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GENERATING (2,3)-CODES

Abstract. The (2,3)-representation of integers utilizes the mixed numeration base
of the radix-2 and the auxillary radix-3. This representation yields a universal
prefix-free binary encoding of all natural numbers with a variety of useful
properties: robustness (self-synchronization), local error corrections, statistic
regularities of code parameters, etc. The paper describes a procedure of
monotonic generation of (2,3)-codewords in ascending order of their lengths.
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A form of integer representation plays an important role in computer architectures
and algorithms. Universal integer representations are also of great importance in
data transmission and compression especially when statistical properties of data are
not known. There is a rich variety of well-known integer representations based on
different numeration systems and properties: classic binary and byte, ternary,
Fibonacci, Elias—Levenshtein [1, 2], two-base numerations [3]. For the first time
the usefulness of integer representations for solving computational and data
transmission problems have been demonstrated in [4, 5].

The (2,3)-numeration system has been introduced and thoroughly studied in [6]. It
uses the representation of positive integers that are coprime with 2 and 3 in the form

x=2" +3k‘x2, (1

where x, is also coprime with 2 and 3, »; is a maximum possible power of 2. The
recursive use of representation (1) yields a binary representation of integers with
many interesting properties including universality (in the sense of Elias [5]),
existence of delimiters, local error corrections [7], block structured representations
similar to classic Elias A, y and o representations [1] but with much smaller
coefficients than that of Elias. It is worth to note that (2,3)-codes are well suited for
correcting all types of errors investigated in [8]. The set of (2,3)-codewords arises as
a set of words in the binary alphabet {0, 1} obtained from integer representation (1)
through the so-called delta approach. For encoding data by (2,3)-codes, for instance
for data compression or transmission, it is necessary to use an independent
generating procedure of codewords. The main purpose of the presented
communication is to describe a monotonic procedure for generating (2,3)-codes in
ascending order of their lengths. The generating procedure utilizes the structural

property of a (2,3)-codeword as follows. If a codeword u of the length L has the
structural form u =021% v, where v starts with 0, then v also is a shorter codeword
for some integer. Therefore if a procedure monotonically generates all codewords v
of lengths less than L then, for obtaining codewords of the length L, one should
Alk

prepend a corresponding well-defined prefix 0 to each v. The rules for

correctness of such a prefix are given.

(2,3)-INTEGER REPRESENTATION AND CODING

Let N be the set of natural numbers extended by zero, N, 3 denotes the set of
natural numbers that are coprime with 2 and 3. First, the (2,3)-representation is
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defined on the set N, 3. Let xeNj3, x#1. The number x can be uniquely
represented in form (1), where x, €N, 3, n; is a maximum power of 2 such that

x=2""mod3, x>2™. It is casy to see that for any n integers 2" and 2"~ have
different residues modulo 3. Thus, in (1) n is equal to [log, x ] or Llog, xJ-1. In

the first case we call representation (1) maximal, and in the second case —
minimal.
Applying splitting (1) recursively,we get the sequence of the remaining numbers:

X=X, X; =2" +3kfxl-+1, i=12,..,¢t x;41=1, (2)

n; is the maximum power of 2 such that x; =2""mod3 and x; —2" >0, x,, is odd

and not divisible by 3.
Examples.

s=21431 7=2243, 11=2%+3, 23=2% +302! +3");
20152015 =22 +32" +3210 +32™ +32" +327 +322°% +322% +32))).

Consider representation (2). With a number x from N, 3 the numerical sequence
of integer pairs is associated

(nlakl)"'(nt’kt)' (3)
We call (3) the (2,3)-representation of a number x. The pair (n; k;) is called
a block. In the sequel, 7;,; denotes [log, (x;,)].
Local properties between pairwise blocks (3) are defined by inequalities as
follows: if the i-th block is maximal then the inequality
0<n; —niy—k;logy3 4)
holds. If the #th block is minimal then the inequalities
—log,3<n; —n; 1 —k; log, 3<1 %)

hold. For details see [6].
Using sequence (3), we can construct a A-representation of x

(A, k(Ao ky). (Ay Ky ), (6)

where A; =n; —n;,; —k;. Considering (4) and (5) it is not difficult to prove that
for all A; the inequality A; >0 holds [6]. The next step is constructing a binary
representation of x using (6). We want to represent pairs (A, k) as blocks of the

form 021%. But in this case some difficulties arise with the case A=0. To

overcome the “A =0 problem” we must use some other excessive encoding. The
simplest variant is to use A +1 instead of A. So, instead of (6) we use

(AL k)AL k), @)

where All- =A;+1. In its turn (6) can be encoded by the concatenation of binary
block codes
OAlllkloA‘zlkszAl,lk, I R N S N e L )

From local inequalities (4), (5) we can derive that in representation (8) there is no
block of the form Olll(A1 =1,k =3). Therefore, we can use this string as
a delimiter denoted herein as #=0111.
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Table 1. The structural correspondence In order to extend the
between N an N, 5 (2,3)-representation for all natural

numbers we use a functional
N a in binary Na2s correspondence between N and
6k 01 6k + 1 N, 3 given by the mapping
6k + 1 00 6k +1 X — x+a, where a is the smallest
6k+2 11 6k+5 positive number such that
6k + 3 10 6k + 5 x+a €N, 3. It is easy to see that a
6k + 4 01 6k+5 can only be one of the numbers
6k + 5 00 6k + 5 from the set {0, 1, 2, 3}. The
structural correspondence between
Table 2. The first 14 codes Nand N, 3 given by the mapping
x —>x+a is depicted in Table 1.
Number | Prefix a Mai;‘+b2dy Delimiter | Thus, there exists a bijective
correspondence between sets N
; ‘1"1) b’gf" g iii and {0, Iix {6k +1} U {0,1,2,3} x
3 0 ol 0 111 x {6k +5}, k=0,1,2,....
4 01 o1 0 111 For the (2,3)-binary
5 00 o1 0 111 representation of an integer x from
6 01 001 0111 N, we reserve two prefix bits that
7 00 001 0 111 characterize a number a in the
3 11 0001 0 111 correspondence x — x +a and use
9 10 0001 0 111 the (2,3)-representation of
10 01 0001 0 111 a corresponding number x +a from
11 00 0001 0 111 N2’3, C2+3(x)=b1b2C;3(x+a),
12 01 011 0 111 ’ ’
13 00 011 0111 where b; and b, are two bits from
14 11 0011 0111 the binary representation of a.

In [6], representation (8)

appended by # is denoted by C;3 (x) . The code C;3 is a set of all words C;3 , x eN.

C 2+ 5 codes of the first 14 natural numbers are given in Table 2. For instance, 12 is divisible

by 3 and 2. Thus, we must add 1 to it and use the (2,3)-code of 13 as a main body,
13=27+3%, A=0, k=2, A' =1, C;,(12)=010110111,

The code C; ; Is excessive because we use one extra bit for encoding A.

Nevertheless, it gives good metric properties. In [6] we proved that the average
statistical codeword length of C; 3(x) does not exceed the value lL16log, x.

Moreover, for some numbers, their (2,3)-representation could be shorter than the
traditional binary form. For comparison, it is worth to note that the length of the
well-known Fibonacci code Fib2 is always equal to =144log, x.

RELATIONSHIPS BETWEEN A,k AND log, x

Hereinafter, we restrict our considerations only for numbers from N, 3. In this case
in a codeword we ignore the constant prefix part 00.
Let x has the representation
x=2" 43k, 9)

for some n;. We call this representation (2,3)-canonical if it coincides with (1), i.e.,
ny is a maximum possible power of 2 and x, €N, 3. The next theorem gives the
internal characteristics of the (2,3)-canonical representation.
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Theorem 1. Representation (9) is (2,3)-canonical if and only if the inequalities

<k <|MZlog27)
log, 3

hold. The equality { ”l_k"mw holds true if and only if block (9) is
minimal. log; 3
Proof. Necessity. In (9) n =|log, x] or n; =llog, xJ—1. Consider the case
n =|_10g2 x]. This means that (9) corresponds to a maximal block.
It implies inequalities

2m g3k, comtl 3k com,

kl 10g23+10g2 Xy < np, k1<

m —logy xpy | m —logy xy
log, 3 log, 3

Consider the second case, 1y =|log, x]—1.

This gives inequalities:

amtlegm 3k, com*2 om o3k, < 3.0m)

-1 -1
ny —10g; x2<k1< n —10g, X3 ng
log, 3 log, 3

Considering that k; is a whole number, we get

=] —log, x,
! log, 3 '

Sufficiency. Assume that for k; the inequalities

<k <|MZlog27
log, 3

hold.

Consider the case n —logs x
ky < [15’*22 J )

log, 3
It implies inequalities
kilogy3+logy xy<ny, x=2" 43Ky, <om*l
Therefore, n; =Llog, xJ.

Consider the second case
ky =| ™M —logyxy |
log, 3
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This implies inequalities

ny —logy 2 k< m—logyxy
log, 3 log, 3

>

2M < 3kiy, <3.0M,
pmtlegm 3k, < om*2,

It follows that n; =llog, x-1.

This ends the proof.
EVidthly, n = A] + kl + |_10g2 ij.

LENGTHS OF (2,3)-CODEWORDS

For further considerations we outline some properties of canonical
(2,3)-representations and corresponding lengths of codewords. Note that we
consider codes on the restricted set N 3.

Corollary 1. Let x=2" +3k X, be the canonical (2,3)-representation.

Then 2! 435 X, is also the canonical (2,3)-representation.

Proof. Theorem 1 states that the inequalities

1<k <|Mmlogaxy
log, 3

hold. It is obvious that this inequality implies the corresponding inequality for
m +1:

1<k <|mrizloga vy |
log, 3
Thus, 271 +3%1x, is also canonical.

Corollary 2. For any integer /, /> 6, in the code C2+ 3 there exists a codeword of

the length /.
Proof. If a number x from Corollary 1 has the corresponding codeword of the

length / then the number amtl 3k X, produces the codeword of the length /+1.
For 5 the codeword is 01 0111. Its length is 6.
Corollary 3. For any number x from N, 3 the codeword 01C ; 3 (x) is also the

codeword from C ; .

Proof. Let x =2" +3F x, be the canonical (2,3)-representation, n=|log, x .
Then the word OIC’;r 5 (x) is the codeword for the number 21 1 3x with A =0 and
ky=1.

GENERATING (2,3)-CODES

The obtained correspondence between parameters n;, k; and x, in a canonical
representation allows us to construct a monotonic generating procedure producing

C2Jr ;-codewords for numbers from N, 3 in increasing order of their lengths.
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Let canonical representation (1) for x has the length of its (2, 3)-codeword equal to L,
The codeword for x is the concatenation of the code of the first pair (All, k) and

the codeword of x,, where
All :AI +15n1 —ﬁz _kl +1,

1
k
Cs,s (x) =011 1y ().

The length of the code of (All,kl) is equal to ny—ny —ky+1+ky=n —ny, +1=

=L—|C;, 5 (x2)], where |s| denotes the length of a string s. It follows that
n =L- |c;3(x2)|+Llog2x2J—1.

The codeword C ; 3 (x5 ) has a smaller length than x. Varying all x, having smaller

lengths of codewords we can get all possible values for n;. Using Theorem 1 for
a fixed n , we can choose all possible valid values for k. The number 1 is encoded by
the delimiter 0111. The next codeword ¢ is 010111 corresponding to the number 5. Its
length is 6. There is no codeword of the length 5.

Let A be an array that listed (2,3)-codewords, Decode(c) is a decoding procedure

which for a given codeword c¢ outputs the corresponding number x, C; 3(x):c,

MAX[/]=1i1is a maximum index 7 in the array A such that| A[7]| = . The smallest value
of [ is 4, which corresponds to the delimiter 0111.

Thus, A [1] = 0111, Decode (0111)=1, A [2] = 01 0111, Decode (010111) =5,
A [3] = 001 0111, Decode (0010111) =7, A [4] = 011 0111, Decode (0110111) = 11,
MAX [4] = 1, MAX [6] = 2, MAX [7] = 4.

The minimum length of a block is 2. It follows that there is no codeword of the
length 5. For convenience, we set MAX [5] = 1. The generation of all codewords of the
length L, L > 6, if we have already filled tables A and MAX with smaller codewords,
in a sketch form looks as follows.

Procedure Generate (L)

1. Input: L;

2. j=MAX [L- 1] + 1;

3. for i=1to MAX [L - 2] by 1 do

{
3.1 x, =Decode A[i];
3.2 ﬁz =|_10g2 XzJ
3.3 ny Zﬁz +L—‘A[l]|—1
34 for k=1 to m —log; X by 1 do
log, 3
{
341 A=ny —ny —k+1;
342 A[j] = 0* 1% A
343 j=j+1
H

4. MAX[L] = j - 1.
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Comments. Line 2: j is the first index of a codeword having the length L.

Corollary 2 states that it will be the next codeword after the last codeword of the length
L—1. Line 3: Corollary 3 shows that the minimal first block of x should only be 01.

Generalization of the aforementioned algorithm for the case of all natural numbers
consists in the additional prepending to the resulting codeword from N, 3 two starting
bits that characterize the value a in the correspondence given by Table 2. To do this it
is necessary to decode the codeword A[/] (line 3.4.2) and depending on its form 6k +1
or 6k +5 to create two or four consequent codewords of the same length. We omit this
easy correction of the procedure Generate(L) extending it to N.
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Haoitiwna oo peoaxyii 16.06.2020

A.B. AmnicimoB
TEHEPYBAHHS (2, 3)-KOAIB

AHoTanis. Y (2,3)-nogaHHi LMMX YHCENl BUKOPHUCTAHO 3MIMIaHY CHCTEMY YHC-
JeHHs 3a 0asucoM 2 Ta momoMikHUM OaszucoM 3. Ile mpencraBieHHS HMOPOIKYE
yHiBepcajbHe Oe3npedikcHe ABiMiKOBE KOJyBaHHs YCiX HaTypajbHHX 4Hceld 3 Oa-
raTbMa KOPHCHHMH BIIACTUBOCTSIMU: POOACTHICTH (CaMOCHHXPOHI3ALis), JOKAIbHI
BUIIPABJICHHSI IIOMWJIOK, CTAaTHCTUYHI 3aKOHOMIPHOCTI IapaMeTpiB KOIy TOLIO.
OmnucaHo npoueaypy MOHOTOHHOTO reHepyBaHHs (2,3)-KOJOBHX CIB Yy HOPSAKY
3pOCTaHHS IXHIX JOBYKHH.

KawuoBi caoBa: cucteMa dHCICHHS, 0a3Wc, IIOYMCENbHE KOMYyBaHHS,
npedikcHe KOTyBaHHS.

A.B. Aancumosn
TEHEPALIMS (2, 3)-KOJOB

AHHOTamusA. B (2,3)-npeacraBieHUH IENbIX YHCEN HCIOJIB30BaHA CMeEIIAHHAS
CHCTEMa CUHCIICHHS TI0 OCHOBAaHWIO 2 W BCIIOMOTATEIbHOMY OCHOBaHHIO 3. DTO
HpE/ICTaBICHHE MOPOXKJIAET YHUBEPCAIbHOE MPe(GUKCHO-CBOOOHOE BOUYHOE KO-
JMPOBAHUE BCEX HATYPAIBHBIX YHCEN, KOTOPOE MMEET MHOI'O TIOJIE3HBIX CBOWCTB:
po6acTHOCTE (CaMOCHHXPOHH3AIHsI), JIOKAIBGHBIE HCIIPABICHMS OIIMOOK, CTaTHC-
THYECKHE 3aKOHOMEPHOCTH MapaMeTpoB Koja u T. m. OmucaHa mpoleaypa MOHO-
TOHHOU TreHepanuu (2,3)-KOIOBBIX CIOB B TOPSAKE BO3PACTaHMS WX JJIHH.

KiroueBble c10Ba: cucreMa CUHMCICHHs, OCHOBAHME, IEIOYHUCICHHOE KOJHMPOBa-
HHUe, NMpe(UuKCHOe KOAMpPOBAHUE.
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