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Abstract. The authors consider the basic stages of creating a computer system for decision-
making support in ecological security. The key factors of environmental pollution caused by
ecological and technological catastrophes and typical failures in the operation of hazardous
facilities are analyzed. Methods for quantitative estimation of the risk function are proposed.
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state of the environment, to make predictions, and provide a comprehension of the process
under consideration.
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Under condition of scientific and technical progress rapid development of the

level of antropogenical and technical influence on the environment essentially in-

creased. Thus, many biosphere parameters reached critical indices and so are be-

coming dangerous to human life and to the mankind existence in whole.

The problem arising in this connection make it necessary working out the system of

decision making support in ecological security. This is one of the most difficult multi-factorial

problems. Its decision is possible only with the use of system analysis methods.

Let’s consider the basic stages of the creation of computer system of decision

making support. The first stage consists in the analysis of basic factors of pollution af-

ter the ecological and technological catastrophes, typical failures of project, exploita-

tion of dangerous objects and so on. The second stage involves the risk function quan-

titative estimation and creation of the ecological and mathematical model allowing to

estimate current condition of nature and to give forecast for future. The main goal of

the model design is to achieve the comprehension of the process under consideration.

Give an example taken from [1] dealing with the analysis of soils’ main proper-

ties. Following [1], it’s enough to consider such ones: l) acids’ neutralization; 2) ad-

sorption of phosphorus and toxic materials; 3) oxygen donating.

Let us review each one.

1) Acids’ neutralization. This capacity is substantial for maintaining the stability

of fresh water habitats necessary for fish and other aquatic life protecting from acidity

fluctuations. Soils’ ability to neutralize acids essentially depends on their types.

Analyzing the situation over the last 100-150 years in the industrialized regions

of North America and Europe the conclusion of the soils’ buffering capacities large

perturbations can be done. This is because of the great amount of sulfuric and nitric

acidic rains resulting from burning of organic fuels. But the effect of such impacts is

not uniform for different regions because of the large variability in soil type. [1] con-

tains information about the acidification of lakes. The rate of lake response to acid in-

puts depends on two watershed soils fundamental qualities — the ability to retain sul-
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fate and the ability to supply base cations. It is necessary to know the history of acid

emissions, the time trends in pH and in the exhaustion of the watershed soils buffering

capacity. Unfortunately, in literature there is little information about it and data avail-

able are pure. Besides, the experiments in this sphere are expensive and often impos-

sible. We have to use the information available. That’s why it’s necessary to develop

methods allowing to make inference using insufficient amount of information such as

statistical methods of small samples processing.

2) Adsorption of phosphorus and toxic materials. It’s known that chemicals

being added to soils falls into 4 groups: i) those getting into ground and then in sur-

face waters; ii) taken up by plants; iii) volatilized into the atmosphere; iv) stored in

soil. In the cases i)- iii), when chemicals are input in the environment, their effects are

easy to observe even within a short period after pollution. The fourth way is the most

interesting for investigation because of nonlinear and time-delayed effects arising.

The potential danger of chemicals consists in their ability to accumulate in soils thus

the threshold for the soil’s capacity to hold the chemical can be reached.

3) Oxygen donating. The most efficient mechanism of producing biochemical

energy necessary for any organic life is oxidation of organic carbon to carbon dioxide by

molecular oxygen. Thus, oxygen donating is extremely essential for the life in biosphere.

Thus, summarizing data concerning three main soils properties we meet the ne-

cessity to design a model (or a series of models) answering the following questions:

1. What level of soil acidity is harmful for human health? When will it be ac-

cessed (or whether it is accessed) for some region?

2. What is the law according to which the soil properties change?

3. How to estimate the moment of threshold for the soil’s capacity to hold the

chemical reaching?

MODELS

1. This kind of problems arises in study of different natural and human activity

connected phenomena. The models we design have to reflect the phenomenon un-

der consideration effectively enough and answer the questions we put on each

concrete case. Having a possibility to describe model by analytic expressions we

can considerably advance in it. On the other hand, we can aspire to design the

empirical model based on the summing up of the accessible observation set. We

can definite this process characteristics with the help of modeling or with estima-

tion on the observation background. Note that when we investigate so difficult

process, we can’t get satisfactory determinate model as a rule. Therefore, it is nat-

ural (it is described in detail in [2]) to consider the investigated process as sum of

two parts: determinate g t( ) and random W t( ). Thus, the observations model is:

Y t g t W t( ) ( ) ( )� � ,

where g t( ) is the function of unknown kind containing the unknown parameters:

g t g t( ) ( , )� � or g t( ) is the function of unknown kind belonging to some class of

functions. It is necessary to estimate either � or the whole function g t( ) . This

kind of problem we will name trend extracting.

2. Another class of problems will be given by the following model:

f y t g t W t( ( )) ( ( )) ( )� � �� 1 , (1)

where �( )t �1 is observation vector to time moment t �1, W t( ) is a subsequence of

independent random magnitudes, f and g are some functions. The relation (1) is

a stochastic difference equation. These equations theory is investigated in

Kalman’s works [3, 4] and others. The main task is to acquire the algorithm to
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find forecast of the process y t( ) based on some observation vector �( )t within the

time moment t �1. This problem is investigated so fully in case when the

outcoming signal y satisfies the difference equation:

A D y t B D W t( ) ( ) ( ) ( )� , A B( ) ( )0 0 1� � , (2)

and y t( ), in general, isn’t observed immediately, in fact we observe the process

with white noise:

x t y t t( ) ( ) ( )� � � ,

where �( )t is some discrete white noise.

Operators D, A D( ), and B D( ) are determined by equalities

Dy t y t( ) ( )� �1 , A D I A Dj
j

j

m

( ) � �
�
�

1

1

, B D B D m mj
j

j

m

( ) ,� �
�
� 1 2

1

2

.

This kind of models is studied in detail in [5, 6] and others.

Likewise, we can consider the continuous analogy of the model (2), when opera-

tor D is given below:

Dy t
t

y t( ) ( )� �
�

.

The equation of kind (2) includes wide enough class of models, between them

autoregression model and autoregression model with moving average. Such models

well enough describe processes connected with risk estimation for ecology end eco-

nomic systems. For example, in phosphate storing in soil forecasting, when data in

previous time moments are known, the difference equation of kind (2) is a natural

enough model of the real process. Some difficulties may arise because of the trend is,

in general, time-dependent, so coefficients of A D( ) may be time-dependent too. The

forecast finding methods are developed in such case as well [7]. But unlike the previ-

ous case, here the Wiener–Kolmogorov method is used and the forecast problem re-

solving is being reduced to some difference or differential equations resolving.

Note, that sometimes in some substances spreading in soil forecasting t parame-

ter is convenient to be treated as vector one. Then the model under investigation can

be written as (2), but D operator will look like

D
t t

m

m

� �

� ��...
, t t tm� ( , ..., )1 ,

and W t( ) is a multidimensional white noise.

Such systems are studied in [8].

Certainly, t is not interpreted here as a time parameter but as averaged coordinate

of some region. Harmful substances forecast is made for neighboring regions.

Let’s do some more essential notes about the models describing soil pollution,

chemical substances and acids storing in soils etc. processes. As our purpose consists

in estimates connected with chemicals, acids, heavy metals presence in soil obtaining

it’s natural to resolve our problems using the mathematical random field methodol-

ogy. We will study so called geochemical field, where the content of some chemical

substance as coordinate and time function will be treated. Thus, the random geochem-

ical field will be function of time t and space variable x t x t x: ( , ) ( , , )� � �� , where

��	 is an element of the probability space 	, t T R� 
 , x R m� , m � 1. If m � 2,

chemicals concentration on an area is considered, if m � 3 — in the space. In experi-

mental investigations we often have at our disposal only average meaning of point

spatial variable within some area or volume at time moment t. For instance, average
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meaning of the function � �( , )t within the area S at the point x S� at time moment t

we describe as follows:

g t x
S

x h dh
x h S

( , ) ( )� � �
� �

1
� .

The same way we can determine average meaning of the function � �( , )t within

the volume V with center of gravity at the point x S� at time moment t:

g t x
V

x h dh
x h V

( , ) ( )� � �
� �

1
� .

Let us list natural assumptions necessary to be done for the correct problem solu-

tion if we use average meaning g t x( , ) of the function �( , )t x .

i) Random field �( , )t x uniformity on x in the restricted or broad sense [9]. This

property develops in the fact that at any point of the field, random function has the

same average characteristics. In other words, we have possibility to repeat experi-

ments endlessly, to obtain as much as desired of random function realizations and so

to make valid corresponding statistical inference. This hypothesis will be unfit if reg-

ular change of �( , )t x meaning when observation point recedes from the central part of

the field is observed. Sometime it is convenient to consider instead of uniform field

the field with stationary increments, i.e. joint distribution of random values

� � �( , ) ( , ) ( , )t x t x t xk k k� ��1

under fixed t stays constant when variables xk are simultaneously moved on value h.

ii) Continuity. Usually, the change of any soil properties takes place slowly and

continuously. That’s why this condition looks natural enough.

Apparently, properties 1 and 2 are basic for natural transition from �( , )t x func-

tion observations to its average characteristics y t x( , ). So, if we fix some area Dx by

any point x D� we can go to the forecast estimation problem for any random function

y t y t x( ) ( , )� omitting index x and implying that problem is being solved for some

concrete area or region.

Thus, we can consider the case when the sequence of random value observations

y t y tn( ), ..., ( )1 , for which some statistical inference should be made. We shall call the

y t y tn( ), ..., ( )1 sequence time series.

ANALYSIS

Before we solve estimation, forecast, distribution finding problems for some

functionals we have to make preliminary analysis of time series. In our opinion it

consists of the items below:

1a. Observation independence checking.

2a. Trend presence hypothesis checking.

3a. Observed value distribution hypothesis checking.

Then we do more detailed time series analysis. It consists of such items:

lb. Finding the class of models being subject to investigation.

2b. Model parameter statistical estimation.

3b. Time series values at following time moments forecast.

It’s no need to stop in detail at the preliminary statistical analysis of time series.

These problems are widely elucidated in many textbooks and monographs on

mathematical statistics. We made statistical analysis for data from [1]. Statistical

information was processed by program complex [10]. The main conclusion consists in

the fact that as a rule, each time series from [1] has a trend. Observation errors can be

treated as independent, but normality does not always take place.

Problem of trend extracting. Let us consider now the problem of trend

extracting. First note some specific properties of the mentioned above time series.
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1. As it is pointed in [1] and other for many regions the lack or absence of the in-

formation takes place.

2. Noise distribution is not always known.

Taking into account these facts and having made the preliminary analysis of time

series, we can use different methods for trend extraction. The most known are: the

maximal likelihood method (MLM), the least squares method (LSM), the least modules

method (LMM), minimax method (MMM). We shall later describe each one, now we

mark only that in our case the most preferrable is LMM. The least modules estimators

(LME) are referred to as robust estimators, i.e. estimators having advanced stability with

respect to errors distributions law changes, rough error presence etc. Besides the LME are

considerably more effective in small sample case. At the last time the series of

investigations of the LMM qualitative behavior has been done. First the consistency of

estimators should be stressed. Simple and easy enough checkable consistency conditions

are given in [11, 12]. It should be noted that general enough models where the parameter

is contained in the regression function generally speaking nonlinearly and the noise may

have a form of dependent at different time moments are studied. Besides the statement of

asymptotic normality is proved under natural enough conditions.

One more circumstance should be noted. When small samples are under consid-

eration, the asymptotic properties such as consistency, asymptotic normality etc. can’t

be the criteria of estimators’ quality. In this case the estimators’ stability (robustness)

with respect to observations distribution laws and the errors variance are primary. In

this respect here in the case of unknown distribution we should prefer LMM and

MMM. In the case of large samples, we certainly should seek estimators’ consistency

and asymptotic normality.

1. The maximal likelihood method (MLM) is most preferable because of its

properties in the cases when noise distribution is known. There are classical results

widely known for specialists in statistics, consisting in the facts that MLM estimators

are under some natural conditions consistent, asymptotically normal and effective.

But their calculations imply great difficulties, that’s why it is not often used in prac-

tice. We would not describe at length these estimators. In [2, 4] their properties are

spelled out in detail.

2. The least squares method (LSM).

The problem formulation is as follows. Consider the estimation problem in whole

non-linear parameters which is contained in regression function. The observation

model is given below:

x g tj j j� �( , )� � , j n�1, , (3)

where ��A is a vector parameter belonging to some admissible multitude A, is

a regression function, � j are random errors of observations.

The observations may be independent or dependent but should constitute station-

ary in narrow sense sequence of random values with unknown distribution function

which is not dependent on �.

It is necessary on x j , j n�1, , observations (3) to estimate �.

The random vector � n minimizing the sum of residuals squares

� n
u A

nL u�
�

arg min ( ) , L u x g t un j j

j

n

( ) [ ( , )]� �
�
� 2

1

is named the least squares estimator (LSE) of vector �.

Due to the criterion simplicity and the fact that it is well adapted to calculating pro-

cedures, LSM is the most widespread and well-studied method. It coincides with MLM
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in the case of Gaussian observations errors. The most convenient case for calculations is

one when unknown parameter is contained in the regression function linearly. Here we

won’t give example of calculation algorithms and consistence, asymptotic normality

and asymptotic efficiency statements, only refer to some works [2, 11]. Turning to the

time series describing elements distribution in the soil we can make some conclusions

about the trend character. For instance, from Fig. 6 [1] it is seen that the trend can be

approximated by straight line, for Fig. 11 [1] approximating curve is parabola etc. But

a linear relation can’t always be obtained. That’s why the LSE properties investigations

when nonlinear dependence on parameters takes place become actual. Yet in this case

deep investigations of estimators’ properties are made as well. But estimators finding

implies essential calculating difficulties.

Note that even in linear case the calculating schemes suffer from such grave

shortcoming as the necessity to save in memory and to process the great amounts of

numerical information. The recursion computing schemes for least square estimators

described in [13, 14] are devoid of these shortcomings. Their essence consists in fol-

lowing. Let the following random sequence is observed

� �� �i ii i� � �( ) , , , ...,1 2

where �( )i is known function, � is unknown parameter, � i is independent random

values sequence. Iterative procedure for the stochastic approximation parameter �

estimation when x 0 0� looks as follows:

x x

i

s s xs s

i

s

s s�

�

�
�� � � � �

�
1

2

1

1

1 21
1 1

�

� � �

( )

[ ( ) ( ) ] . (4)

Thus, for the least squares estimators the iterative procedure enabling us to calcu-

late parameter estimator by ( )s �1 observations when the LSE basing on s observa-

tions and the observation at the time moment ( )s �1 are known is determined. To

make the picture complete, we give the statement about the iterative procedure (4)

convergence with probability one for rather general case of nonlinear regression.

Suppose that the random sequence { }y kk , � 1 is observed:

y m x xk k
k� �( )* , x z k* , , m x Rk

N( )* � ,

where z k is a sequence of, generally speaking, dependent random vectors with

E z k( ) � 0, m xk ( )* is a determined sequence depending on an unknown parameter

x * . The problem consists in estimating x * using observations yk . We use the fol-

lowing iterative procedure for estimating x * :

x x s x Rs s
s

s l N� � � � �1 1	 � , , ,

where { },c ss � 1 , { },	 s s � 1 , are the sequences of positive numbers, inf cs � 0 . The

following statement takes place [15]:

Theorem 1. Let the conditions are satisfied:

1. u s x m x m x k xs s( , ) || ( ) ( ) || ( || || )*� 
 �1 ,

2. u s x x k( , )( || || )1� 
 ,

3. Sequences { },c ss � 1 , { },	 s s � 1 , { },z ss � 1 , satisfy conditions:

a) 	s s

s

c

�

�

� ��
1

,
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b) 	s s

s

c2 2

1�

�

� ��,

c) 	 
s s

s

s
z

c E z s

�

�

� ��
1

/ ,

where 

zs is a 
-algebra, generated by random values z z s1 , ,� .

d) For any �� 0 inf inf
s x x

s sm x m x x x
� � � � �

� � �
1 1

0
� �|| ||

* *

*
( ) ( ), , where � is a sca-

lar product in R N , || || ,
/

x x x� 1 2
.

Then || ||*x xs � � 0 with probability 1, i. e. x s is the strongly consistent estimator of x * .

3. The least modules method (LMM). The least modules estimator (LME) of

parameter � is a random vector � n , minimizing residuals modules sum

� n
u A

nL u�
�

arg min ( )
�

,
�

L u x g t un j j

j

n

( ) | ( , )|� �
�
�

1

.

The LME coincide with the maximal likelihood estimators in cases when noise has

Laplace distribution. They are referred to as robust estimator, i.e. estimators having ad-

vanced stability with respect to errors distribution law changes, rough errors presence etc.

Moreover, the LME are considerably more effective in small sample case. At the last time

the series of investigations of the LMM qualitative behavior has been done. First the con-

sistency of estimators should be stressed. Simple and easy enough checkable consistency

conditions are given in [11, 12]. It should be noted that general enough models where the

parameter is contained in the regression function generally peaking nonlinearly and the

noise may have a form of dependent at different time moments are studied. Besides in

natural enough conditions the statement of asymptotic normality is proved.

One more circumstance should be noted. When small samples are under consid-

eration, the asymptotic properties such as consistency, asymptotic normality etc. can’t

be the criteria of estimator quality. In this case the estimator stability (robustness)

with respect to observations distribution law and the error variance are primary. In

this respect here in the case of unknown distribution we should prefer LLM and

MMM. In the case of large samples, we certainly should seek estimates consistency

and asymptotic normality.

As an illustration we give some statements about the asymptotic behavior of the LME.

Theorem 2. Let we have the following observation model:

xi i i� �� � �( )0 , i n�1, , �0 �K,

where K is a compact subset from R l , � i are equally distributed symmetric independ-

ent random values, M i� �
0

0� , M i� �
0

2 � �, and the conditions below are satisfied:

1) lim [ ( , ) ( , )]
n K

n
�� � �

� 
sup
� �

� � � � � �
1 2

1 2 1 2 0,

where � � � � � � �n i i

i

n

n
( , ) | ( ) ( )|1 2 1 2

1

1� �
�
� ,

and � � �( , )1 2 is uniformly continuous at the diagonal � �1 2� .

2) lim ( , )
n

n
��


 �� � �1 2 .

3) lim | ( )| |
\ ( , )n K

i i

i

n

n n
E x

n
E

�� � �
�

� ��inf
� 
 � �

� �� �
0

1 0 0

1 1

1

xi i�
�
�
�

��

�
�
�

��
�� � �( )|0 0

i=1

n

,

where 
 � � �� �� � �( , ) { }0 0r r� � � 
 .
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Let � � �
�

n
K i

n

i ix� �
� �
�argmin | ( )|

1

. Then P
n

n� � �{ lim }
����

� �0 1.

Under the additional conditions of smoothness of the functions � �i ( ) on the pa-

rameter � the central limit theorem for values n n( )� �� 0 takes place too.

The Theorem 2 is the simplified variant of the least modules strong consistency

statement given in [11]. In the same work the rate of an estimator convergence to the

real value is found.

Theorem 3. Let the conditions of Theorem 2 are satisfied and the following

conditions are fulfilled:

1) g i
i�

�
�

� �

�

( )
exists.

2) Random values � i have bounded probability density h x( ) and the inequality

| ( ) ( ) | | |g x g H x� 
0 , H � 0

takes place. Then

sup ( ) ( ) ( )

/

�
� � � �

� �
�

�

�
�
�

�

�
�
� � �

�
�
�

��K
i

i

n

nP h g x2 0 2

1

0

1 2

0

�
�
�

��
�

�

�

�
�

�

�

�
�� ( )x 0, n��,

where x R� 1,  ( )x is Gaussian distribution function.

We formulate now one more statement about the least modules’ estimators in sit-

uation when regression function depends on random values. This kind of models was

studied in [16, 17] and others.

Describe the observation model.

Let { }( , ),x y ii i � 1 is a stationary in narrow sense metrically transitive random

process with discrete parameter specified on the probability space ( , , )	 � P , x Ri
k� ,

y Ri
m� , k � 1, m � 1, || ||� 1 is a norm on R k defined as

|| || | |a a j

j

k

1

1

�
�
� , a a a Rk

k� �( , ..., )1
T .

For ( , )x yi i the conditions below are satisfied:

1) E xi|| ||1 � �.

2) For any i with probability one E x F f yi i i( / ) ( , )� � , where f u z I R Rm k( , ): ! �
is a function continuous on I when z is fixed and measurable on z when u is fixed; � is

fixed but unknown value from closed set I R l
 , l �1.

3) For any c � 0 E f u y
u I u c

imax || ( , ) ||
{ , ||| ||| }� 


�
�
�

�
�
�
� �

1

1 .

4) For any sequence { }u jj , �1 with || ||u j 1 ��, j��, || ( , ) ||f u yj i 1 �� with

probability one when j��.

Introduce the notations:

� � � �i i ki i ix f y� � �( , ..., ) ( , )1
T , f f f k� ( , ..., )1

T .

5) For any j k�1,

P Fji i{ }� � �0
1

2
/ .

6) For any there exists j j k:1
 
 such that with probability one

f u y f yj i j i( , ) ( , )" � .

7) For any � � 0 P F P Fji i ji i{ [ , ] / } { [ , ] / }� � � �� � ! � �0 0 0 .
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Let we have observations {( , )}, }x y i ni i 1
 
 . It’s needed to estimate the un-

known parameter �. Let us consider the LME

� �n
u I

n nF u� � �
�

arg min ( ), || ||1 ,
(5)

F u
n

x f u yn i i( ) || ( , ) ||� ��1
1.

The following theorem takes place [11, 16, 17]:

Theorem 4. Let the conditions 1)-6) are satisfied. Then there exists at least one

vector �n , satisfying the condition (5) and

P
n

n{ }lim
��

� �� �0 1, P F F
n

n n{ }lim ( ) ( )
��

� �� � 1,

where F u E x f u yi i( ) {|| ( , ) || }� � 1 , u I� .

4. The minimax method (MMM). This method is often used in resolving

different problems, but these estimators are almost qualitatively unexplored. The

difficulty consists in impossibility to imply the ergodic theorem and central limit

theorem for the asymptotic properties’ investigation. Nevertheless because of the

simplicity of the aim function these estimates are convenient to be used in a

preliminary stage for the calculation of LSE and LME. The practical expediency of

this approach is noted in [10], where the program complex for statistical processing

of experimental data using the reasons above is described. Note that the broad use

of the LME and minimax estimator (MME) was suppressed by calculating

difficulties connected with the minimization of the nonlinear, non-smooth and

nonconvex functions. In the case of linear regression function this difficulty can be

avoided reducing the criterion minimization problem to the linear programming one.

The latest achievements in the sphere of the non-smooth optimization give

possibility to solve the problem in the nonlinear regression function case too. In

[10] r-algorithm (the generalized gradient descent with the space stretching in two

consequent subgradients difference direction ([18]). The estimate is calculated

when the restrictions on the parametric set are given:

�� 
A R m , A i mi i i� 
 
 �{ : , , }� 	 � � 1 .

In a general case the global optimum finding is a difficult problem because of the

purpose function nonconvexity. That’s why on practice it’s expedient to take into ac-

count some a priori information about the global minimum localization. The natural

way consists in dividing a problem on two parts. The first stage consists in finding of

an approximate problem decision in some simplifying prepositions. MMM can be

used as the first approximation. It’s known that in absence of rough errors the MME

well enough approximates the LME, as it is rough but has simpler purpose function.

Then on the second stage the minimum point of the initial problem is being found by

non-smooth optimization method.

Let us stress one more substantial fact. As a rule, the regression function type

cannot be described precisely enough basing on initial or visual data. That’s why the

broad basis of approximating functions giving the possibility to choose the most suit-

able is essential. The more complete is the set of approximating functions the more

possibilities are accessible for the more precise regression function estimation.

Let’s describe one more regression function non-parametric estimation model in

some functional space. In our opinion it gives adequate enough reflection of physical

processes mentioned above. Suppose that soil or another object observations are made

in discrete time moments with independent errors and we would like to determine the

trend in any time moment on the whole observation interval. In other words, we have to
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restore the regression function in the optimal respectively to some criterion manner,

basing on its distorted observations in discrete moments with additive noise. The MLM,

LSM, LMM can be taken as criteria. The more precise formulation is the following.

Let K is some real set compact with respect to some metric on [0, 1],

{ }� jn j n,0 
 
 is a set of real independent random values with finite first two mo-

ments. The observation model is following:

x
j

n
jn jn� �

�
�
�

�
� �� �0 , 0 
 
j n , � 0 �K . (6)

We will consider the LSE or LME as estimates:

L x
j

n
n n

K
jn

j

n

( ) min� �
�

� � �

�
�
�

�
�

#

$
%

&

'
(� �

�
2

0

, (7)

�

�

L x
j

n
n n

K
jn

j

n

( ) min� �
�

� � �

�
�
�

�
�

� �
�

0

. ( )7 )

Note, that minimization problems by the criteria (7) and (7)) are more difficult

than studied above because the optimum is being found on some class of functions.

The estimation problems of this kind are called nonparametric. Their decision is

connected with great difficulties of both compute and qualitative connected with

statistical properties investigation character. But for these models numerical meth-

ods of optimum finding are developed as well. Among the works in this sphere, we

mark the interesting approach developed in [19].

For the set of continuous functions in the space with uniform metric the LSE is

studied in [12], and the LME in [11]. We’d like to describe more detailed the

model (6) with the criterion (7)) supposing that the unknown function belongs to

some set from Hilbert space. The proofs of the basic statements will give an idea of

research methods for such problems and the mathematical technique used in them.

The statement about the strong consistency and the functional limit theorem for the

standardized estimators will be proved. In particular, the standardized estimates

weak convergence to the standard Wiener process statement will be proved. There-

fore, any linear functional of the estimator converges to the linear functional of

Wiener process. In particular, on practice the knowledge of the distributions below

sup
0
 
t T

n t� ( ) , sup
0
 
t T

n t
�

� ( )

is important enough.

As the weak convergence statements are proved to calculate these functionals

distributions it is enough to know the functional sup
0
 
t T

W t( ) , where W t( ) is the

standard Wiener process. This distribution is known and given, for example, in [19].
It looks as follows:

P a W t b
t T


 

�
�
�

�
�
�
�


 

sup

0

( )
(8)

� � � �
�
�
�

��

�
�
�

� � �

� � �
1

2

2 22 1

2 1 2

�T

y

Tn b a a

n b a a

( )( )

( )( )

exp

��
� � �

�
�
�

��

�
�
�

��� � �

� � �
dy

y

Tn b a b

n b a b

( )( )

( )( )

2 1

2 1 2

2
exp dy

n

#

$
%
%

&

'
(
(�

�
�

0

.

Thus, we have possibility to calculate probabilities of the location inside a band
of some characteristic. It may be phosphate content in soil, heavy metal (for instance,
cadmium) or different salts quantity on the soil surface or in the depth. Moreover,
knowing the distribution of functional we can find the first jump over the threshold
which can characterize the critical level of some substance inclusion.
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Now we formulate the problem more strictly.

1. Let K x t t� �{ ( ), [ , ]}0 1 be a set of real functions, compact in the sense of con-

vergence in L2 , satisfying the conditions:

a) || ( ) ||x t 
1, where || ( ) || ( )x t x t dt2 2

0

1

� � ;

b) x t( ) can have only a finite number of discontinuities of the first kind and at inter-

vals of continuity satisfies the uniform Lipschitz condition: | ( ) ( )| | |x t x t c t t1 2 1 2� 
 � ,

the constant c being independent of the function x and the points t1 and t2 , at points of

discontinuity x t x t( ) ( )� � 0 .

2. For each are independent random variables satisfying the conditions:

a) E n�0 0� ;

b) E n[ ]� 
0
2 2� � �.

We assume that for a fixed function � 0 �K the random variables

x
k

n
k nkn kn� �

�
�
�
�
� � 
 
� �0 0, ,

are observed. It is necessary to estimate the unknown function � 0 �K from the

observations xkn . Let us choose the least square estimate for � n as the estimate

for � 0 . � n is an element from K defined by the relation

x
j

n
x

j

n
jn n

j

n

K
jn� �

�
�
�

�
�

#

$
%

&

'
( � � �

�
�
�

�
�

#

$
%

&

� �
� � �

�

2

0

min
'
(

�
�

2

0j

n

.

The minimum is reached because of the compactness of the set K. It can be

shown that � n t( ) can be chosen to be a separable measurable stochastic process. In

what follows we will need the following assertions, proved in [12].

Theorem 5. Let ( , , )	 F P be a probability space, let { }F nn , � 1 be a sequence of


-algebras such that F Fn n* �1 , n � 1, and let K be a compact subset of some Banach

space with norm || ||� . We assume that

{ ( ) ( , ), ( , ) , }Q S Q S S K nn n� � ! �� � 	 1

is a sequence of real functions satisfying the following conditions:

1) for fixed n and each S K� the function Q S Rn ( , ):� 	 � is Fn -measurable;

2) for fixed n and � the function Q S K Rn ( , ):� � is continuous on K; for each

n � 1 and ��	 the element S S Kn n� �( )� is given by the relation:

Q S Q Sn n
S K

n( ) min ( )�
�

;

3) for some fixed element S K0 � and for each S K� the relation

P Q S S S
n

n{ lim ( , ) ( , )}
��

� ��  0 1

is true for some real functions  ( , ) :S S K R0 � , continuous on K and such that

  ( , ) ( , )S S S S0 0 0� , S S" 0 ;

4) for any 
� 0 there exists � 0 0� and a function c R R( ):� � , c( )� � 0 , � � 0 ,

such that for each S K� and each 0 0� �� � the relation

P Q S Q S
n S S S S S

n nlim sup | ( ) ( ) |
{ : ||| || , || || }�� � ) � � �

� )
� 
0

�
�
�
�

��

�
�
�

��
�c( )� 1

holds. Then

P S S
n

n{ }lim || ||
��

� � �0 0 1.
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The following assertion follows from Theorem 5 [12].

Theorem 6. Assume that the conditions of Theorem 4 are fulfilled and that

E jn| |� �4 � � �.

Then

P t t
n

n{ }lim || ( ) ( ) ||
��

� � �� � 0 0 1.

Now we proceed to the study of the distribution of functionals of the estimators � n .

We assume additionally that

7) � 0 is an internal point of K in the following sense:

a) || ( ) ||� 0 1t � ;

b) for � 0 ( )t the condition 1b is fulfilled for a constant ~c c� .

The following auxiliary assertions take place [12].

Lemma 1. Let the condition of Theorem 6 be fulfilled and let � 0 be an internal

point of K. Then for some function �( )t K� such that

|| || , ( )� ��� � ��1

0

1

t dt

the distribution of the random functional

n t t t dtn� �
0

1

0� � �( )[ ( ) ( )]

converges weakly to the distribution of normal random variable with mean 0 and

variance 
 2 as n��.

Lemma 2. Let the conditions of Lemma 1 be fulfilled and let

E jn| |� �6� � �.

Then for each 0 11 2
 
 
t t the following inequality holds:

E n t t dt c t t
t

t

n� �
�
�
�

��

�
�
�

��

 �

1

2

0

6

2 1
2[ ( ) ( )] ( )� � .

Lemma 1 and Lemma 2 imply the following theorem.

Theorem 7. Assume that the conditions of lemma 2 are fulfilled. Then the

sequence of random processes � n t( ) converges weekly to the standard Wiener

process as n��.

Problem of critical threshold attainment. Let us now turn to certain problems,

connected with the behavior of some ecological systems, among them there are

described above. As indicated in [20], the real ecological systems are exposed to

various random influences. If the time of these random influences or perturbations is

considerably less than a system work time, it is possible to apply sufficiently

developed instrument of Markov processes to the whole system analysis (the

dynamics of its development). Under these conditions the natural model for random

perturbations is the white noise. For these perturbations the mathematical instrument

is well developed, it allows to describe systems’ dynamic as the stochastic differential

equation:
dx t

dt
a t x t t x t t

( )
( , ( )) ( , ( )) ( )� � 
 � , (9)

where a t x( , ) is a drift coefficient, according to the determinate part of system de-

velopment, and �( )t is a white noise. The consideration of random influence, com-

bined with white noise (which is an idealized random process with short time cor-
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relation), allows to use well-developed apparatus of stochastic equation theory and

to obtain qualitative and quantitative results about the modeling of the process (9)

behavior. The equation of type (9) determines a diffusion process with written

densities of transient probabilities satisfying the Kolmogorov equations (strait and

reverse). For these processes it’s possible to estimate some characteristics of eco-

logical system behavior which is noted above; for instance, the problems, con-

nected with a critical threshold system attainment. Let us stop on this problem.

Let ( , )r r1 2 is the interval of permissible changes x t( ) and T is the moment of x t( )

first exit from the interval ( , )r r1 2 . The essential assumption is that probability of x t( )

first exit from the interval ( , )r r1 2 will be strongly positive, that is

P x t r
t T

{ }lim ( )
�

� �1 0 .

If T � � then we say that the bound may be attained for a finite time. This bound is

called attractive. It is evident that among attractive bounds there are two interesting groups:

i) the absorption bounds and ii) the permitting bounds. Apropos of bounds type there are

some results in stochastic equation theory giving exhaustive answer under some conditions,

for instance, in [21, 22]. We won’t do the detailed review of the results connected with

moments of some level (threshold) intersection. Let us stop at some of them.

We will consider, for simplicity, the uniform in time stochastic equation, suppos-

ing that in (16)

a t x a x( , ) ( )� , 
 
( , ) ( )t x x� .

The following assertion takes place.

Theorem 8. Let 
( )x � 0 when x a b�[ , ] . Then �x a b t x t a b[ , ] inf : ( ) [ , ]� +{ },

x x( )0 � is finite with probability 1 when x a b�( , ) and E a b xx� �[ , ] ( )� , where �( )x is

the decision of differential equation

1

2
12
 � �( ) ( ) ( ) ( )x x a x x)) � ) � � ,

satisfying the condition:

� �( ) ( )a b� � 0 .

The proof of Theorem 8 is typical in the diffusion processes theory, it uses

Markov moments and stochastic differential calculation apparatus [21].

Using Ito formula and Theorem 8, we can get the equation for obtaining the sec-

ond moment of �x a b[ , ] . Let us formulate this assertion.

Theorem 9. Under the conditions of Theorem 8, E a b xx{ }� �[ , ] ( )2
1� satisfies

the equation
1

2
22

1
 � � ��( ) ( ) ( ) ( ) ( )x x a x x x)) � ) � � ,

where � �1 1 0( ) ( )a b� � and the function �( )x is defined as in previous theorem.

As demonstrated above, we have found two first moments of the diffusion pro-

cess first exit time from some interval. However, we can obtain the fuller description

of random value �x a b[ , ] behavior. It is obvious, that when x a b�( , ) �x a b[ , ] equals to

either a or b. Let

� �x xa b a b1 [ , ] [ , ]� , if �x a b a[ , ] � ,

and

� �x xa b a b2 [ , ] [ , ]� , if �x a b b[ , ] � .

Let

� �
��

i
a b

x Ee x
i

( )
[ , ]� �

is Laplace transformation of �x
i a b[ , ] , i �1 2, . Then, as shown, for instance, in [22],
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� �1 ( )x satisfies the following equation:

L x x x a b� �� � �� � � �1 1 1 10 1 0 0( ) ( ), ( )( ) , ( )� � � � � ,

where L satisfies the equation

L a x
x

x
x

� �
�
� �

�
( ) ( )

1

2

2
2

2

 .

Similarly, � �2 ( )x satisfies the following equation:

L x x x a b� �� � �� � � �2 2 2 10 0 0 1( ) ( ), ( )( ) , ( )� � � � � .

If we know Laplace transformation, we can write other characteristics of value

�x a b[ , ] .

One of the most important questions is the question about calculation of the ran-

dom process x t( ) first exit probability from some interval, and as a first priority we

are interested in the searching of hit probability of random process x t( ) in the point a

earlier then in the point b, and on the contrary. It is evident, that when x a b+( , ), the

random process x t( ) falls in a nearest point earlier with probability 1. Therefore, we

will suppose that x a b�( , ). Let P x ba ( , ) is the hit probability of random process x t( )

in the point a earlier then in the point b, when it is in the point x the first time.

The following assertion given in [21, 22] is true.

Theorem 10. Let x a b�( , ) and 
( )x � 0. Then P x ba ( , ) satisfies the equation

P x b
u x u b

u a u b
a ( , )

( ) ( )

( ) ( )
�

�
�

,

where u x( ) is the decision of the equation

1

2
02
 ( ) ( ) ( ) ( )x u x a x u x)) � ) � ,

(10)

which is not equal to 0 identically on the interval [ , ]a b .

Proof. Let

�( )
( ) ( )

( ) ( )
x

u x u b

u a u b
�

�
�

.

It is evident, that �( )x satisfies (10). Using Ito formula, it is easy to show that

Ex a b xx� �[ , ] ( )� .

According to assumption, x a b ax� [ , ] � with probability P x ba ( , ) and x a b bx� [ , ] �
with probability P x ab ( , ). Hence,

� � � �( ) [ , ] ( ) ( , ) ( ) ( , ) ( , )x Ex a b a P x b b P x a P x bx a b a� � � � .

Similarly, we can get the formula for P x ab ( , ).

The theorem is proved.

Corollary 1. Let  ( )z is Laplace function. Then

P x b
z dz

z dz
a

x
b

a
b

( , )
( )

( )
�
�

�

 

 
, P x a

z dz

z dz
a

a
x

a
b

( , )
( )

( )
�
�

�

 

 
. (11)

For proof (11) it is enough to mention that

u x z dz
a

x

( ) ( )� �  

satisfies the conditions of Theorem 10.

Corollary 2. If a x( ) � 0, then P x ba ( , ) and P x ab ( , ) have simpler forms:

P x b
b x

b a
a ( , ) � �

�
, P x a

x a

b a
b ( , ) � �

�
.
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Notice, that the probability of a random process x t( ) stay in the band [ , ]a b is

given by the formula (8) in the case of Wiener process. By virtue of Girsanov theo-

rem [23], under the natural conditions by means of a measure replacement and a tran-

sition to other probability space the space x t( ) also will be Wiener transformed mea-

sure relatively. And then we can apply (8) to obtained process.

So, using the model (16), we can estimate the moment of approach of the critical

level of some element saturation (for instance, a limit permissible level of phosphorus

in soil) and take previous planed precautions.

Note, that in the above part we touched the problem of level exceeding in the

model, described by equation (16). The sufficiently wide research concerning the

finding of the moment of an attainment some level and a stay in the bond, is made for

stationary, Gaussian and Poisson processes and, without doubt, these results will be

used under an adequate model existing.

The fuller exposition of these questions is given in [24], but we have no possibility

to top on it now. We only give some facts useful for the problem given above decision.

We will consider stationary Gaussian process. The main idea of the investigation

is to compare this process with simply normal process x t* ( ), maximum of which is

easily calculated. Let us consider as an example the process

x t t t* ( ) � � ,� � �cos sin ,

where � � 0, � and , are standard normal values.

It is evident that random process x t* ( ) is Gaussian. It is easy transformed to the

following form:
x t A t* ( ) ( )� �cos � � .

For such processes the following assertion takes place.

Lemma 3 [24]. Let M t x t
t T

*

[ , ]

*( ) ( )�
�
sup

0

. Then

P M t u u
T u

{ } exp* ( ) ( )
 � � �
�
�
�

��

�
�
�

��
 �

�2 2

2

(12)

for 0� �T
�

�
, u� 0 .

Proof. Let N N tu� ( ) is a number of process’ x t* ( ) exits out of level u in the

interval [ , ]0 T . Then

E N
T u

( ) � �
�
�
�

��

�
�
�

��

�

�2 2

2

exp

and

P M t u P x u P x u N u E N{ ( ) } { ( ) } { ( ) , } ( ) ( )* * *� � � � 
 � � � � �0 0 1 1  

� � � �
�
�
�

��

�
�
�

��
1

2 2

2

 ( ) expu
T u�

�
, (13)

where

 ( )u e dt
u t

� �
�1

2 0

2

2

�
.

The equality (13) is equivalent to (12), that is why the lemma is proved.

The comparison of an arbitrary Gaussian process with the process x t* ( ) is based

on the following assertion [25].

Lemma 4. Let x t1 ( ) and x t2 ( ) are Gaussian continuous processes with

Ex t Ex t1 2 0( ) ( )� � , Ex t Ex
1
2

2
2 1( ) � � , and let r t s1 ( , ), r t s2 ( , ) are their covariation

functions. Let for some 
� 0 r t s r t s1 2( , ) ( , )� for each 0 
 
t s, 
. Then these
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processes’ maximums M t1 ( ) and M t2 ( ) satisfy the relation:

P M t u P M t u{ } { }1 2( ) ( )
 � 


for any 0 
 
T 
.

The proof invokes a piecewise-linear approximation of processes x ti ( ) by processes

x tn
i ( ), taking values x ti ( ) on the set { , , , ...}jq jn � 0 1 and being linear inside the intervals

( , )jq jqn n�1 , qn � 0 , n� 0 . Let us denote M ti
n ( ) �max{ }x jq jq Ti n n( ),0 
 
 . It is

obvious that M t M ti
n

i( ) ( )� as qn ��. Put qn
n� �2 . Then { } { }M u M ui

n
i
 � 
 ,

that is why P M T u P M T ui
n

i{ } { }( ) ( )
 � 
 as n��. It is easy to see that

P M T u P M T un n{ } { }
2 1

( ) ( )
 
 
 [25]. These facts prove the lemma.

Using Lemmas 1 and 2 it is easy to obtain the following important assertion.

Theorem 11 [25]. Let u T, �� in such a way that
T u

2 2
0

2
1 2

2

�
� �/ exp �

�
�
�

��

�
�
�

��
� �

and correlation function r t( ) of process x t( ) satisfies the following condition:

r t t( ) ln � 0 as t ��. Then

P E T u e{ }( ) 
 � �� ,

as T ��, and

P a E T b x et T
x{ } exp{ }( ( ) )� 
 � � ,

as T ��, where

a TT � ( ln ) /2 1 2 , b T
T

T � �( ln )

ln

( ln )

/

/

/
2 2

2

1 2

2
1 2

1 2

�

� .

Above we investigated Gaussian process extremums properties without obtaining

the information about the location of this extremum.

Let L t( ) is a point in which process x t( ) reaches its maximum for the first time in

the segment [ , ]0 T . The supposition that for any stationary process L t( ) has uniform

distribution may arise. But generally speaking, it’s incorrect. This will take place in

the case when x t A t( ) ( )� � � , where � is a random variable uniformly distributed on

[ , ]0 2� . For stationary Gaussian process L t( ) is always symmetric on [ , ]0 T and the pos-

sible leaps at points 0 and T have equal values. One of the methods for the point like 0

and T elimination consists in their moving away to the infinity. The question arises

whether L L t� ( ) is asymptotically uniform when T ��. For Gaussian stationary

processes this fact is the consequence of the asymptotic independence of maximums

on the intersecting intervals. More precisely, the following statement takes place.

Theorem 12. Let x t( ) is a stationary Gaussian process, Ex t( ) � 0 , Ex t2 1( ) � ,

� 2 0� � )) � �r ( ) , r t t( ) ln � 0 as t ��. Then

P L T lT l{ }( ) 
 �

as T ��, 0 1
 
l .
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².Â. Äîðîøåíêî, Î.Ï. Êíîïîâ, Ë.Á. Âîâê
ÌÀÒÅÌÀÒÈ×Í² ÌÎÄÅË² ÅÊÑÒÐÅÌÀËÜÍÈÕ ÐÅÆÈÌ²Â Â ÅÊÎËÎÃ²×ÍÈÕ ÑÈÑÒÅÌÀÕ

Àíîòàö³ÿ. Ó ñòàòò³ ðîçãëÿíóòî îñíîâí³ åòàïè ñòâîðåííÿ êîìï’þòåðíî¿ ñèñòåìè ï³äòðèìêè
ïðèéíÿòòÿ ð³øåíü ó ãàëóç³ åêîëîã³÷íî¿ áåçïåêè. Ïðîàíàë³çîâàíî îñíîâí³ ôàêòîðè
çàáðóäíåííÿ äîâê³ëëÿ ï³ñëÿ åêîëîã³÷íèõ ³ òåõíîãåííèõ êàòàñòðîô, òèïîâ³ çáî¿ ï³ä ÷àñ
åêñïëóàòàö³¿ íåáåçïå÷íèõ îá’ºêò³â. Çàïðîïîíîâàíî ìåòîäè ê³ëüê³ñíîãî îö³íþâàííÿ ôóíêö³¿
ðèçèêó, ñòâîðåíî åêîëîãî-ìàòåìàòè÷í³ ìîäåë³, ùî äàþòü çìîãó îö³íèòè ïîòî÷íèé ñòàí
äîâê³ëëÿ é äàòè ïðîãíîç íà ìàéáóòíº òà çðîçóì³òè ñóòü ïðîöåñó, ùî ðîçãëÿäàºòüñÿ.

Êëþ÷îâ³ ñëîâà: ìîäåëü, ÷àñîâèé ðÿä, òðåíä, ìåòîä ìàêñèìàëüíî¿ ïðàâäîïîä³áíîñ-
ò³ (ÌÌÏ), ìåòîä íàéìåíøèõ êâàäðàò³â (ÌÍÊ), ìåòîä íàéìåíøèõ ìîäóë³â (ÌÍÌ), ìåòîä
ì³í³ìàêñó (ÌÌÌ).
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