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ROBUST FOOD–ENERGY–WATER–ENVIRONMENTAL SECURITY
MANAGEMENT: STOCHASTIC QUASIGRADIENT PROCEDURE
FOR LINKAGE OF DISTRIBUTED OPTIMIZATION MODELS UNDER
ASYMMETRIC INFORMATION AND UNCERTAINTY1

Abstract. The paper presents a consistent algorithm for regional and sectoral distributed
models’ linkage and optimization under asymmetric information based on iterative stochastic
quasigradient (SQG) solution procedure of, in general, non-smooth nondifferentiable
optimization. The procedure is used for linking individual sectoral and regional models for
integrated and interdependent food–energy–water–environmental security analysis and
management.
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INTRODUCTION

Detailed sectoral and regional models have traditionally been used to anticipate

and plan desirable developments of respective sectors and regions. These models

operate with a set of feasible decisions and aim to select a solution optimizing

a sector- or region-specific objective function, depending on various input

scenarios. When interdependencies between sectors and regions are increasing,

an independent analysis that does not take the interconnectedness into account can

become highly misleading. Hence, the sectoral and regional models must be linked

together to produce truly integrated solutions that are optimal for the overall

system. Interdependent food–energy–water–environmental (FEWE) security goals
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contribute immensely to signifying the nexus between sectors and regions, notably

via common environmental goals, including quotas on total water pollution, GHG

emissions, etc.

In this paper, we consider the problem of linking sectoral and/or regional models

into an inter-sectoral, inter-regional integrated model under asymmetric information,

i.e. without revealing information about corresponding sub-models. The lack of full

information on goals, feasible decisions, constraints, and corresponding data sets is

typical for modeling international aspects. Accordingly, in this paper we distinguish

the term “linkage” under asymmetric information from the term “integrated”

modeling based on full information.

In principle, linkage of deterministic models and deterministic approximations of

stochastic optimization models into a single model that incorporates all constraints

from all models can be treated as a multiple criteria optimization problem under

appropriate aggregation principles, including probabilistic principles for problems

with uncertainties, e.g. with the welfare weights treated as probabilities. However, in

case of asymmetric information when agents are unable to obtain information on each

other’s models, the linkage, i.e., integration under asymmetric information, is possible

by using (Sec. 2) non-smooth optimization methods of a multiagent systems.

Often, it is impossible to consider decisions and constraints of all models

simultaneously and solve underlying implicit large-scale optimization models.

Instead, we use sequential subgradient optimization methods developed in the form of

iterative decomposition for two-stage stochastic optimization models (see discussions

and references in [1–4]), which can also be reformulated as large-scale (even infinite

dimensional) implicit LP models. These methods have remarkable flexibility enabling

optimization of non-smooth systems ([5]; see also Sec. 3). Thus, the approach for

models’ linkage is based on an iterative stochastic quasigradient (SQG) procedure of,

in general, non-smooth nondifferentiable optimization (see also Remark 4, Sec. 4)

converging to a socially optimal solution maximizing an implicit nested

nondifferentiable social welfare function. The linkage problem can be viewed as

a general endogenous reinforced learning problem [6]. The models act as “agents”

that communicate with a “central hub” (a regulator) and take decisions in order

to maximize the “cumulative reward”. The procedure does not require models to

exchange full information about their specifications. The “resource quotas” for each

sector/region and each resource are recalculated by sectors/regions independently by

shifting their current approximation in the direction defined by the corresponding

sectoral/regional shadow prices of resources from the primal sectoral optimization

problem. In this way, we avoid a “hard linking” of the models in a single code that

saves programming time and enables parallel distributed computations of

sectoral/regional models instead of a large-scale integrated model, that is, one that

addresses the well-known “curse of dimensionality” and challenges large scale data

harmonization under asymmetric information. This also preserves the original models

in their initial state for other possible linkages. Using detailed sectoral/regional

models instead of their aggregated simplified versions allows taking into account

critically important local details, which are usually hidden within aggregate data.

The linkage procedure has been developed at IIASA (International Institute for applied

Systems Analysis) in cooperation with Institutes from NASU (National Academy of

Sciences, Ukraine) and applied in various case studies of the NASU-IIASA project

on “Integrated robust management of food–energy–water–land use nexus for

sustainable development” [7–10] and other projects at IIASA (see e.g. [11]).
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The paper is organized as follows. Section 1 discusses the problem of model

linkage vs standard integrated modeling. Section 2 presents the original result of this

paper — a consistent iterative procedure for model linkage under asymmetric information

based on the generalized gradient (sub-gradient) method of non-smooth optimization.

Section 3 analyses the properties of the algorithm enabling its convergence. Section 4 and

the Annex present an application of the proposed approach in the case study linking

energy and agricultural sectoral models for optimal management in water scarce regions,

case study in China. The last Section concludes and outlines potential future directions,

and in particular, the extension of the linkage approach to stochastic models to manage

induced cross-sectoral “hidden” systemic risks.

1. LINKING MODELS FOR OPTIMAL RESOURCE DISTRIBUTION

Let us consider K sectors/regions utilizing some common resources. The problem

of their linkage can be formulated as follows. Let x k( ) be the vector of decision

variables in sector/region k and assume that each sector/region aims to choose

such x k( ) to maximize its objective function (net profits) of the form

� � �c xk k( ) ( ), max, (1)

subject to constraints

x k( ) � 0, (2)

A x bk k k( ) ( ) ( )� , (3)

B x yk k k( ) ( ) ( )� , (4)

where � �c xk k( ) ( ), , k K�1 2, , ,� , denotes the scalar product of vectors c k( ) and

x k( ) , � � � �c x c xk k
j
k

j j
k( ) ( ) ( ) ( ), .

Here, net unit profits c k( ) , and matrices A k( ) and B k( ) define the marginal

contribution of each component into the total demand, resource use, and

environmental impact, and vectors b k( ) and c k( ) determine the constraints, which are

themselves known only to sector/region k. We distinguish between the constraints

that are specific to sector/region k expressed by (3) and the constraints that are part of

a common inter-sectoral/inter-regional constraint with sectoral/regional quotas y k( )

expressed by (4). The sectoral/regional quotas are not fixed, but rather the following

joint constraint on the common resources holds:

A y d yk

k

K
k k( ) ( ) ( ),

�

� � �

1

0 , (5)

where matrices D k( ) define the marginal contribution of each sectoral/regional

quota into a joint constraint described by vector d � 0 that is known to all

sectors/regions.

Thus, each sector/region k maximizes its objective function (1) by choosing x k( )

and y k( ) from the feasible set defined by (2), (3), and (4).

The joint constraint (5) may be either binding or not. It may happen that for

a given y the sectorial/regionally optimal solutions x k
*
( ) to problem (1)–(4) generate

the resource demand y B xk k k
*
( ) ( )

*
( )� , such that (5) holds. In that case, the

sectors/regions are actually not interlinked and decisions that are optimal for each
sector are also optimal for the entire system.

In what follows, we are interested in the opposite case, when joint constraints (5)

are binding, that is, when for the optimal sectorial/regional solutions the joint
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constraints (5) do not hold. This means that sectors cannot achieve their optimum

independently, and at least one of them has to sacrifice a part of its utility (i.e., accept

lower profits or higher costs) in order to satisfy the joint constraints (5).

2. A CONSISTENT ITERATIVE PROCEDURE FOR LINKING DISTRIBUTED
MODELS UNDER ASYMMETRIC INFORMATION

2.1. Welfare maximization under asymmetric information. Truly integrative

solutions, by definition, imply cooperation between sectors. From this perspective,

the problem of model linkage can essentially be considered a multi-criteria

optimization problem under asymmetric information, in which a resource-efficient

Pareto solution is to be found. That is, assuming some weights wk , wk � 0,

wkk

K

�� �
1

1, a single welfare function should be maximized producing a Pareto

optimal solution:

w c xk
k k

k

K

� � �

�

� ( ) ( ), max

1

, (6)

subject to (2)–(5). By asymmetric information of sectors/regions we mean that a

sector/region k does not know c l( ) , A l( ) , B l( ) , x l( ) of other sectors/regions l k	 .

There is, however, a central hub (regulator) who knows D k( ) and d. We also

assume that there is a network of computers connecting the central computer of

each sector/region with the central computer of the hub.

In this section, we suggest a consistent algorithm for iteratively linking sectorial or

regional models under asymmetric information, for which convergence is established in

Sec. 3. It is important to note that the cyclic coordinate-wise optimization method does

not converge if the objective function is non-differentiable continuously (see e.g. [1–4]

on SQG methods) hence the direct/naive linkage will not work. A core part of the

algorithm is a central hub computer that recalculates the resource quotas y by shifting

their current approximation in the direction defined by the corresponding vectors of

dual variables (shadow prices of resources) from the primal optimization problems.

These quotas are received by sectorial/regional computers enabling parallel

computations of solutions and fast adjustments of vector y. Ermoliev (1980) [12]

initially introduced the idea of this algorithm and current computer capacities enable its

implementation to large-scale models used to support decisions.

Consider the main implicit maximization problem. For a given vector

y y y K� ( , , )( ) ( )1
� let us denote the optimal value of function (6) under constraints

(2)–(4) by F y( ), in other words, in this function x yk( ) ( ) are optimal solutions to (1)

under (2)–(4) ignoring joint constraints (5). Therefore,

F y f yk

k

K

( ) ( )( )�

�

�
1

,

where f y w ck
k

k( ) ( )( ) (� , x yk( ) ( )) are concave non-differentiable (continuously) or

non-smooth functions for given weights wk (Proposition 1, a), b)).

The algorithm defines a rule for adjusting y towards an optimal y* that

maximizes function F y( ) under the joint constraints (5) defining the feasible set Y .

2.2. Non-smooth linkage method. Consider an arbitrary feasible solution

y y ys s s K� ( , , )( ) ( )1
� for iteration s � 
1 2, , of the algorithm. For given quotas

y y ys s s K� 
( , , )( ) ( )1 , independently and in parallel, computers of sectors/regions
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solve primal models (1)–(4) and obtain primal solutions x x ys k s k s( ) ( ) ( )� together

with the corresponding shadow prices of resources, that is, solutions ( , )( ) ( )us k s k� of

the dual problems

� � � � � �b u yk k k k( ) ( ) ( ) ( ), , min� , (7)

A u B w ck k k k
k

k( ) ( ) ( ) ( ) ( )� �� , (8)

u k k( ) ( ),� �0 0� , (9)

k �1 2, , ,� where vectors � s k( ) are the driving force of algorithm (10).

The next approximation of quotas y y ys s s K� � �� 
1 1 1 1( , , )( ) ( ) is derived by the

computer of the central hub by shifting ys in the direction of vector � � �s s s K� ( , , )( ) ( )1
� ,

that is, optimal dual variables (shadow prices) corresponding to constraints (4).

Hence, we have iterative procedure defining in a sense the artificial “intellect” of the

designed solution system:

y ys
Y

s
s

s� � �1 � � �( ), s �1 2, ,� , (10)

where is an iteration-dependent multiplier, which is a method’s parameter, and �Y

is the orthogonal projection operator onto set Y (see also Remark 1, Sec. 2.3).

Vector � s defines sub-gradient of the continuously non-differentiable function F x( ).

This and the convergence of solutions ys to an optimal solution of the linkage problem

(2)–(6) as s � � is analyzed in Sec. 3. The step-size � s is chosen from rather general

and natural requirements: � s � 0 , � ss�

�
� � �

1
, because generalized gradients are not

the increasing directions of functions. Although the standard sub-gradient projection

method converges without condition � ss
2

1�

�
� 
 � , the proposed linkage algorithm

for problems under asymmetric information (10) requires this additional condition to

enable the convergence of not only function F ys( ), but also solutions ys. This

allows us to propose a simple stopping criterion enabling the independent

optimization of interdependent sectors by (10).

2.3. Algorithm and its generalization. The basic linkage algorithm with more

details including stopping criteria is summarized as follows.

Step 0. Initialization. Sector k, k K�1, ,� , chooses initial vectors y k0( ) of

quotas and submits it to the central computer (hub). The computer projects

y y y K0 0 1 0� ( , , )( ) ( )
� onto the set Y defining a first feasible approximation

y y y K1 1 1 1� ( , , )( ) ( )
� ; set s �1.

Step 1. Generic step. Suppose by the beginning of iteration s the algorithm

arrived at vector y y ys s s K� ( , , )( ) ( )1
� . Then on iteration s the algorithm proceeds

as follows.

Step 2. All sectors/regions k receive ys k( ) and solve sectorial models (1)–(4)

independently. Shadow prices � s k( ) of common resources are submitted to the central

computer.

Step 3. The central computer calculates ys
s

s� � � with a step-size � s sc s� / ,

where cs is a scaling parameter, c c cs� � for some constants c , c, which regulate � s

so that the product � �s
s corresponds to the scale of ys. Vector ys

s
s� � � is projected

onto the set Y and defines ys�1. Sectors receive corresponding components of ys�1.
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Step 4. All sectors independently check stopping criteria. Sector k calculates

non-negative difference

� �k
k s k s s k s k ss b u y y y( ) ( , ( )) ( , ( ))( ) ( ) ( ) ( )� � � w c x yk

k s k s( , ( ))( ) ( )

and submits values �k s( ) to the central computer of the common hub.

If � �kk
s� � �( ) 0 , where � is an admissible accuracy, then stop. Otherwise,

continue with increments of 1 and return to step 1.

Section 3 shows that the independent functioning of sectors/regions according to

this algorithm is possible without revealing sectorial information due to requirement

� ss
2� 
 �.

Remark 1 (Computing the projection). The orthogonal projection ys�1 of vector

y ys s
s

s� � � � onto Y is calculated by means of a fast algorithm minimizing the

quadratic function | | | | | | | |( ) ( )y y y ys s k k
k

K
� � �

��2 2
1

, subject to joint constraints (5).

This minimization can be done within a finite number of steps by using

LP-transformations of quadratic optimization problems based on optimality equations.

Because y Ys � , then projections ys�1 of vector ys
s

s� � � , s �1 2, ,� , is very fast by

minimizing | | | |y ys
s

s� �� � 2 due to � �s
s � 0, as vectors � s are bounded optimal

dual solutions (Proposition 1, a) and if ys is taken as an initial approximation for ys�1.

Remark 2 (Mixed constraints). Joint resource constraints of type (5) can be

imposed by an external agency or can be jointly agreed upon by the participating

sectors/regions. Sectors/regions may be subsidized or taxed to achieve certain levels

of production — say to ensure a secure level of pollution in a common body of water.

Such decisions affect not only vectors x of sectorial models (1)–(4), but also vector y

of resource constraints (5). In this case, joint sectorial constraints (5) may have the

following mixed form involving both x k( ) and y k( ) under a vector of common

resources �:

M x D yk k

k

K
k k

k

K
( ) ( ) ( ) ( )

� �

� �� �

1 1

� , (11)

where matrices D k( ) define the marginal contribution of each x k( ) into the

constraint � and also generate additional asymmetric information regarding

common resources y.

Yet, problem (1)–(4), (11) can be transformed into a problem that has the same

structure as (1)–(5) with separate constraints on common resources as follows:

Let us introduce vectors z k( ) such that M x zk k k( ) ( ) ( )� , k K�1, ,� , and

re-write (11) as

D y zk k

k

K
k

k

K
( ) ( ) ( )

� �

� �� �

1 1

� , z k

k

K
( )

�

� �

1

� .

After an appropriate re-notation, we indeed arrive at the problem of the form (1)–(5).

3. PROPERTIES OF THE ALGORITHM

In this section, we justify the convergence of the proposed linkage method (10). We

rely on its connections with the duality theory and the theory of (continuously)

non-differentiable optimization.

The following is important for our approach proposition and is derived from the

known facts of duality theory. For example, the concavity of F y( ) and the importance

of non-differentiable optimization follows from Proposition 1 (a). The verification of
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the stopping criteria in Sec. 2.3. follows from the convergence of { }ys to a point of

Y * due to the theorem of this section.

Consider the sectorial/regional model k defined by equations (1)–(4) for a given

feasible y satisfying the constraints of (5). The duality relations are usually

established by using the Lagrangian function (see [13, 14]) as follows:

L x y u w c x u b A xk
k k

k
k k k k k k( , , , ) ( , ) ( ,( ) ( ) ( ) ( ) ( ) ( ) ( ) (� � � � ) ( ) ( ) ( ) ( )) ( , )� �� k k k ky B x ,

where u and � are dual variables.

Proposition 1 (Duality relations). Assume there exist solutions x yk( ) ( ) of all K

sectorial/regional models. Then:

a) Each Lagrangian function Lk , k K�1, ,� , has a saddle point

( ( ), ( ), ( ))( ) ( ) ( )x y u y yk k k� :

min ( ( ), , , ) ( ( ), , ( ),
,

( ) ( ) ( ) (

u
k

k
k

k k kL x y y u L x y y u y
�

� �
�

�
0

) ( ))y �

�
�

max ( , , ( ), ( ))( ) ( )

x
k

k kL x y u y y
0

� ;

L x y y u y y w c x y fk
k k k

k
k k k( ( ), , ( ), ( )) ( , ( ))( ) ( ) ( ) ( ) ( ) (� � � ) ( )y , (12)

( ( ), ( )) ( , ( ))( ) ( ) ( ) ( ) ( ) ( ) ( )u y b A x y y B x yk k k k k k k� � � �� 0 .

Because L x y u y yk
k k k( , , ( ), ( ))( ) ( ) ( )� for fixed y is jointly concave in ( , )( )x yk ,

then after maximizing with respect to x k( ) , the resulting optimal value (12)

L x y y u y y f yk
k k k k( ( ), , ( ), ( )) ( )( ) ( ) ( ) ( )� � remains concave in y . Hence, f yk( ) ( ),

F y f xk k
k

K
( ) ( )( ) ( )�

�� 1
are concave functions.

The following facts b) and c) justify the stopping criterion of the linkage

algorithm (Sec. 2.3.).

b) The dual minimax problem min max ( , , , )
,u x

kL x y u
�

�
� �0 0

is equivalent to the

LP-problem (7)–(9).

The primal LP-model (1)–(4) is equivalent to the maximin problem, that is,

maximizing the non-differentiable function in general: min ( , , , )
,u

kL x y u
�

�
�0

.

c) The dual problem has a solution ( ( ), ( ))u y y� and these solutions satisfy the

following equality:

f y w c x y b u y y yk
k

k k( ) ( ) ( )( ) ( , ( )) ( , ( )) ( , ( ))� � � � .

The following fact ([15, 16]) is fundamental for solving the linkage problem

through maximizing non-differentiable function F y( ) by method (10).

Proposition 2 (Sub-gradient). Assume there exist solutions x yk( ) ( ) of all K

sectorial models. Then for any feasible solution z and y,

f y f z y y zk k k( ) ( ) ( )( ) ( ) ( ( ), )� � �� ,

that is, � ( ) ( )k y is a sub-gradient of the concave function f yk( ) ( ).

Proof. From Proposition 1 it follows that

f y f z b u y y y b uk k k k k k( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( , ( )) ( , ( )) ( ,� � � �� ( ) ( ) ( )( )) ( , ( ))k k kz z z� ��

� � � �( , ( )) ( , ( )) ( , ( )) ( ,( ) ( ) ( ) ( ) ( ) ( )b u y y y b u y zk k k k k k� � ( ) ( )( )) ( ( ), )k ky y y z� �� .
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Corollary 1. Vector � � �( ) ( ( ), , ( ))( ) ( )y y yK� 1
� is a sub-gradient of function

F y f yk
k

K
( ) ( )( )�

�� 1
, F y yy ( ) ( )� � , that is, F y F z y y z( ) ( ) ( ( ), )� � �� .

Therefore, the procedure (10) is a specific sub-gradient method for maximizing
the (continuously) non-differentiable concave function F y( ) .

Let us now show that ys converges to an optimal solution y* , maximizing F y( )

subject to joint constraints (5).
Theorem 1 (Non-monotonic convergence). Assume that
(a) The feasible set Y is bounded;

(b) Step size � s satisfies the conditions:

� s � 0, � s

s�

�

� � �

1

, � s

s

2

1�

�

� 
 � , say p ss �1 / .

Then lim *y Ys � for s � � .

Proof. The property of the projection �Y ( )� yields for any optimal y Y* � :

| | | | | | | | | | | | ( ,* * * *y y y y y y y ys s
s

s s
s

s� � � � � � � ��1 2 2 2� � � � s ) �

� � � �� � �s
s s

sy y C2 2 2 2| | | | | | | |* ,

where 0 � � � �F y F y y ys s( ) ( ) ( , )* *� , because � s is a generalized gradient of

F y( ) at y ys� (Proposition 2).

Also, | | | |� s C2 
 
 � , where C � 0, is a positive constant because solutions

x yk s( ) of primal and solutions ( ( ), ( ))u y yk s k s� of dual sectorial/regional models are

bounded, as the feasible set Y is bounded by our assumptions.

The sequence { }| | | |*y ys� 2 sat isfy ing equat ions | | | |*y ys� ��1 2

� � �| | | |*y y Cs
s

2 2� , � ss
2

1�

�
� 
 �, for all y Y* *� converges for s � � because the

sequence � �s
s

tt s
y y C� � �

�

�
�| | | |* 2 2 is monotonic, � �s s� �1 and � ss

2
1�

�
� 
 � .

Therefore, all accumulation points of { }ys are on the sphere of the radius

lim | | | |*y ys� . Hence, if we now show that one of the limit (accumulation) points of

{ }ys belongs to Y * , then from this assertion would follow the convergence of { }ys

to a point of Y * .
Consider again the inequality

| | | | | | | | ( , )* * *y y y y y y Cs
t

t t

t

s

t

t

� � � � � ��

��

�1 2 1 2

1

2

1

2 � � �
s

� .

Due to the inequality F y F y y yt t t( ) ( ) ( , )* *� � �� following from the

definition of a generalized gradient � � �s s s K� ( , , )( ) ( )1
� , we have

| | | | | | | | ( ( ) ( ))* * *y y y y F y F y Cs
t

t
t

t

s

� � � � � ��

�

�1 2 1 2 2

1

2 � �
t

s

�

�
1

.

Therefore, �t
t

t
F y F y( ( ) ( ))* � 
 �

�

�
� 1

. Since �tt�

�
� � �

1
and

F y F xt( ) ( )* � � 0, then there exists a subsequence y
ts such that F y F y

ts( ) ( )* � � 0,

for s � � . Therefore { }ys converges and the proof is completed.

Remark 3. The following sequence of � s for example, satisfies the conditions of

the theorem: � �s s s� / , 0 � � � 
 �� � �s for some positive constants � and �.
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4. LINKING FOR FEWE NEXUS

In this section, we demonstrate the application of the developed iterative linkage

procedure for linking agricultural, energy, water, and environmental models. The data

are taken from the case study of FEWE nexus in water-scarce Shanxi province in

China [11]. In the case study regions, coal and agricultural production are restricted

by the availability of natural resources, most notably, water and land. Coal-based

industries — mining, washing, chemical production, and power generation — are all

extremely water-intensive. What makes the competition for water even worse is

a huge mismatch between water resources and coal reserves — 53 % of China’s coal

reserves are located in water scarce regions, while 30 % are in water stressed regions —

and Shanxi is one of them. Water supply to agriculture is also very important as it can

significantly improve rural developments and maintain food security by ensuring basic

grain sufficiency. Thus, this model addresses the problem of planning sustainable energy

and agricultural sectors under water and land scarcity, as well as energy and food

security goals in an integrated way. If water and land quotas to sectors are calculated in

an independent way, this may lead to the violation of sustainability constraints. The

model also addresses linking across production, processing, import, export locations.

The model overview can be found in the Annex. Here we present the key results of

numerical calculations demonstrating a fast convergence of the approximate solutions ys

to the optimal solutions of the welfare maximization problem.

Remark 4 (Computational stability). A fast convergence of the linkage

algorithm based on the generalized sub-gradient method of non-differentiable

optimization is observed and justified theoretically when optimal solutions are points

of the non-differentiability. This is due to a fundamental difference between the case of

continuously differentiable and non-differentiable functions, because generalized gradients

(sub-gradients) do not approach zero at optimal solutions. For example, the minimization of

one-dimensional function F y y( ) | |� has the solution y* � 0 and sub-gradients equal �1

for y � 0 and �1 for y
 0. This type of non-smooth criterion function is used in robust

statistics. The robustness of these types of methods with respect to random disturbances is

used in stochastic optimization [1–4, 17–25] and references therein).

Table 1 presents the comparison of the optimal utility values between separately

optimized models and overall welfare optimization. When sectorial models are solved

separately, no joint constraints (5) are imposed, which allows the agriculture and coal

sectors to gain about 15 % and 36 % of their utility, respectively. However, joint

systemic constraints (5) are violated. In practice, this can lead to a shortage of water

for one of the sectors and to a systemic failure. Under joint constraints, i.e. when

models are hard-linked and/or when they are linked via a central “hub” thus ensuring

systemic security, the total gains of feasible optimal solutions, that is, the net profits

of sectors, can be lower. Numerical calculations by method (10) allow for fast

identification of the most critical parts of the optimal solutions responsible for

systemic stability and efficiency. The calculations also easily illustrate the value of

mathematical models vs. simple calculations of “intuitively evident” direct net profits that

ignore indirect systemic gains and losses, which may dramatically affect final conclusions

and policies. For example, the lack of a bridge or a sectorial link connecting otherwise

disconnected sectors/regions can cause losses that are incomparable with the direct cost of the

bridge. This kind of systemic interdependencies are addressed by the proposed approach.

Figure 1 presents the values of the overall welfare function in each iteration of

the algorithm for three different initial approximations, i.e. initial allocation of water

and land quotas between two sectors. On the vertical axis are the total net profits

(in bln. CNY) while method iterations appear on the horizontal axis. The three curves
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(Sc1, Sc2, Sc3) correspond to different initial conditions. In all three cases the

iterative process converges rather quickly, that is, in the sixth iteration the optimal

value is practically reached. After the tenth iteration, the accuracy becomes 0.6 %.

An essential factor affecting the convergence speed is of course the choice of the

step-size � s. A general rule is that the scale of the product � �s
s must correspond to

the scale of the solutions ys.

CONCLUSIONS

This paper presented two novel results. First, it is the algorithm — or a model-based
negotiation process — that allows the hub (central authority, principal agent), who
pursues the maximization of public welfare, to distribute limiting resources between
several actors without knowing the details of the internal structure of these actors and
requiring only the shadow prices for the individual resource bounds. More
specifically, this method links different linear optimization models into one system
model without re-coding the sub-models into a single integrated model. Second, it is
the illustrative demonstration of the algorithm for a case study in China.

While in this paper, we meant linking regional and/or sectorial models when

referring to model linkage, more generally, linking models may refer to different

local-global scales. Therefore, the linkage problem can also be formulated much more

generally in terms of sub-models and integrated models and the approach presented in

this paper can still be applicable. Remark 2 illustrates this in more detail.
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T a b l e 1. Exact and iterative comparison of the optimal utility values between

separately optimized models and overall welfare optimization

Model Net profit, Total,
bln. CNY

Net profit, Agriculture,
bln. CNY

Net profit, Coal,
bln. CNY

Two separate sectorial

optimizations (no joint constraints)
254.2 17.7 236.5

Welfare optimizing (hard-linked) 176.2 14.1 162.1

Linked via a central “hub” 177.3 13.9 163.4

170

175

180

185

190

195

200

205

210

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sc1

Sc2

Sc3

Iteration s

P
ro

fi
t,

b
ln

.
C

N
Y

Fig. 1. Convergence (in terms of the utility value) of the iterative procedure to the exact solution of the
overall welfare maximization problem



The linkage of models is, in a sense, opposite to decomposition methods

(e.g., [26, 27]). While in the decomposition we split an existing integrated

optimization model into a number of smaller sub-models, in the linkage we obtain an

integrated model of the system by linking existing explicitly unknown sub-models.

Remark 2, Sec. 2.3, also demonstrates that the proposed methodology has

a fundamentally new type of flexibility enabling the simultaneous use of linkage and

decomposition procedures, in other words, endogenously disaggregating models to

make their further integration more efficient.

The proposed computational algorithm is based on sub-gradient methods

invented for the optimization of non-smooth systems, which may be subject to shocks

and discontinuities. Therefore, these methods will be naturally developed further for

linking stochastic models with known marginal distributions of sectorial uncertainties,

into cross-sectorial integrated models with joint distributions of collective systemic

risks induced by sectorial uncertainties and decisions maximizing a stochastic version

of the function (6).

It is worth noting that we can also carry out the linkage of dynamic systems

using the same equations (1)–(5) with vectors x x x Tk k k( ) ( ) ( )( ( ), , ( ))� 1 � ,

y y y Tk k k( ) ( ) ( )( ( ), , ( ))� 1 � characterizing decisions and quotas of sectors

k N�1, ,� at time t T�1, ,� . Additional complications arise in the situation when

vectors x tk( ) ( ) have two components x t z t u tk k k( ) ( ) ( )( ) ( ( ), ( ))� representing the state

variables z tk( ) ( ) and the control variables u tk( ) ( ). In this case, the saddle points in

duality relations (Proposition 1) may have the form of discrete (in time) Pontryaging

Maximum Principle. This enables the decomposition of the dynamic optimization

model over interval [ , ]1 T into independent sub-problems for each t T�1, ,� , which

can be solved by the proposed algorithm as indicated in Remark 2.

Another fundamentally important possible extension of the presented method is

the case of stochastic sectoral/regional models in which the distribution of

uncertainties are shaped by the decisions of various agents. The mitigation of floods

by new land use decisions, for example, affect flood scenarios. As a rule, this makes it

impossible to separate scenario generations and optimization procedures. This calls

for linking both simulation and optimization procedures in a similar manner to

algorithm (10), thus combining simulations of scenarios with optimization steps.

ANNEX: MODEL OVERVIEW

In the model, variables xijmt denote the amount of coal (in tons) of type i (brown,

anthracite, etc.) produced in location j, transported to location m, and utilized

(converted) by technology t. Variables ykjm denote the amount of crop (in tons) of

type k produced in location j and exported to location m. Index k is used to represent

a particular type of crop (such as corn, wheat, soybean, etc.).

Energy, water, and agricultural nexus. In the integrated energy-agricultural

model, a social planner chooses how much coal i to exctract in location j, transport to

location m, and convert by technology t . In addition, decisions are made on how

much agricultural commodities k to produce in location l so that the total costs from

the coal and agricultural production, transportation, and conversion is minimized, thus

fulfilling constraints on natural resources, environmnetal pollution, and end-product

demand. This is represented by:

min [
,x y

ij
CP

ijmt ijm
CT

ijmt ijt
CC

ilmt kj
AP

kjc x c x c x c y� � � m kjl
AT

kjm

i j k m t

c y�� ]

, , , ,

, (13)
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where cij
CP stands for the production cost of a unit (i.e., ton) of coal of type i in

location j, cijm
CT stands for the transportation cost of a unit of coal i from location j

to location m, cijt
CC stands for the conversion costs of a unit of coal i by

technology t in location j, c
kj
AP denotes costs associated with production of a unit

agricultural commodity k in location j, and c
kjm
AT stands for the transportation cost

of a unit of the agricultural commodity k from location j to location m.

Energy and food security interdependencies. We impose a constraint that

defines the minimum required level of production of each agricultural commodity k in

each location j as follows

y Dkjm

j
km
A� � , (14)

where the right-hand side D
km
A stands for the demand for agricultural commodity

k in location m. D
km
A can be measured in terms of the minimum amount of daily

calories required per capita suggested by the World Health Organization (WHO)

accounting for size, age, sex, physical activity, climate, and other factors.

Demand for useful or final energy converted from coal, for example, electricity,

which accounts for more than half of total coal conversion in China, heat, coke, gas, and

oil. Thus, we introduce the constraint on the energy produced from coal as follows:

	 ijt
d

ijmt

m t

j
dx D

,

� � , (15)

where 	 jt
d denotes the conversion efficiency of coal type i in location j by

technology t , the end-product of type d , and D j
d stands for the demand for d.

Natural resource constraints. Another important driver and the main limitation

of both energy and agricultural sectoral growth are natural (land and water)

constraints. Energy and food security targets have to be jointly fulfilled, which is why

they compete for resources. Land constraints prescribe that the total land used for

agriculture, the land that subsides due to coal mining, and the land occupied by coal

waste deposits cannot exceed the total available land L j in each location j. Thus, the

constraint is formulated as follows:

k m

kj kjm

i m t

ijmt ij j ij

i m t

ijmtl y x r l l g x

, , , , ,

( )� � �� � � �1 � L j , (16)

where lkj stands for the area of farmland required for the production of a unit of

crop k in location j, lij stands for the area of land that subsides as a result of the

mining of a unit of coal of type i in location j, �l j represents the fraction of the

farmland overlapped with the coal filed in the location j, and rij stands for the

land reclamation rate (or efficiency rate) for coal i in location j.

As water plays a key role in coal production and is simultaneously essential for

agriculture, we impose a constraint on the total water required for coal production,

processing, and conversion and for crop irrigation purposes in each location j :

i m t

ij
P

imlt

i m t

ij
d

ijmt kj
c

kmj

k m

jw x w x w y W

, , , , ,

� � �� � � , (17)

where wij
P defines the amount of water required to produce a unit of coal i in

location j, wij
d is the amount of water required to convert a unit of coal i in
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location j, w
km
c is the amount of water required to irrigate a unit of crop k in

location j, and Wj defines water availability in location j. In the following

numerical experiments, we do not account for environmental constraints such as,

for example, SO2 and CO2 emissions targets.

Individual sectoral models. In the individual sectoral models, that is, the coal

industry and the agricultural sector, the individual goal functions are as follows

min [
, , , , ,x y i j k m t

ij
CP

ijmt ijm
CT

ijmt ijt
CC

ilmc x c x c x� � � t ] (18)

and

min [ ]
, , , , ,x y

kj
AP

kjm kjl
AT

kjm

i j k m t

c y c y�� (19)

for the coal and agricultural sectors, respectively. Individual sectoral land

constraints

i m t

ijmt ij j ij

i m t

ijmt j
Cx r l l g x L

, , , ,

( )� �� � �1 � (20)

and

l y Lkj kjm

k m

j
A

,

� � (21)

incorporate exogenous assumptions on land allocated for coal and crop production

L j
C and L j

A in locations j, for the coal and agricultural sectors respectively.

Water quotas allocated to the sectors limit the choice of coal and crop

technologies

i m t

ij
P

imlt

i m t

ij
d

ijmt j
Cw x w x W

, , , ,

� �� � , (22)

and

w y W
kj
c

kmj

k m

j
A

,

� � , (23)

where Wj
C and Wj

A define water provided to the coal and agricultural sectors in

location j.

As discussed in Sec. 1, the independent allocation of L j
A , L j

C and Wj
A , Wj

C can

lead to failures.

Model linkage. To link the energy ((18), (20), (22)) and the agricultural ((19),

(21), (23)) models in such a way that joint constraints (16) and (17) are fulfilled, we

implement the approach (1)–(11), where the procedure (10) sequentially adjusts the

right hand-side of the resource constraints towards maximization of the aggregate

welfare function

F y c x c x c x

i j k m t

ij
CP

ijmt ijm
CT

ijmt ijt
CC

ilmt( ) [

, , , ,

� � �� ] [ ] ,

, , , ,

� ��
i j k m t

kj
AP

kjm kjl
AT

kjmc y c y (24)

where xijmt and ykjm depend on the resource constraints.

The linkage of the models is accomplished as follows:

At the initial step 0, individual sectoral models are solved using arbitrary

assumptions on resource distribution L j
C ( )0 , L j

A ( )0 and Wj
C ( )0 , Wj

A ( )0 between the

sectors. The solutions of the individual models depend on the resource constraints

x L sijmt j
C( ( )�1 , L sj

A ( )�1 , W sj
C ( )�1 , W sj

A ( ))�1 and y L skjm j
C(( ( )�1 , L sj

A ( )�1 ,

W sj
C ( )�1 , W sj

A ( ))�1 .

The resource distribution at step s is adjusted according to (10) using marginal

values (dual variables) of the constraints
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i m t

ijmt ij j ij

i m t

ijmt j
Cx r l l g x L s

, , , ,

( ) ( )� �� � � �1 1� , (25)

l y L skj kjm

k m

j
A

,

( )� � �1 , (26)

i m t

ij
P

imlt

i m t

ij
d

ijmt j
Cw x w x W s

, , , ,

( )� �� � �1 , (27)

k m
kj
c

kmj j
Aw y W s

,

( )� � �1 . (28)

It is important to mention that the proposed approach allows us to link the

models under asymmetric information on remote computers.
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Þ. ªðìîëüºâ, À. Çàãîðîäí³é, Â. Áîãäàíîâ, Ò. ªðìîëüºâà, Ï. Ãàâë³ê,
Î. Ðîâåíñüêà, Í. Êîìåíäàíòîâà, Ì. Îáåðøòàéíåð
ÐÎÁÀÑÒÍÅ ÓÏÐÀÂË²ÍÍß ÄËß ÁÅÇÏÅÊÈ Ó ÂÇÀªÌÎÇÀËÅÆÍ²É ÑÈÑÒÅÌ²
ÏÐÎÄÎÂÎËÜÑÒÂÎ–ÅÍÅÐÃ²ß–ÂÎÄÀ–ÄÎÂÊ²ËËß: ÏÐÎÖÅÄÓÐÀ
ÑÒÎÕÀÑÒÈ×ÍÈÕ ÊÂÀÇ²ÃÐÀÄ²ªÍÒ²Â ÄËß ÇÂ’ßÇÓÂÀÍÍß ÐÎÇÏÎÄ²ËÅÍÈÕ
ÎÏÒÈÌ²ÇÀÖ²ÉÍÈÕ ÌÎÄÅËÅÉ Â ÓÌÎÂÀÕ ÀÑÈÌÅÒÐÈ×ÍÎ¯ ²ÍÔÎÐÌÀÖ²²
ÒÀ ÍÅÂÈÇÍÀ×ÅÍÎÑÒ²

Àíîòàö³ÿ. Çàïðîïîíîâàíî ïîñë³äîâíèé àëãîðèòì äëÿ çâ’ÿçóâàííÿ äåöåíòðàë³çîâàíèõ ðîç-
ïîä³ëåíèõ îïòèì³çàö³éíèõ ðåã³îíàëüíèõ ³ ñåêòîðàëüíèõ ìîäåëåé â óìîâàõ àñèìåòðè÷íî¿
³íôîðìàö³¿ òà íåâèçíà÷åíîñò³ íà îñíîâ³ ³òåðàòèâíèõ ïðîöåäóð ñòîõàñòè÷íèõ êâàç³ãðàä³ºíò³â,
ðîçðîáëåíèõ äëÿ íåãëàäêî¿ òà íåäèôåðåíö³éîâíî¿ îïòèì³çàö³¿. Ðîçðîáëåíó ïðîöåäóðó
âèêîðèñòîâóþòü äëÿ îá’ºäíàííÿ ³íäèâ³äóàëüíèõ ðåã³îíàëüíèõ ³ ñåêòîðàëüíèõ ìîäåëåé äëÿ
³íòåãðîâàíîãî âçàºìîçàëåæíîãî àíàë³çó òà óïðàâë³ííÿ áåçïåêîþ â ñèñòåì³ ïðîäîâîëüñò-
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