the estimates (both lower and uppers bounds) is shown. As a corollary, we deduce

a known before criterion on quasistability of multicriteria ILP problem for the case

where criterion space is endowed with Chebyshev’s norm.

PROBLEM FORMULATION, BASIC DEFINITIONS AND NOTATION

We consider an m-criteria problem of ILP problem in the following formulation.

Let C cij
m n� � �[ ] R be a real valued m n� -matrix with corresponding rows

Ci
n�R , i N mm� � { }1 2, , ,� , m � 1. Let also X n� Z , 1� � �| |X , be a set of

feasible solutions, i.e. a set of integer vectors x x x xn� ( , , , )1 2 �
T , n � 2. We de-

fine a vector criterion

Cx C x C x C xm
x X

� 	
�

( , , , ) min1 2 �
T ,

with partial criteria being linear functions.

In this paper, Z Cm ( ), C m n� �
R , is a problem of finding the set of extremum so-

lutions defined in traditional way (see e.g. [29, 30]):

E C x X k N x X C x C xm
m k k( ) : ( ( ) ( ))� � 
 � � � � 
 �{ }.

Thus, the choice of extremum solutions can be interpreted as finding best solu-

tions for each of m criteria, and then combining them into one set. In other words, the

set of extremum solutions contains all the individual minimizers of each objective. Ob-

viously, E C C n1 ( ), �R , is the set of optimal solutions for scalar problem Z C1 ( ).

Taking into account that X is finite, the following formulae below are true for any

C m n� �
R :

E C Sl C P C L C L C Sl C P Cm m m m m m m( ) ( ) \ ( ( ) \ ( )) ( ) ( ( ) \ ( ))� � � ,

E C P C L Cm m m( ) ( ) ( )� � ��,
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L C P C Sl Cm m m( ) ( ) ( )� � ,

L C E C Sl Cm m m( ) ( ) ( )� � ,

where P Cm ( ) denotes the Pareto set [33], Sl Cm ( ) denotes the Slater set [34], and

L Cm ( ) denotes the lexicographic set (see e.g. [28, 35–37]). Below we define all

the three sets in a traditional way:

P C x X x X Cx Cx Cx Cxm ( ) : ( & )� � �
 � � �{ }0 0 0 ,

Sl C x X x X k N C x C xm
m k k( ) : ( ( ) ( ))� � �
 � � � �{ }0 0 ,

L C L C s L C s x X x X C Cxm

s

s

m

( ) ( , ), ( , ) { : ( )}� � � � � � 
 �
��
� .

Here �m is the set of all m! permutations of numbers 1 2, , ,� m; s s s� ( , ,1 2 �

� , )sm m�� ; and the binary relation of lexicographic order between two vectors

y y y ym
m� �( , , , )1 2 � R and � � � � � �y y y ym

m( , , , )1 2 � R is defined as follows

y y y y k N i N y y y ys m k s s s sk k i i

 � � � � � 
 � � � � � � ��( ) ( ( & ))1 ,

where N 0 ��. Obviously all the sets, P Cm ( ), Sl Cm ( ), L Cm ( ) and E Cm ( ), are

non-empty for any matrix C m n� �
R due to the finite number of alternatives in X .

We perturb the elements of matrix C m n� �
R by adding elements of the perturb-

ing matrix � � �C m n
R . Thus the perturbed problem Z C Cm ( )� � of finding extremum

solutions has the following form

( ) minC C x
x X

� � 	
�

.

The set of extremum solutions of the perturbed problem is denoted by

E C Cm ( )� � . In the solution space R
n , we define an arbitrary H��older’s (also known as

Minkowski’s ) norm l pp , [ , ]� �1 , i.e. the norm of vector a a a an
n� �( , , , )1 2 �

T
R

is defined by the number

| | | |
| | ,

max | | :

/

a
a p

a j N

p
j N

j
p

p

j n

n

�

�

�

�
�

�

�

�
�


 � �

�
�
 

1

1if

{ } if p � �

!

"
##

$
#
# .

The class of lp -norms generalizes additive (Manhattan or l1), the Euclidean (l2)

and l� (or lmax , also known as Chebyshev’s) norms and has a number of applications in

various parts of mathematics, physics, and computer science. In the criterion space R
m ,

we define another H��older’s norm lq , q � �[ , ]1 . The norm of matrix C m n� �
R is de-

fined by the number

| | | | | | (| | | | , | | | | , , | | | | ) | |C C C Cpq p p m p q� 1 2 � .

It is well-known that lp norm, defined in R
n , induces conjugated l

p%
norm in ( )R

n % .

For p and p% , the following relations hold

1 1
1 1

p p
p� � � � �

%
, .

In addition, if p �1, then p% � � . Obviously, if p% �1, then p � � . Also notice

that p and p% belong to the same range [ , ]1 � . We also set
1

0
p
� if p � � .
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It is easy to see that for any vector a a a an
n� �( , , , )1 2 � R with | |a j � �,

j N n� , it holds

| | | | /a np
p� � 1 (1)

for any p� �[ , ]1 . For any two vectors a and b of the same dimension, the follow-

ing H��older’s inequalities are well-known

| | | | | | | | | |a b a bp p
T 
 % . (2)

Using the well-known condition (see [38]) that transforms (2) into equality, the

validity of the following statement becomes transparent

� � � � 
 � � �%b a a b b an n
p pR R� � �0 (| | | | | | & | | | | )T . (3)

Given �� 0, let

& pq
m n

pqC C( ) : | | | |� �� � � � ��{ }R

be the set of perturbing matrices �C with rows � �Ck
n

R , k N m� , and | | | |�C pq is the

norm of � � � � �C cij
m n[ ] R .

Denote

' &pq pq
m mC E C E C C� � � � � � � �{ }� �0: ( ) ( ( ) ( )) .

Following [14–16, 25], the number

� m pq pq

pq

p q( , )
sup ,

,
�

��

��

!
"
$

' '

'

if

if0

is called quasistability radius (T4-stability radius in terminology [2, 4–7, 10]) of

problem Z Cm ( ), m�N, with H��older’s norms lp and lq in the spaces R
n and R

m

respectively. Thus, the quasistability radius of problem Z Cm ( ) defines the extreme

level of independent perturbations of the elements of matrix C in the metric space

R
m n� preserving all the extremum solutions of Z Cm ( ).

The same concept of quasistability radius of Z Cm ( ) can also be introduced using

the definition of the stability kernel, known earlier in [2]. Indeed, it is easy to see that

� � �m m mp q C E C( , ) sup : ( , ) ( )� � �{ Ker }0 ,
where

Ker { }m m
pq

mC x E C C x E C C( , ) ( ): ( ) ( ( ))� �� � � � � � � �&

is a stability kernel of Z Cm ( ). Thus, the problem Z Cm ( ) is quasistable

( ( , ) )� m p q � 0 if and only if the stability kernel coincides with the set of original

extremum solutions.

BOUNDS ON QUASISTABILITY RADIUS

Given the multicriteria ILP problem Z Cm ( ), m�N , for any p� �[ , ]1 we set

� m

x E C i N x X x

ip
C x x

xm
m

( ) min max min
[ ( )]

| |( ) \
�

� �

�� � �

�

' '{ } � %x
p

| |
,

where [ ] max ,a a� � { }0 is a nonnegative projection of a �R . Obviously, we have

� m p( ) � 0.
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Theorem 1. Given p, q � �[ , ]1 and m�N , for the quasistability radius � m p q( , )

of multicriteria ILP problem Z Cm ( ), the following lower and upper bounds are valid

� � �m m m qp p q p m( ) ( , ) ( ) /
 
 1 .

Proof. First, we prove that � � �m mp q p( , ) : ( )� � . If � � 0, then it is evident.

Let � � 0. Then according to the definition of �, the following formula holds

� � � 
 � � � � � � � � ��
%x E C k N x X x C x x x xm

m k p
( ) \ ([ ( )] | | | | ){ } � .

Since � � 0, we have C x xk ( )� � � 0 for x x� �. Assuming � �C pq& ( )� and taking

into account

| | | | | | | |� 
 � �C Ck p pq �

and H��older’s inequalities (2), we deduce

( )( ) [ ( )] ( )C C x x C x x C x xk k k k� � � � � � � � � � � ��

� � � � � �%( | | | | ) | | | |� C x xk p p
0

for any x x� � i.e. � � � �x E C Cm ( ) for � �C pq& ( )� , and hence we obtain

� �m p q( , ) � .

Further, we prove that � �m qp q m( , ) /
 1 . According to the definition of number �,

we have


 � � � � �x E C i N x i X xm
m

0 0( ) ( ) { } ([ ( ( ) )] | | ( ) | | ) .C x i x x i xi p
� 
 ��

%
0 0� (4)

Setting � with a condition
�

� �
m q1/

� � , (5)

according to formula (3) for any index i N m� there exists Ci
n0 �R such that

C x i x x i xi p
0 0 0( ( ) ) | | ( ) | |� � � � %� , (6)

| | | |Ci p
0 � � .

Therefore, due to (1), the norm of matrix C 0 containing rows Ci
0 , i N m� , is cal-

culated as | | | | /C mpq
q0 1� � , i.e. C pq

0 �& ( )� . Using sequentially (6), (4) and (5) we

get for any index i N m� we deduce

( )( ( ) ) ( ( ) ) ( ( ) )C C x i x C x i x C x i xi i i i� � � � � � 
0 0 0 0 0


 � � � 
 � � ��
% %[ ( ( ) )] | | ( ) | | ( ) | | ( ) | |C x i x x i x x i xi p p

0 0 0� � � 0.

Thus, x E C Cm0 0( �( ) . Hence, the following formula is valid

� � 
 � �� �� � �m C E C E C Cq
pq

m m1 0 0/ ( ) ( ( ) ( ))& ,

i.e. � �m qp q m( , ) /
 1 . �

The following corollary from Theorem 1 illustrates the attainability of the lower

bound for the quasistability radius.
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Corollary 1. If q � � , then for any p� �[ , )1 and m�N for the quasistability ra-

dius � m p( , )� of multicriteria ILP problem Z Cm ( ) the following formula is valid

� �m m

x E C i N x X x

ip p
C x

m
m

( , ) ( ) min max min
[ (

( ) \
� � �

� �

� � �' '{ }

x

x x
p

)]

| | | |

�

� � %

.

The next Theorem illustrates the attainability of the upper bound for the

quasistability radius specified in Theorem 1.

Theorem 2. Given p � � , q � �[ , ]1 and m�N , there exists a class of

multicriteria ILP problem problems such that for any Z Cm ( ) belonging to that class

the quasistability radius of Z Cm ( ) can be expressed by the following formula

� �m q m q

x E C i N x X x
q m m

m
m

( , ) ( ) min max min/ /

( )
� � � �

� � �

1 1

' '{ }

[ ( )]

| | | |

C x x

x x

i � �

� �

�

1

. (7)

Proof. According to Theorem 1, in order to prove equation (7), it suffices to

specify a class of problems Z Cm ( ) with � �m q mq m( , ) ( )/� � �1 . Let X x x� { 1 2, , ...

..., ,x n n n} { }� �E 0 1 , where n m� �1, and every solution x j , j N n� , be a unit

vector, i.e. a column of identity matrix of size n n� . Let matrix C cij
m n� � �[ ] R with

rows Ci
n�R , i N m� , be constructed as follows:

C

M M

M M

M M

�

�

�

�

�

�

�
�
�
��

�

�

�
�
�
��

0 2

0 2

0 2

�

�

� � � � �

�

�

�

�

,

where M �� �� 0, and M is a number large enough. Then we have

Cx M M M m1 0� �( , , ..., , )T
R ,

Cx M M M m2 0� �( , , ..., , )T
R ,

...............................................

Cx M M Mn m� � �1 0( , , ..., , )T
R ,

Cx n m� � � ) ) � � �( , , )2 2 2 2� � � ��
T

R .

Thus, x E Cn m� ( ), x E Cj m( ( ), j N m� . Moreover, the following equality is

evident

� �m

i N j N

i
j n

m m

C x x
( ) max min

( )
� �

�
�

� � 2
.

Let � � � � �C c mij q
q[ ] ( )/& � 1 be an arbitrary perturbing matrix with rows �C1,

� �C Cm2 , ,� , i.e. � � �C m n
R , | | | | /� ��C mq

q� 1 . Proving by contradiction, it is easy to

show that there exists an index k N m� with | | | |� �Ck � . Therefore, | |� �ckj � for any

j N n� . So, we deduce

( )( ) | | | |C C x x c c c ck k
k n

kk kn kk kn� � � � � � � � � � � � � �2 2 0� � ,

and hence for any index i N km� \ { } we obtain

( )( ) ( ) ( )C C x x C x x C x x M c ci i
k n

i
k n

i
k n

ik i� � � � � � � � � � � � � �2� n � 0.
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As a result, we conclude that x E C Cn m� � �( ) for any perturbing matrix

� � �C mq
q& ( )/� 1 the following inequality holds

� �m q mq m( , ) ( )/� � �1 ,

and hence, taking into account Theorem 1, we get that equality (7) is true, i.e.

Theorem 2 is now proven. �

The problem Z Cm ( ) is called quasistable if � m p q( , ) � 0. We introduce a set of

strict extremum solutions of Z Cm ( ):

SE C x X k N x X x C x C xm
m k k( ) : \ ( ( ) ( ))� � 
 � � � � � �{ { } }.

From Theorem 1 we get the following result.

Corollary 2. Given the multicriteria ILP problem Z Cm ( ), the following state-

ments are equivalent

* the problem Z Cm ( ) is quasistable;

* E C SE C Cm m m( ) ( ) ( )� � Ker ;

* � m p( ) � 0 .

In particular case m �1, the scalar problem Z C1 ( ), C n�R , is quasistable if and

only if it has a unique optimal solution.
Due to equivalence of any two norms in a finite dimensional linear space (see

e.g. [39, 40]), the result of Corollary 2 is true for any norms specified in the parameter

space R
m n� of the problem Z Cm ( ).

At the end, to compare the result of Theorem 1, we present here a formula for cal-

culating the quasistability radius of multicriteria ILP problem Z C
P
m ( ) of finding the set

of Pareto optimal solutions P Cm ( ):

�
P
m

x P C x X x

q
p q

C x x

xm
( , ) min min

| | [ ( ' )] | |

| |( ) \
�

�

�� �

�

' '{ } � %x
p

| |
, (8)

where [ ] ( , , , )a a a am
� � � ��

1 2
�

T is a nonnegative projection of vector

a a a� ( , ,1 2 �� , )am
mT �R , i.e. a ai i

� � max ,{ }0 , i N m� . This formula is

clearly follows from the results of [26].

Let Sm Cm ( ) denote the Smale set for Z Cm ( ) [41]:

Sm C x X x X x k N C x C xm
m k k( ) : \ ( )� � � � � 
 � � �{ { } }.

From (1), we can get the following quasistability criterion, known earlier [2, 4, 14–16].

Theorem 3. The multicriteria ILP problem Z C
P
m ( ) of finding the Pareto set

P Cm ( ) (the set of trade-off or efficient solutions) is quasistable if and only if

P C Sm Cm m( ) ( )� .

CONCLUSIONS

In this paper, the lower and upper attainable bounds on the quasistability radius of

the set of extremum solutions were obtained in the situation where solution and

criterion spaces are endowed with various H��older’s norms. As corollaries, an ana-

lytical formula for the quasistability radius is specified in the case where criterion

space is endowed with Chebyshev’s norm. One of the biggest challenges in this

area is to construct efficient algorithms to calculate the analytical expressions. To

the best of our knowledge there are no many results known in that area, and some
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of those results that have been already known, put more questions than answers.

As it was pointed out in [42], calculating exact values is an extremely difficult task

in general, so one could concentrates either on finding easy computable classes of

problems or developing general metaheuristic approaches.

Estimations of quasistability radius obtained in this paper imply complete enumera-

tion the set of feasible solutions whose cardinality may grow exponentially with n.

In the case of a single objective function, an approach to calculating the stability radius

of an �-optimal solution to the linear problem of 0 1� programming in polynomial time

was given in [43]. They assumed that the objective function is minimized, the feasible

solution set is fixed and a given subset of the objective function coefficients is perturbed.

The approach requires that the original single objective optimization problem is

polynomially solvable, for example it can be one of the well-known graph theory prob-

lems, such as minimum spanning tree or shortest path problems. In [17], it was shown

how analytical formulae similar to (8) can be transformed into polynomial type calcula-

tion procedure in the case of Boolean variables, Chebyshev norm and polynomial

solvability of Z C
P
1 ( ). However, for multicriteria case the question of existing polyno-

mial time procedures remains to be open. As it is well-known that the presence of multi-

ple criteria increases the level of complexity, for example, polynomially solvable single

objective problems become intractable even in bicriteria case, see e.g. [44], the finding of

polynomial methods seems to be unlikely in general. For some particular challenging

combinatorial problems, it was proven that the problem of finding the radii of every type

of stability is intractable unless P NP� [45]. An application of inverse optimization usu-

ally results in logarithmic number of mixed integer programs for multi-objective combi-

natorial problems, where each objective function is a maximum sum and the coefficients

are restricted to natural numbers [46].
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Íàä³éøëà äî ðåäàêö³¿ 22.11.2018

Â.Î. ªìºë³÷åâ, Þ.Â. Í³êóë³í
ÏÐÎ ÐÀÄ²ÓÑ ÊÂÀÇ²ÑÒ²ÉÊÎÑÒ² ÄËß ÁÀÃÀÒÎÊÐÈÒÅÐ²ÉÍÎ¯ Ö²ËÎ×ÈÑÅËÜÍÎ¯ ÇÀÄÀ×²
Ë²Í²ÉÍÎÃÎ ÏÐÎÃÐÀÌÓÂÀÍÍß ÏÐÎ ÇÍÀÕÎÄÆÅÍÍß ÅÊÑÒÐÅÌÀËÜÍÈÕ ÐÎÇÂ’ßÇÊ²Â

Àíîòàö³ÿ. Ðîçãëÿíóòî áàãàòîêðèòåð³éíó çàäà÷ó ö³ëî÷èñåëüíîãî ë³í³éíîãî
ïðîãðàìóâàííÿ ç ö³ëüîâèì íàáîðîì îïòèìàëüíèõ ðîçâ’ÿçê³â, êîæåí ç ÿêèõ
ì³í³ì³çóº õî÷à á îäèí ç êðèòåð³¿â, òîáòî º åêñòðåìóìîì. Íèæí³ òà âåðõí³
äîñÿæí³ îö³íêè ðàä³óñà êâàç³ñò³éêîñò³ ìíîæèíè åêñòðåìàëüíèõ ðîçâ’ÿçê³â
äîâåäåíî ó ñèòóàö³¿, êîëè ó ïðîñòîðàõ ðîçâ’ÿçê³â òà êðèòåð³¿â çàäàí³ ð³çí³
íîðìè Ãeëüäåðà. ßê íàñë³äîê îòðèìàíî àíàë³òè÷íó ôîðìóëó äëÿ ðàä³óñó
êâàç³ñò³éêîñò³ ó âèïàäêó, êîëè ó ïðîñòîð³ êðèòåð³¿â çàäàíà íîðìà ×åáèøîâà.
Ó ðîáîò³ òàêîæ êîðîòêî îáãîâîðþþòüñÿ äåÿê³ ïèòàííÿ ïîâ’ÿçàí³ ç îá÷èñëþ-
âàíí³ñòþ.

Êëþ÷îâ³ ñëîâà: ö³ëî÷èñåëüíå ë³í³éíå ïðîãðàìóâàííÿ, áàãàòîêðèòåð³éíà
îïòèì³çàö³ÿ, åêñòðåìàëüí³ ðîçâ’ÿçêè, îïòèìàëüí³ñòü çà Ïàðåòî, àíàë³ç
ñò³éêîñò³, ðàä³óñ êâàç³ñò³éêîñò³, íîðìè Ãeëüäåðà, íîðìà ×åáèøîâà.

Â.À. Åìåëè÷åâ, Þ.Â. Íèêóëèí
Î ÐÀÄÈÓÑÅ ÊÂÀÇÈÓÑÒÎÉ×ÈÂÎÑÒÈ ÌÍÎÃÎÊÐÈÒÅÐÈÀËÜÍÎÉ ÇÀÄÀ×È
ÖÅËÎ×ÈÑËÅÍÍÎÃÎ ËÈÍÅÉÍÎÃÎ ÏÐÎÃÐÀÌÌÈÐÎÂÀÍÈß ÍÀÕÎÆÄÅÍÈß
ÝÊÑÒÐÅÌÀËÜÍÛÕ ÐÅØÅÍÈÉ

Àííîòàöèÿ. Ðàññìàòðèâàåòñÿ ìíîãîêðèòåðèàëüíàÿ çàäà÷à öåëî÷èñëåííîãî
ëèíåéíîãî ïðîãðàììèðîâàíèÿ ñ öåëåâûì íàáîðîì îïòèìàëüíûõ ðåøåíèé,
êàæäîå èç êîòîðûõ ìèíèìèçèðóåò õîòÿ áû îäèí èç êðèòåðèåâ, ò.å. ÿâëÿåòñÿ
ýêñòðåìóìîì. Â äàííîé ðàáîòå íèæíèå è âåðõíèå äîñòèæèìûå îöåíêè ðàäè-
óñà êâàçèóñòîé÷èâîñòè ìíîæåñòâà ýêñòðåìàëüíûõ ðåøåíèé äîêàçàíû â ñèòó-
àöèè, êîãäà â ïðîñòðàíñòâàõ ðåøåíèé è êðèòåðèåâ çàäàíû ðàçëè÷íûå íîðìû
Ã¸ëüäåðà. Â êà÷åñòâå ñëåäñòâèÿ ïîëó÷åíà àíàëèòè÷åñêàÿ ôîðìóëà ðàäèóñà
êâàçèóñòîé÷èâîñòè äëÿ ñëó÷àÿ, êîãäà â ïðîñòðàíñòâå êðèòåðèåâ çàäàíà íîð-
ìà ×åáûø¸âà. Â ðàáîòå òàêæå êðàòêî îáñóæäåíû íåêîòîðûå âîïðîñû, ñâÿ-
çàííûå ñ âû÷èñëèìîñòüþ.

Êëþ÷åâûå ñëîâà: öåëî÷èñëåííîå ëèíåéíîå ïðîãðàììèðîâàíèå, ìíîãîêðèòå-
ðèàëüíàÿ îïòèìèçàöèÿ, ýêñòðåìàëüíûå ðåøåíèÿ, îïòèìàëüíîñòü ïî Ïàðåòî,
àíàëèç óñòîé÷èâîñòè, ðàäèóñ êâàçèóñòîé÷èâîñòè, íîðìû Ã¸ëüäåðà, íîðìà
×åáûø¸âà.
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