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A LINEAR SYSTEM OUTPUT TRANSFORMATION
FOR SPARSE APPROXIMATION'

Abstract. We propose an approach that provides a stable transformation of the output of a linear
system into the output of a system with a desired basis. The matrix of basis functions of a linear
system has a large condition number, and the series of its singular numbers gradually decreases
to zero. Two types of methods for stable output transformation are developed using
approximation of matrices based on the truncated Singular Value Decomposition and on the
Random Projection with different types of random matrices. It is shown that the use of
the output transformation as a preprocessing makes it possible to increase the accuracy
of solving sparse approximation problems. An example of using the method in the problem of
determining the activity of weak radiation sources is considered.

Keywords: sparse approximation, discrete ill-posed problem, random projection, singular value
decomposition.

INTRODUCTION

In practical applications related to the recovery of signals from the results of
indirect measurements, the following problem is often encountered. The signal
emitted by the object of measurement is fed to the input of a linear measuring
system. The result of measurements is a measurement vector (output). The matrix
of a linear input “/” output transformation (a set of basis functions, which are
non-orthogonal in the general case) is known. It describes the interaction of the
measured signal with the environment, as well as the properties of the measuring
means. The problem is to obtain the input vector given the output vector.

Here we consider a downstream problem using the recovered input vector. In
particular, the set of basic functions of some measuring system may not meet user
requirements or may be incompatible with downstream processing methods.
However, if one knows a set of basis functions which would give the output of
a measuring system with the required properties (resolution, accuracy), there appears
a problem of transforming the output of a real system into the output of a system with
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such a desired basis. This could be achieved by passing the recovered input through
the matrix of desired basis functions.

The matrices of real basis functions of many measuring means have a large
condition number and an indefinite rank. This leads to an unstable and therefore
inaccurate solution of the input recovery problem when using the pseudoinverse of
the basis functions’ matrix. In its turn, the solution for the output transformation
problem also becomes unstable and inaccurate, and, therefore, does not provide the
expected advantages of using the obtained output that approximate the output of
the measuring system with the desired basis.

This paper develops stable methods for solving the problem of transforming the
output of a linear measuring system for matrices of basis functions with a high condition
numbers and indefinite rank. Two types of stable output transformation methods are
being developed. These methods use matrix approximations based on the truncated
Singular Value Decomposition and based on the Random Projection with different types
of random matrices. It is shown how the transformation of the linear system output into
the output of a system with a desired basis allows increasing the accuracy of solving
sparse approximation problems. An example is considered that uses the proposed method
in the problem of determining the activity of weak radiation sources.

1. THE PROBLEM OF OUTPUT TRANSFORMATION

Let the signal b be obtained from the output of an existing linear system that
performs the transformation Ax +& =b, where A e R"", x eR", beR”, e R”
(the vector of noise with the components that are realizations of a Gaussian
independent random variable with zero mean and variance %), and Ax = by. Let
us denote d; the output of the linear system C that performs the transformation
Cx =d. In order to obtain a solution, i.e., an estimate of the output of the system
C by using b, we first obtain an estimate x* of the input x by solving the inverse

problem: x* =P b, where P is the operator (matrix) that transforms the output b to
x*. Then we get an estimate d* of the system C output: d* =Cx* =CPb=Th.

Thus, the operator CP transforms b to d*. The transformation matrix T=CP is
called the reduction matrix in [1, 2].

The specific form of P depends on the properties of the matrix A. If the series of
singular values of A decreases smoothly and the condition number is large, the
problem is classified as a discrete ill-posed problem. Approximate solutions of
discrete ill-posed problems as least squares problems using numerical methods
of linear algebra, such as the LU, Cholesky, QR decompositions, are unstable. This
means that small perturbations in the input data lead to large perturbations in the
solution. Thus, it is important to develop stable methods of output transformation.

We develop an approach for a stable solution of the output transformation
problem using matrix approximations by the truncated Singular Value Decomposition
and the Random Projection.

1.1 Method of transformation of the output vector based on Singular Value
Decomposition. Let us consider the approach to a stable solution of the output
transformation problem based on the truncated Singular Value Decomposition (SVD).
For a stable regularized solution, we obtain the operator CP using the matrix P

obtained as P = A; =V, SEIUZ. Here A} = UkSkaT is the approximation of the

matrix A € R"™" obtained by the k (k< n) components of SVD, Uy = (uy,...,uy)is
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the matrix of the left singular vectors, V, =(vy,..., v;) is the matrix of the
right singular vectors, S; =diag (s),...,s;) the matrix of singular values. The
estimated output of the system C, obtained using the £ components of SVD of A, is

d",; =CA;b=ka, T, =CA;; =CV,diag (SIZI)U]Z. The number of the SVD
components will be considered optimal if it provides the minimum of the mean
squared error of the output transformation represented aseqypor (k)=
=E. || dz —dOH2 =E, || ka—don, where E, is the averaging over the noise
realizations. In the expression for the mean squared error of the output transformation,
we distinguish the deterministic ||T;by —d, Hz and the stochastic

E, || Tie ||2 =0 trace (TIETk) parts:

2 2 2
esvpot (k) =E; [| Tyb—dg[|” =[| Ty by —dg|["+E.|| Tye||".
The dependence of the value of the stochastic error part on the number & of the
truncated SVD components of A was analytically studied in [3].
For the stochastic error part represented as o trace (TkT T,)= o’ trace (HM,),

where H=C'C, M, = AZAZT, the recursive expression for M, can be written as

2T
follows [3]: My =M;_; +vys, “v, .

The recursive expression for trace (HM; ) has the form [3]:
trace (HM, ) = trace (HM;_;) + slzztrace (VZ Hv,)=
-2 TA~T
=trace (HM_;) + s, " trace (Vk C Cvy).
The value of VZCTC v, 1is positive, and so S}ZZ trace (VZCTC v;)>0. From the

recursive expression for trace (HM, ) and the positivity of 51:2 trace (V;{CTC Vi)

it follows that the stochastic error part increases with %.
Let us consider the case when the vector by, is represented by the realization of

a random process & with the Gaussian distribution of zero mean and variance v2. In

this case, averaging can be carried out over the realizations of £. An analytical study
of the dependence of the deterministic part of the output transformation error on the
number k of the truncated SVD components was carried out in [3].

For the deterministic component of the error, we have || T, by — d0||2 =
:||CAAZ b0||2, AAZ =A" - A; . To study the dependence of E, HCAAZ <‘;||2 on k,
the expression for the deterministic part of the error ESHCAAZéin =

=v2trace (AA;T H AA; ) can be represented in a recursive form:

2 2 2 -2 T
B ||CAA[E||" =vtrace (Nj_y) —v“s, “trace (v, Hv}) =

Sk
_.2 2 -2 THT _ + 4T
=v~trace (N;_y) —v7s, “trace(v, C Cvy), where Ny | =HAA,  AA .

From this recursive representation and the positivity of stlzztrace (vlzCTCv i)

it follows that in this case the deterministic part of the error decreases with %.

It has been experimentally shown [3] that the dependence eqypor (k) has a
minimum at k£ < n. The decomposition of the error into the two parts and the analytical
study of their behavior depending on & explains the nature of the presence of a minimum.

1.2. Output transformation method using Random Projection. The stability of
the output transformation is determined by the stability of the estimation x* of the input

signal. A stable estimate x* of the input signal can be obtained (in addition to the
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considered truncated SVD-based approach) using the approach for solving a discrete
ill-posed problem based on random projection (RP), proposed by us in [4 —10]. See also
preliminary work in [11].

For this case, we left-multiply both parts of the approximate equation Ax ~ b by
the matrix with the elements that are realizations of a random variable with the
Gaussian distribution of zero mean and unit variance. Thus, we do the transformation
(random projection) into a new space, the coordinate axes of which are random

vectors. We obtain the expression R;Ax =R, b, where R, A € gl R,be Rk,

The number of columns 7 is determined by the size of A, the number of rows is
a priori unknown. The solution of the least squares problem is obtained using the

pseudo-inverse matrix (R;A)" as x"l; =(R;A)"R;b.

Therefore, the estimate d’; of the system C output is
d} =Cx =C(R;A)" R;b=Tyb,

where T, =C(R;A)" R;. The expression for the mean squared error of the

output vector transformation has the form:

erp o1 (R ) =||C(RzA)" Ry by —Cx |[*+0 trace (R} (R;A)" T CTC(R;A)" Ry).

If we make random projection by the matrix Q; € R obtained by the SVD of R
(e, R=Q T’ ), the error of the output vector transformation has the following form:

erpor (2 ) =]1C(Q LA Q by —Cx | [P +0 trace (Q} (Q, A)TCTC(Q A Qy),

and, given the orthonormality of the Q, columns, we obtain:
erp o1 (Q4) =||C(QA)" Qb ~Cx|[|” + 0% trace (CTC(Q4A) T (Q4A)"T).

Let us consider the error of the output vector transformation based on the
approach of Deterministic Random Projection (DRP) [7], i.e., using analytical
averaging over random matrices. The estimate of the input vector by DRP is

xz —ATuD kUT b, where D, is the diagonal matrix that regularizes the estimate

equivalent to the random projection by R, with averaging [7].
The estimate d} of the system C output is dj —CATUD,UTb="T, b, where

T, =CATUDkUT. The squared norm of the output transformation error vector,
averaged over noise realizations, has the form:

eprp ot (D) =||C(VS*D, VT —D)x||* +0 trace (CTCVS?D V).

2. SELECTION OF THE OPTIMAL NUMBER OF MODEL COMPONENTS
FOR THE OUTPUT TRANSFORMATION PROBLEM

One of the possible approaches to choosing the optimal number of model components
is to use the existing model selection criteria (see in [6, 12]). A model selection
criterion is designed so that the number of model components providing its minimum
value is close to the number of model components that provide the error minimum
for the model that approximates the output of a linear system.

For the system A, the output that approximates by, is given by Ax;‘c, where xz is
obtained by some model. So, the error of the output approximation is given by

2 2
ep(k)=Eg[| AX] = by[|" =E.|[ APb—by||”.
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Note that such an error for the system C, i.e., ec(k):EeHCx”l;—doHZ:

=E£|\CPd—d0||2, could not be calculated since d (the real output of C) is

unknown. The error of the system A output transformation into the output of the
system C is given by

eor (K)=E, [|d} —dg||I* =E || Tyb—d,||*.

In order to be able to use a model selection criterion that gives us the value of £ close
to the optimal one for A (that is, ko o that minimizes e, (k)), it is important that & oy o
should be close to ko, o Which minimizes the output transformation error e (k).

. A
To compare kopt A and kopt or» we use the function J(k): J(k) :edi(k) =

072 Aeg(k)
_eq(k =D —e4(k)
-2
o “(es(k) —es(k =1))
stochastic error part.

For e (k). ex (k)= (AP, ~Dbg|*+ 0 trace (Pf ATAP, ), e(k) =| (AR, ~Dby P,
es(k)=0trace(PFATAP, ). For eq (k), eq(k)=|| Ty by — do|[*, es(k) = o *trace (TL Ty, ).

Note that for a monotonically decreasing J(k) there is one (global) error
minimum [6].

Figure 1 shows the experimentally obtained functions J(k) for the output
approximation error and for the output transformation error for the truncated SVD
method, denoted by Jgyp and Jgyp ot respectively. The dependencies Jgyp (k) and
Jsypor (k) are close to each other, so the positions of the eqypy A (k) and eqyp ot (k)
minima (i.e., kope o and ko or) are also close. Closeness of ko and kqp o1 makes
it possible to use model selection criteria for the system A output to determine the
optimal number of model components that minimizes the output transformation error.

Note, that the non-monotonic character of dependencies Jgqyp(k) and

Jsypor (k) indicates that the error dependencies e, (k) and egy (k) will have local
minima.

, where ey (k) is the deterministic error part, e (k) is the

LE+02 - J()
—— Jswp

1LE+00 4
—o— Jswpor
1.LE-02 4
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Fig. 1. The function Jgyp, (k) for the output approximation error (system A) and J gy oy (k) for the out-
put transformation error (from A to C) obtained by the truncated SVD method
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Fig. 2. The function Jgp for the output approximation error (system A) and Jpp o7 for the output trans-
formation error (from A to C) obtained by the Random Projection method
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Fig 3. The function Jppp for the output approximation error (system A) and Jpppor for the output
transformation error (from A to C) obtained by the Deterministic Random Projection method

Figures 2 and 3 show the functions J(k) for the output approximation error of the
linear system A obtained with the RP and DRP methods (Jgp and Jpgrp), as well as for
the output transformation by the same methods (Jrp o1 and Jpgrp o1 )- The dependency
for RP was obtained experimentally, whereas for DRP it was obtained analytically by
averaging over random matrices. That is, the number of matrices used for the averaging
was finite for the RP method, whereas it was infinite for the DRP method.

The dependence Jyrp (k) is somewhat non-monotonic. However, as the number
of random matrices over which averaging is performed increases, the dependence
Jrp (k) becomes smoother. The dependence is quite smooth for averaging over 100
random matrices as shown in Fig. 2. The smoothness of Jgp (k) and Jgp o1 (k) also
indicates that for the RP method the dependences will have fewer local minima than
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the dependences for the truncated SVD-based method. The increased smoothness of
Jprp (k) and Jprp ot (k) also indicates that the corresponding error dependencies
almost do not have local minima.

Thus, for the output approximation error of the existing linear system and the
error of transforming the output into the output of a system with a desired basis, we
have experimentally studied the relative position of the minima, the minimal value of
the error, and the number of local minima. For this purpose, we used the recovery of
the input signal by the output signal of the existing linear system (the system A) using
the models obtained by the truncated SVD, RP, and DRP methods.

For the truncated SVD, as well as for the DRP method, we observed very close
positions (i.e., the values of k) of the error minima for the case of the existing system
output approximation and for the case of the output transformation. For the RP
method, the distance between the minima positions were slightly larger than for the
truncated SVD method.

For the truncated SVD and DRP methods, the closeness of the error minimum
positions for the output approximation and for the output transformation allows the
use of the optimal number of model components determined for output approximation
problem in the output transformation problem. For the truncated SVD method, the
error dependence on the number of model components has numerous local minima,
which makes the use of SVD to transform the output less attractive compared to DRP.
The dependence of the error on the number of model components for the DRP method
very rarely has local minima and provides accuracy (error value) at the level of the
truncated SVD, making it desirable to use DRP in the output transformation problem.

3. IMPROVING THE ACCURACY OF ESTIMATING THE VECTOR
OF PARAMETERS BY A LINEAR SYSTEM OUTPUT TRANSFORMATION

When solving various tasks related to the processing of information received from
various sensors, there appears a problem of effective analysis of noisy signal
mixtures. In a number of such problems, the measured data are the result of summing
the effects generated by the physical process and weighted by some coefficients
(parameters), and are therefore described by the models linear in parameters.

If a possible set of basic functions is known, but it is unknown which of them
formed the observed output, the approximation problem solution can be obtained by
sparse approximation methods [13]. For the output vector y, that is not distorted by
noise, the sparse approximation problem is set as the problem of minimizing the
number of nonzero components in the parameter vector, provided that y, =®,

mLxN

where @ € is the matrix of basis functions, and Be“ﬁN is the parameter

vector. If the output vector y is distorted by noise, the problem of sparse
approximation is set as the problem of minimizing the number of non-zero
components in the parameter vector, provided that ||y —®B||<J, where 0 is
a (small) value proportional to the norm of the noise vector €.

In context of sparse approximation of the noisy output vector, the concept of the
“ly-optimal solution” was introduced, i.e., a solution that provides both the minimum
approximation error and the maximum possible sparseness. The test proposed in [14]
allows making an /y-optimality test of solution B* obtained by some algorithm. The
disadvantage of the /y-optimality test is that it cannot be applied to any (arbitrary)
system of basis functions. Below, we propose to use the “output transformation” as
a preprocessing for sparse approximation problems that use basis functions which do
not satisfy the conditions of the /j-optimality test.
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4. MATCHING PURSUIT USING THE TRANSFORMATION

OF THE LINEAR SYSTEM OUTPUT

To solve the sparse approximation problem in the case of a noisy output vector,
we propose to modify the original method of Matching Pursuit [15].

The Modified Matching Pursuit (MMP) method works as follows. As in the
original Matching Pursuit, starting with £k =0 and f, =0, on the k& +1th pass of
the algorithm, it selects the vector @ ., ; € RE (some basis function, i.e., some column
of ®) and calculates the parameter 87, that minimize the square of the residual
norm: (ﬂzﬂ,(pkﬂ):argﬁmin lry —Bo |17, where r, =y—f;, f; is the output

¢
approximation at the pass k. The solution for ;. in the closed form is presented
below. Then the next output approximation is calculated as f;, | = f; + 85110 ju1-

The modification of the original Matching Pursuit consists in /[-optimality
testing the vector of parameters B’ obtained at the kth pass. If the conditions of
ly-optimality are satisfied, the method stops.

The [y-optimality test uses the cumulative coherence function defined for
normalized vectors ¢ [14] as u(s) = max max Z| (@ ;.9 )|, where sis the number

card(/)<s jel icl
of nonzero parameters; / is the set of indices of functions that form a subspace; i
indexes the elements of the subspace, for all possible card(/ )-member decompositions
of y, card(/)<s means that the cardinality of the set of indices (subspace
dimension) varies from 1 to s.

Our modified test for the /,-optimality is as follows: the solution vector B’ (with
k components) is the solution with the maximum possible sparseness and with the
smallest approximation error, if |r|j+|r[yx<0.5(1—-u2k —1))max|f;| and

12 !
uk -1)<1, where |r|g:= z |{r,e ;) |2 . Here the set of indices {K}
JeK}
corresponds to the basis functions with largest dot product values with the residual r.

This test is different from that of [14] in our using max instead of min in [14].

In the case when the “basis coherence” condition u(2k —1)<11is not satisfied for
the particular system of basis functions, we proposed [12] to stop the MMP method
according to some other model selection criterion, different from the /y-optimality.
However, our comparative experimental studies showed that the accuracy of
estimating the parameter vector by MMP using other model selection criteria is worse
than for the /,-optimality test. So, we propose to transform the available output vector
to the output of a linear system with the basis functions that satisfy the condition of
basis coherence.

The MMP algorithm using the transformation of the system A output vector
consists of the following steps:

Step 1.1. Form a matrix of basis functions A € ERLXN, L<< N, where N is the
number of basis functions.

Step 1.2. For A, calculate the cumulative coherence function u(s).

Step 1.3. Check the basis coherence condition: u(2s—1)<1 fors=1,...,05N.

If the basis coherence condition is not met, go to step 1.5.
Step 1.4. Initialize the matrix of basis functions @ =A and go to step 2.1.
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Step 1.5. Form a matrix of basis functions BeRPYN | L<< N, satisfying the
basis coherence condition.

Step 1.6. Perform the SVD of A . Check the condition number and the behavior
of the singular value series.

e If the condition number is small, go to step 1.6.1.

e If the condition number is large and the singular value series gradually
decreases to zero, go to step 1.6.2.

Step 1.6.1. Calculate the transformation matrix T, = BA™ and go to step 1.7.

Step 1.6.2. Calculate the transformation matrix T, for the method used, for
example, T, =BA =BVks;1Ulf for SVD; T, =B(R;A)" R, for RP;
T, =BATUD,UT for DRP.

Step 1.7. Perform the transformation of the output vector to the system of basic
functions B as d} =T;b.

Step 1.8. Initialize the matrix of basis functions @ = B.

Step 2.1. Initialize fj =0, r; =y. Normalize the columns of ®.

Step 2.2. In @, find the index of the basis function (the column) for which
Y = arg max | (@(, i), 1) |

i=l,...,N

Step 2.3. Form ®; ={®;_,,¢,, }. Check the condition number of ®; and the

behavior of the singular value series.

e If the condition number is small, go to step 2.4.

o If the condition number is large and the singular value series gradually
decreases to zero, go to step 2.5.

Step 2.4. Calculate the values of the parameter vector B, = ((DIZ(I) k)_ltl)z T,

go to step 2.6.
Step 2.5. Calculate the values of the parameter vector B, using the chosen

regularization method.
Step 2.6. Calculate the new residual vector r;, | =ry —ﬁykd)(:,yk).

1/2
Step 2.7. Calculate |r|j+|r|og =|(re. @) [+ D o) 2],
ie2K}
where {2K} is the set of indices with the 2k largest dot products | (r;,.;,9 ;) |.
Step 2.8. Test if [r|;+|r |y <0.5(1-mQ2k —1)) max | B,]|.
1

If the test is satisfied, the resulting k-term linear model gives the solution with
the maximum possible sparseness and the smallest approximation error based on the
optimal sparseness test. Otherwise, continue the formation of the model by going to
the next pass, i.e., step 2.2.

5. THE EXPERIMENTAL STUDY

Let us consider an example of applying the transformation of the linear measuring
system output to the output of a system with a desired basis. It is applied in one of
the topical tasks of radiation monitoring, i.e., to the problem of identifying and
determining the activity of weak radioactive sources. Let the detector of the linear
measuring gamma-spectrometric system A have a lower resolution than the detector
of the system C. Let us investigate the accuracy of determining the radionuclide
activity using the method of transforming the output of the measuring system.
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In the test task, the spectra were
formed by the radionuclides cesium-137
(Csl37), cesium-134 (Csl34) and cobalt-60
(C060). The vector of parameters
(proportional to the activities of
radionuclides) was as follows: x o = 1.5,
XCS|34 = 05, XC060 =0.26 (spectrum line 1),
X 60 =0.25 (spectrum line 2).

We studied the error of the parameter
vector estimate for the real measuring
system output (with the “wide” detector
300 O response function) and for the transformed
measuring system output (with the

Fig. 4. An example of basis functions “narrow” detector response function).
An example of basis functions is shown
in Fig. 4, and an example of the system

output is shown in Fig. 5. The X axis in both figures is the spectrometer channel
number. The Y axis in Fig. 4 is the basis function number. The Z (vertical) axis is the
number of registered gamma-quants (in Fig. 4, per unit area).

At the two levels (0.01 and 0.02) of the intrinsic noise, the real spectra were
measured, the output was transformed, and the accuracy (the mean squared error e) of
the parameter vector estimation was calculated. The results are shown in Table 1, with
the following notations. The upper index denotes the system for which the error was
calculated. The lower index (Cp, MDL, Lg) denotes the model selection criterion used
to estimate the parameter vector (Mallows, Minimum Description Length, and the test
for [y-optimality, correspondingly). True denotes the error obtained using the
parametric least squares regression with the true model.

The measurements of spectra at the noise levels 0.01 and 0.02 were performed in
the laboratory. When measured in the field conditions, due to the ambient temperature
changes, the noise level usually increases. Since the measurement of the intrinsic
noise of the measuring system in the field is difficult, we simulated the increase of the
intrinsic noise by adding noise (the Gaussian noise with zero mean and variance equal
to the noise level) to the measured spectra, in the range 0.03—0.09.

zZ _
] —&— Spectrum
100 4
] —0— Spectrum transf
80 1
60
40
20 1
] X
0

73 85 97 109 121 133

Fig. 5. The output of the system (Spectrum) A and the transformed output (Spectrum transf)
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Table 1. Accuracy (the mean squared error e) of parameter vector estimation

Noise level eé‘p e(ép eAMDL e%/lDL efo eﬁ?me eCTme
0.01 0.011 0.021 0.011 0.013 0.011 0.011 0.013
0.02 0.257 0.254 0.025 0.024 0.024 0.025 0.024
0.03 0.283 0.281 0.043 0.036 0.036 0.044 0.036
0.04 0.308 0.297 0.119 0.097 0.051 0.062 0.051
0.05 0.332 0.325 0.203 0.192 0.064 0.082 0.064
0.06 0.348 0.351 0.255 0.252 0.075 0.110 0.076
0.07 0.363 0.357 0.280 0.289 0.086 0.132 0.087
0.08 0.375 0.368 0.298 0.291 0.095 0.162 0.098
0.09 0.391 0.383 0.301 0.294 0.106 0.182 0.106

The results of the study are shown in Table 1. They were obtained for the DRP
regularization. As the intrinsic noise level increases, the parameter vector estimation
error increases for all the methods of parameter estimation. However, we see that the
accuracy with the /;-optimality test is higher than for other model selection criteria.

CONCLUSIONS

We consider a linear system in which the output vector is formed by a linear
transformation of the input vector and adding noise. The matrix of basis functions of
this linear system has a high condition number and its singular values gradually
decrease to zero. For this case, the proposed methods allowed a stable transformation
of the observed output into the output of a linear system with a known set of basic
functions. This was achieved by employing various regularization methods with
discrete regularization parameters (model complexity).

For the mean squared error of the output transformation problem solution, the
decomposition into deterministic and stochastic parts has been performed. For the
method based on the truncated Singular Value Decomposition, we have analytically
shown the increase of the stochastic error value vs the number of the SVD
components. An analytical study of the behavior of the deterministic error for the case
when the input vector is the realization of a random process showed that the
deterministic part decreases vs the number of the SVD components.

We have conducted an experimental study of the minimum error position for the
methods based on the truncated Singular Value Decomposition, Random Projection,
and Deterministic Random Projection. The study showed that for the truncated Singular
Value Decomposition and Deterministic Random Projection, the positions of the output
approximation error minimum of the existing system and the output transformation
error are very close. Using the output transformation as a pre-processing can increase
the accuracy of solving sparse approximation problems. For these tasks there is a test
for /,-optimality which gives a very accurate estimate of the optimal complexity of the
model. However, this test requires certain properties of basic functions, which we
obtained by the output transformation method. The improved accuracy was confirmed
in the problem of determining the activity of weak radiation sources. We consider
future applications in the areas of Unmanned Aerial Vehicles [16-18] and
Electrocardiogram-related signal processing [19, 20].
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For regularization, we employed the Random Projection methods that are a family
of randomized algorithms. Randomization of calculations is widely used to increase the
efficiency of calculations with a slight decrease in accuracy. Elsewhere, random
projections are widely used to reduce the dimensionality of vector representations while
maintaining the vector similarity values for some similarity measures, see, e.g., [21] and
references therein. Random projections are also used as a stage in algorithms that
transform the input vectors to the binary format, as exemplified in [22, 23]. Even
earlier, randomized methods have been used to perform a nonlinear transform of the
original vector data into binary high-dimensional vectors, making possible to apply
linear classifiers for solution on non-linear problems, such as in [24, 25]. Also, those
and other randomized transforms are widely used in the field known as
Hyperdimensional Computing or Vector Symbolic Architectures, see [26-28]. We
believe that randomized transformations and computations are promising for Artificial
Intelligence systems.
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0.B. Tumyk, 0.0. [ecarepuk, O.€. Bouakos,
O.I'. PeByHnoBa, /I.A. PaukoBchkuii

INEPETBOPEHHSI BUXOAY .J'[IHIVIHOj CUCTEMH
JJ1A PO3PLIDKEHOI AITPOKCUMAILLLL

AHoranisi. Po3rnsnyTo minxin, mo 3abesneuye cTiiike NepeTBOPEHHS BUXOAY JIHIHHOI CHCTEMH
Yy BHXIJl CHCTEMH 13 3amaHuM Oa3mcoM. Matpuis 6a3sucHUX (QYHKINNA JiHIHHOI CHCTEMH Ma€ BU-
COKEe YHCII0O 00YMOBIJICHOCTI, 1 psiJ T CHHTYJSIPHMX YHCelN IUIaBHO crajgae 10 Hyns. Po3poGieHo
JIBa THITH CTIHKMX METOMIB MEPETBOPEHHS BHXOJY 3 BUKOPHCTAHHSIM alpOKCHMalil MaTpUIlb Ha
OCHOBI YCI4EHOTO CHHTYISIPHOTO PO3KJIAJIaHHS Ta HAa OCHOBI BHIIAJKOBOI HPOEKMLii 3 pi3HUMHU
TUIIAMU BUNAJKOBUX MaTpullb. [loka3aHo, 110 3a pPaxyHOK INEPETBOPEHHS BUXOAY sK IOINEpe.-
HBOTO OOpOOJICHHS MO)KHA 301IBIIMTH TOYHICTH PO3B’sA3aHHS 3a7ad PO3PIIHKEHOI ampoKCHMAIlii.
Po3risiHyTO TpHKIIa] BUKOPHUCTAHHS METOAY B 3ahadi BH3HAYCHHS aKTUBHOCTI CIIAOKUX Kepelw
PafioaKTUBHOTO BUIPOMIHIOBaHHS.

KimouoBi ciioBa: pospimkeHa amnpoKcHUMalis, IHUCKPETHa HEKOPEKTHA 3ajaya, BHUIAJKOBA
NPOEKIIisl, CUHTYJSPHE PO3KIIaJaHHS.
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