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A LINEAR SYSTEM OUTPUT TRANSFORMATION
FOR SPARSE APPROXIMATION1

Abstract. We propose an approach that provides a stable transformation of the output of a linear
system into the output of a system with a desired basis. The matrix of basis functions of a linear
system has a large condition number, and the series of its singular numbers gradually decreases
to zero. Two types of methods for stable output transformation are developed using
approximation of matrices based on the truncated Singular Value Decomposition and on the
Random Projection with different types of random matrices. It is shown that the use of
the output transformation as a preprocessing makes it possible to increase the accuracy
of solving sparse approximation problems. An example of using the method in the problem of
determining the activity of weak radiation sources is considered.

Keywords: sparse approximation, discrete ill-posed problem, random projection, singular value
decomposition.

INTRODUCTION

In practical applications related to the recovery of signals from the results of

indirect measurements, the following problem is often encountered. The signal

emitted by the object of measurement is fed to the input of à linear measuring

system. The result of measurements is a measurement vector (output). The matrix

of a linear input “/” output transformation (a set of basis functions, which are

non-orthogonal in the general case) is known. It describes the interaction of the

measured signal with the environment, as well as the properties of the measuring

means. The problem is to obtain the input vector given the output vector.

Here we consider a downstream problem using the recovered input vector. In

particular, the set of basic functions of some measuring system may not meet user

requirements or may be incompatible with downstream processing methods.

However, if one knows a set of basis functions which would give the output of

a measuring system with the required properties (resolution, accuracy), there appears

a problem of transforming the output of a real system into the output of a system with
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such a desired basis. This could be achieved by passing the recovered input through

the matrix of desired basis functions.

The matrices of real basis functions of many measuring means have a large

condition number and an indefinite rank. This leads to an unstable and therefore

inaccurate solution of the input recovery problem when using the pseudoinverse of

the basis functions’ matrix. In its turn, the solution for the output transformation

problem also becomes unstable and inaccurate, and, therefore, does not provide the

expected advantages of using the obtained output that approximate the output of

the measuring system with the desired basis.

This paper develops stable methods for solving the problem of transforming the

output of a linear measuring system for matrices of basis functions with a high condition

numbers and indefinite rank. Two types of stable output transformation methods are

being developed. These methods use matrix approximations based on the truncated

Singular Value Decomposition and based on the Random Projection with different types

of random matrices. It is shown how the transformation of the linear system output into

the output of a system with a desired basis allows increasing the accuracy of solving

sparse approximation problems. An example is considered that uses the proposed method

in the problem of determining the activity of weak radiation sources.

1. THE PROBLEM OF OUTPUT TRANSFORMATION

Let the signal b be obtained from the output of an existing linear system that

performs the transformation Ax b� �� , where A �� �m n , x ��n , b��m , ���m

(the vector of noise with the components that are realizations of a Gaussian

independent random variable with zero mean and variance � 2), and Ax b� 0 . Let

us denote d0 the output of the linear system C that performs the transformation

Cx d� 0 . In order to obtain a solution, i.e., an estimate of the output of the system

C by using b, we first obtain an estimate x� of the input x by solving the inverse

problem: x P b� � , where P is the operator (matrix) that transforms the output b to

x� . Then we get an estimate d� of the system C output: d Cx CP b T b� �� � � .

Thus, the operator CP transforms b to d� . The transformation matrix T CP� is

called the reduction matrix in [1, 2].

The specific form of P depends on the properties of the matrix A . If the series of

singular values of A decreases smoothly and the condition number is large, the

problem is classified as a discrete ill-posed problem. Approximate solutions of

discrete ill-posed problems as least squares problems using numerical methods

of linear algebra, such as the LU, Cholesky, QR decompositions, are unstable. This

means that small perturbations in the input data lead to large perturbations in the

solution. Thus, it is important to develop stable methods of output transformation.

We develop an approach for a stable solution of the output transformation

problem using matrix approximations by the truncated Singular Value Decomposition

and the Random Projection.

1.1 Method of transformation of the output vector based on Singular Value
Decomposition. Let us consider the approach to a stable solution of the output

transformation problem based on the truncated Singular Value Decomposition (SVD).

For a stable regularized solution, we obtain the operator CP using the matrix P

obtained as P A V S Uk k k k k
� �� �1 T . Here A U S Vk k k k

� T is the approximation of the

matrix A �� �m n obtained by the k ( )k n� components of SVD, U u uk k� ( , , )1 � is
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the matrix of the left singular vectors, V v vk k� ( , , )1 � is the matrix of the

right singular vectors, Sk ks s� diag ( , , )1 � the matrix of singular values. The

estimated output of the system C, obtained using the k components of SVD of A , is

d CA b T b
k k k
� � �� , T CA CV Uk k k k k

s� �� �diag T( )1 . The number of the SVD

components will be considered optimal if it provides the minimum of the mean

squared error of the output transformation represented as e kSVD OT ( ) �

� � � �E E� �| | | | | | | |d d T b d
k k
�

0
2

0
2 , where E � is the averaging over the noise

realizations. In the expression for the mean squared error of the output transformation,

we dist inguish the determinis t ic | | | |T b dk 0 0
2� and the stochast ic

E trace T
� � �| | | | ( )T T Tk k k

2 2� parts:

e k k k kSVD OT E E( ) | | | | | | | | | | | |� � � � �� �T b d T b d T0
2

0 0
2 2� .

The dependence of the value of the stochastic error part on the number k of the

truncated SVD components of A was analytically studied in [3].

For the stochastic error part represented as � �2 2trace traceT( ) ( )T T HM
k k k� ,

where H C C� T , M A Ak k k
� � � T , the recursive expression for Mk can be written as

follows [3]: M M v s vk k k k k
� ��

�
1

2 T .

The recursive expression for trace ( )HMk has the form [3]:

trace trace trace T( ) ( ) ( )HM HM v Hvk k k k ks� � ��
�

1
2

� ��
�trace trace T T( ) ( )HM v C Cvk k k ks1

2 .

The value of v C C v
k k
T T is positive, and so s

k k k
� 	2 0trace T T( )v C C v . From the

recursive expression for trace ( )HMk and the positivity of s
k k k
�2 trace T T( )v C C v ,

it follows that the stochastic error part increases with k.
Let us consider the case when the vector b0 is represented by the realization of

a random process � with the Gaussian distribution of zero mean and variance � 2 . In

this case, averaging can be carried out over the realizations of �. An analytical study

of the dependence of the deterministic part of the output transformation error on the

number k of the truncated SVD components was carried out in [3].

For the deterministic component of the error, we have | | | |T b dk 0 0
2� �

� �| | | |C A b

k 0

2 , 
 A A A
k k
� � �� � . To study the dependence of E � | | | |C A


k
� � 2 on k,

the expression for the deterministic part of the error E � | | | |C A

k
� �� 2

� � �� 2 trace T( )
 
A H A
k k

can be represented in a recursive form:

E trace trace T
� � �| | | | ( ) ( )C A N v Hv


k k k k ks�
�

�� � �� 2 2
1

2 2

� ��
�� �2

1
2 2trace trace T T( ) ( )N v C C vk k k ks , where N H A Ak k k� �

�
�

��1 1 1

 
 T .

From this recursive representation and the positivity of � 2 2s
k k k
� trace T T( )v C C v ,

it follows that in this case the deterministic part of the error decreases with k.

It has been experimentally shown [3] that the dependence e kSVD OT ( ) has a

minimum at k n� . The decomposition of the error into the two parts and the analytical

study of their behavior depending on k explains the nature of the presence of a minimum.

1.2. Output transformation method using Random Projection. The stability of

the output transformation is determined by the stability of the estimation x� of the input

signal. A stable estimate x� of the input signal can be obtained (in addition to the
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considered truncated SVD-based approach) using the approach for solving a discrete

ill-posed problem based on random projection (RP), proposed by us in [4 –10]. See also

preliminary work in [11].

For this case, we left-multiply both parts of the approximate equation Ax b� by

the matrix with the elements that are realizations of a random variable with the

Gaussian distribution of zero mean and unit variance. Thus, we do the transformation

(random projection) into a new space, the coordinate axes of which are random

vectors. We obtain the expression R Ax R bk k� , where R Ak
k n�� � , R bk

k�� .

The number of columns n is determined by the size of A , the number of rows is

a priori unknown. The solution of the least squares problem is obtained using the

pseudo-inverse matrix ( )R Ak
� as x R A R b

k k k
� � �( ) .

Therefore, the estimate d
k
� of the system C output is

d Cx C R A R b T b
k k k k k
� �� � ��( ) ,

where T C R A Rk k k� �( ) . The expression for the mean squared error of the

output vector transformation has the form:

e k k k k kRP OT
T T Ttrace( ) | | ( ) | | ( ( )R C R A R b Cx R R A C� � �� �

0
2 2� C R A R( ) )k k

� .

If we make random projection by the matrix � k
k n�� � obtained by the SVD of R

(i.e., R � ���T ), the error of the output vector transformation has the following form:

e k k k k kRPOT
T T Ttrace( ) | | ( ) | | ( ( )� � � � �� � �� �C A b Cx A C0

2 2� C A( ) )� �k k
� ,

and, given the orthonormality of the � k columns, we obtain:

e k k k k kRP OT
Ttrace( ) | | ( ) | | ( ( ) (� � � � �� � �� �C A b Cx C C A0

2 2� A) )� T .

Let us consider the error of the output vector transformation based on the

approach of Deterministic Random Projection (DRP) [7], i.e., using analytical

averaging over random matrices. The estimate of the input vector by DRP is

x A U D U b
k k
� � T T , where Dk is the diagonal matrix that regularizes the estimate

equivalent to the random projection by R k with averaging [7].

The estimate d
k
� of the system C output is d CA UD U b T b

k k k
� � �T T , where

T CA UD Uk k� T T . The squared norm of the output transformation error vector,

averaged over noise realizations, has the form:

e k k kDRP OT
T T Ttrace( ) | | ( ) | | ( )D C VS D V I x C CVS D V� � �2 2 2 2 2� .

2. SELECTION OF THE OPTIMAL NUMBER OF MODEL COMPONENTS
FOR THE OUTPUT TRANSFORMATION PROBLEM

One of the possible approaches to choosing the optimal number of model components

is to use the existing model selection criteria (see in [6, 12]). A model selection

criterion is designed so that the number of model components providing its minimum

value is close to the number of model components that provide the error minimum

for the model that approximates the output of a linear system.

For the system A, the output that approximates b0 is given by Ax
k
� , where x

k
� is

obtained by some model. So, the error of the output approximation is given by

e k
kA E E( ) | | | | | | | |� � � �� �Ax b APb b�

0
2

0
2 .
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Note that such an error for the system C, i.e., e k
kC E( ) | | | |� � �� Cx d�

0
2

� �E � | | | |CPd d0
2 , could not be calculated since d (the real output of C) is

unknown. The error of the system A output transformation into the output of the

system C is given by

e k k kOT E E( ) | | | | | | | |*� � � �� �d d T b d0
2

0
2 .

In order to be able to use a model selection criterion that gives us the value of k close

to the optimal one for A (that is, kopt A that minimizes e kA ( )), it is important that kopt A

should be close to kopt OT which minimizes the output transformation error e kOT ( ).

To compare kopt A and kopt OT , we use the function J k( ): J k
e k

e k
( )

( )

( )
� �

�







d

s� 2

�
� �

� ��

e k e k

e k e k

d d

s s

( ) ( )

( ( ) ( ))

1

12�
, where e kd ( ) is the deterministic error part, e ks ( ) is the

stochastic error part.

For e kA ( ), e k k k kA
T Ttrace( ) | | ( ) | | ( )� � �AP I b P A AP0

2 2� , e k kd ( ) || ( ) ||� �AP I b0
2,

e k k ks
T Ttrace( ) ( )� � 2 P A AP . For e kOT ( ), e k kd ( ) || ||� �T b d0 0

2, e k k ks
Ttrace( ) ( )� �2 T T .

Note that for a monotonically decreasing J k( ) there is one (global) error

minimum [6].

Figure 1 shows the experimentally obtained functions J k( ) for the output

approximation error and for the output transformation error for the truncated SVD

method, denoted by JSVD and JSVD OT respectively. The dependencies J kSVD ( ) and

J kSVD OT ( ) are close to each other, so the positions of the e kSVD A ( ) and e kSVD OT ( )

minima (i.e., kopt A and kopt OT ) are also close. Closeness of kopt A and kopt OT makes

it possible to use model selection criteria for the system A output to determine the

optimal number of model components that minimizes the output transformation error.

Note, that the non-monotonic character of dependencies J kSVD ( ) and

J kSVD OT ( ) indicates that the error dependencies e kA ( ) and e kOT ( ) will have local

minima.
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Fig. 1. The function J kSVD ( ) for the output approximation error (system A) and J kSVD OT ( ) for the out-

put transformation error (from A to C) obtained by the truncated SVD method



Figures 2 and 3 show the functions J k( ) for the output approximation error of the

linear system A obtained with the RP and DRP methods (JRP and JDRP ), as well as for

the output transformation by the same methods (JRP OT and JDRP OT ). The dependency

for RP was obtained experimentally, whereas for DRP it was obtained analytically by

averaging over random matrices. That is, the number of matrices used for the averaging

was finite for the RP method, whereas it was infinite for the DRP method.

The dependence J kRP ( ) is somewhat non-monotonic. However, as the number

of random matrices over which averaging is performed increases, the dependence

J kRP ( ) becomes smoother. The dependence is quite smooth for averaging over 100

random matrices as shown in Fig. 2. The smoothness of J kRP ( ) and J kRP OT ( ) also

indicates that for the RP method the dependences will have fewer local minima than
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Fig. 2. The function JRP for the output approximation error (system A) and JRP OT for the output trans-

formation error (from A to C) obtained by the Random Projection method

Fig 3. The function JDRP for the output approximation error (system A) and JDRP OT for the output

transformation error (from A to C) obtained by the Deterministic Random Projection method



the dependences for the truncated SVD-based method. The increased smoothness of

J kDRP ( ) and J kDRP OT ( ) also indicates that the corresponding error dependencies

almost do not have local minima.

Thus, for the output approximation error of the existing linear system and the

error of transforming the output into the output of a system with a desired basis, we

have experimentally studied the relative position of the minima, the minimal value of

the error, and the number of local minima. For this purpose, we used the recovery of

the input signal by the output signal of the existing linear system (the system A) using

the models obtained by the truncated SVD, RP, and DRP methods.

For the truncated SVD, as well as for the DRP method, we observed very close

positions (i.e., the values of k) of the error minima for the case of the existing system

output approximation and for the case of the output transformation. For the RP

method, the distance between the minima positions were slightly larger than for the

truncated SVD method.

For the truncated SVD and DRP methods, the closeness of the error minimum

positions for the output approximation and for the output transformation allows the

use of the optimal number of model components determined for output approximation

problem in the output transformation problem. For the truncated SVD method, the

error dependence on the number of model components has numerous local minima,

which makes the use of SVD to transform the output less attractive compared to DRP.

The dependence of the error on the number of model components for the DRP method

very rarely has local minima and provides accuracy (error value) at the level of the

truncated SVD, making it desirable to use DRP in the output transformation problem.

3. IMPROVING THE ACCURACY OF ESTIMATING THE VECTOR
OF PARAMETERS BY A LINEAR SYSTEM OUTPUT TRANSFORMATION

When solving various tasks related to the processing of information received from

various sensors, there appears a problem of effective analysis of noisy signal

mixtures. In a number of such problems, the measured data are the result of summing

the effects generated by the physical process and weighted by some coefficients

(parameters), and are therefore described by the models linear in parameters.

If a possible set of basic functions is known, but it is unknown which of them

formed the observed output, the approximation problem solution can be obtained by

sparse approximation methods [13]. For the output vector y 0 that is not distorted by

noise, the sparse approximation problem is set as the problem of minimizing the

number of nonzero components in the parameter vector, provided that y Ô0 � � ,

where Ô �� �L N is the matrix of basis functions, and ���N is the parameter

vector. If the output vector y is distorted by noise, the problem of sparse

approximation is set as the problem of minimizing the number of non-zero

components in the parameter vector, provided that | | | |y Ô� �� �, where � is

a (small) value proportional to the norm of the noise vector � .

In context of sparse approximation of the noisy output vector, the concept of the

“l0-optimal solution” was introduced, i.e., a solution that provides both the minimum

approximation error and the maximum possible sparseness. The test proposed in [14]

allows making an l0-optimality test of solution �
�

obtained by some algorithm. The

disadvantage of the l0-optimality test is that it cannot be applied to any (arbitrary)

system of basis functions. Below, we propose to use the “output transformation” as

a preprocessing for sparse approximation problems that use basis functions which do

not satisfy the conditions of the l0-optimality test.
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4. MATCHING PURSUIT USING THE TRANSFORMATION
OF THE LINEAR SYSTEM OUTPUT

To solve the sparse approximation problem in the case of a noisy output vector,

we propose to modify the original method of Matching Pursuit [15].

The Modified Matching Pursuit (MMP) method works as follows. As in the

original Matching Pursuit, starting with k � 0 and f 0 0� , on the k �1th pass of

the algorithm, it selects the vector � k
L

� ��1 (some basis function, i.e., some column

of Ô) and calculates the parameter � k�



1 that minimize the square of the residual

norm: ( , ) min | | | |� �
�

k k k�



� � �1 1
2� �

�

arg r , where r y fk k� � , f k is the output

approximation at the pass k. The solution for � k�1 in the closed form is presented

below. Then the next output approximation is calculated as f fk k k k� �



�� �1 1 1� � .

The modification of the original Matching Pursuit consists in l0-optimality

testing the vector of parameters � k

 obtained at the kth pass. If the conditions of

l0-optimality are satisfied, the method stops.

The l0-optimality test uses the cumulative coherence function defined for

normalized vectors � [14] as �( ) max max | , |
( )

s
I s j I

j i
i I

� � �
� � �

�
card

� � , where s is the number

of nonzero parameters; I is the set of indices of functions that form a subspace; i

indexes the elements of the subspace, for all possible card( )I -member decompositions

of y , card( )I s� means that the cardinality of the set of indices (subspace

dimension) varies from 1 to s.

Our modified test for the l0-optimality is as follows: the solution vector � k

 (with

k components) is the solution with the maximum possible sparseness and with the

smallest approximation error, if | | | | . ( ( )) max | |r r1 2 0 5 1 2 1� � � �K
i

ik� � and

�( )2 1 1k � � , where | | : | , |

/

r rK

j K

j� � �
�

�

�
�

�

�

�
�

�
�
{ }

� 2
1 2

. Here the set of indices { }K

corresponds to the basis functions with largest dot product values with the residual r.

This test is different from that of [14] in our using maõ instead of min in [14].

In the case when the “basis coherence” condition �( )2 1 1k � � is not satisfied for

the particular system of basis functions, we proposed [12] to stop the MMP method

according to some other model selection criterion, different from the l0-optimality.

However, our comparative experimental studies showed that the accuracy of

estimating the parameter vector by MMP using other model selection criteria is worse

than for the l0-optimality test. So, we propose to transform the available output vector

to the output of a linear system with the basis functions that satisfy the condition of

basis coherence.

The MMP algorithm using the transformation of the system A output vector

consists of the following steps:

Step 1.1. Form a matrix of basis functions A �� �L N , L N�� , where N is the

number of basis functions.

Step 1.2. For A, calculate the cumulative coherence function �( )s .

Step 1.3. Check the basis coherence condition: �( )2 1 1s � � for s N�1 05, , .� .

If the basis coherence condition is not met, go to step 1.5.

Step 1.4. Initialize the matrix of basis functions Ô A� and go to step 2.1.
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Step 1.5. Form a matrix of basis functions B �� �L N , L N�� , satisfying the

basis coherence condition.

Step 1.6. Perform the SVD of A . Check the condition number and the behavior

of the singular value series.

� If the condition number is small, go to step 1.6.1.

� If the condition number is large and the singular value series gradually

decreases to zero, go to step 1.6.2.

Step 1.6.1. Calculate the transformation matrix T BAk � � and go to step 1.7.

Step 1.6.2. Calculate the transformation matrix Tk for the method used, for

example, T BA BV S Uk k k k k
� �� �1 T for SVD; T B R A Rk k k� �( ) for RP;

T BA UD Uk k� T T for DRP.

Step 1.7. Perform the transformation of the output vector to the system of basic

functions B as d T b
k k
� � .

Step 1.8. Initialize the matrix of basis functions Ô B� .

Step 2.1. Initialize f 0 0� , r yk � . Normalize the columns of Ô.

Step 2.2. In Ô, find the index of the basis function (the column) for which

	 k
i N

ki� � � �
� �
arg max | ( , ), |

, ,1

Ô r .

Step 2.3. Form Ô Ôk k k
� �{ , }1 � 	 . Check the condition number of Ôk and the

behavior of the singular value series.

� If the condition number is small, go to step 2.4.

� If the condition number is large and the singular value series gradually

decreases to zero, go to step 2.5.

Step 2.4. Calculate the values of the parameter vector � k k k k k� �( )Ô Ô Ô rT T1 ,

go to step 2.6.

Step 2.5. Calculate the values of the parameter vector � k , using the chosen

regularization method.

Step 2.6. Calculate the new residual vector r r Ôk k kk� � �1 � 		 (:, ).

Step 2.7. Calculate | | | | | , | | , |

{ }

r r r r1 2 1

2

1
2� � � � � � �

�

�

�
�

�

�

�
��

�
��K k i

i K

k i� �

1 2/

,

where { }2K is the set of indices with the 2k largest dot products | , |� ��rk i1 � .

Step 2.8. Test if | | | | . ( ( )) max |r r1 2 0 5 1 2 1� � � �K
i

im k 
 � .

If the test is satisfied, the resulting k-term linear model gives the solution with

the maximum possible sparseness and the smallest approximation error based on the

optimal sparseness test. Otherwise, continue the formation of the model by going to

the next pass, i.e., step 2.2.

5. THE EXPERIMENTAL STUDY

Let us consider an example of applying the transformation of the linear measuring

system output to the output of a system with a desired basis. It is applied in one of

the topical tasks of radiation monitoring, i.e., to the problem of identifying and

determining the activity of weak radioactive sources. Let the detector of the linear

measuring gamma-spectrometric system A have a lower resolution than the detector

of the system C. Let us investigate the accuracy of determining the radionuclide

activity using the method of transforming the output of the measuring system.
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In the test task, the spectra were

formed by the radionuclides cesium-137

(Cs137), cesium-134 (Cs134) and cobalt-60

(Co60). The vector of parameters

(proportional to the activities of

radionuclides) was as follows: x
Cs137 � 1.5,

x
Cs134 � 0.5, x

Co60 � 0.26 (spectrum line 1),

x
Co60 � 0.25 (spectrum line 2).

We studied the error of the parameter

vector estimate for the real measuring

system output (with the “wide” detector

response function) and for the transformed

measuring system output (with the

“narrow” detector response function).

An example of basis functions is shown

in Fig. 4, and an example of the system

output is shown in Fig. 5. The X axis in both figures is the spectrometer channel

number. The Y axis in Fig. 4 is the basis function number. The Z (vertical) axis is the

number of registered gamma-quants (in Fig. 4, per unit area).

At the two levels (0.01 and 0.02) of the intrinsic noise, the real spectra were

measured, the output was transformed, and the accuracy (the mean squared error e) of

the parameter vector estimation was calculated. The results are shown in Table 1, with

the following notations. The upper index denotes the system for which the error was

calculated. The lower index (Cp, MDL, L0) denotes the model selection criterion used

to estimate the parameter vector (Mallows, Minimum Description Length, and the test

for l0-optimality, correspondingly). True denotes the error obtained using the

parametric least squares regression with the true model.

The measurements of spectra at the noise levels 0.01 and 0.02 were performed in

the laboratory. When measured in the field conditions, due to the ambient temperature

changes, the noise level usually increases. Since the measurement of the intrinsic

noise of the measuring system in the field is difficult, we simulated the increase of the

intrinsic noise by adding noise (the Gaussian noise with zero mean and variance equal

to the noise level) to the measured spectra, in the range 0.03–0.09.
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Fig. 4. An example of basis functions
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Fig. 5. The output of the system (Spectrum) A and the transformed output (Spectrum transf)
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The results of the study are shown in Table 1. They were obtained for the DRP

regularization. As the intrinsic noise level increases, the parameter vector estimation

error increases for all the methods of parameter estimation. However, we see that the

accuracy with the l0-optimality test is higher than for other model selection criteria.

CONCLUSIONS

We consider a linear system in which the output vector is formed by a linear

transformation of the input vector and adding noise. The matrix of basis functions of

this linear system has a high condition number and its singular values gradually

decrease to zero. For this case, the proposed methods allowed a stable transformation

of the observed output into the output of a linear system with a known set of basic

functions. This was achieved by employing various regularization methods with

discrete regularization parameters (model complexity).

For the mean squared error of the output transformation problem solution, the

decomposition into deterministic and stochastic parts has been performed. For the

method based on the truncated Singular Value Decomposition, we have analytically

shown the increase of the stochastic error value vs the number of the SVD

components. An analytical study of the behavior of the deterministic error for the case

when the input vector is the realization of a random process showed that the

deterministic part decreases vs the number of the SVD components.

We have conducted an experimental study of the minimum error position for the

methods based on the truncated Singular Value Decomposition, Random Projection,

and Deterministic Random Projection. The study showed that for the truncated Singular

Value Decomposition and Deterministic Random Projection, the positions of the output

approximation error minimum of the existing system and the output transformation

error are very close. Using the output transformation as a pre-processing can increase

the accuracy of solving sparse approximation problems. For these tasks there is a test

for l0-optimality which gives a very accurate estimate of the optimal complexity of the

model. However, this test requires certain properties of basic functions, which we

obtained by the output transformation method. The improved accuracy was confirmed

in the problem of determining the activity of weak radiation sources. We consider

future applications in the areas of Unmanned Aerial Vehicles [16–18] and

Electrocardiogram-related signal processing [19, 20].
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T a b l e 1. Accuracy (the mean squared error e) of parameter vector estimation

Noise level eCp
A

eCp
C

eMDL
A

e MDL
C

e
L
C

0
eTrue

A
eTrue
C

0.01 0.011 0.021 0.011 0.013 0.011 0.011 0.013

0.02 0.257 0.254 0.025 0.024 0.024 0.025 0.024

0.03 0.283 0.281 0.043 0.036 0.036 0.044 0.036

0.04 0.308 0.297 0.119 0.097 0.051 0.062 0.051

0.05 0.332 0.325 0.203 0.192 0.064 0.082 0.064

0.06 0.348 0.351 0.255 0.252 0.075 0.110 0.076

0.07 0.363 0.357 0.280 0.289 0.086 0.132 0.087

0.08 0.375 0.368 0.298 0.291 0.095 0.162 0.098

0.09 0.391 0.383 0.301 0.294 0.106 0.182 0.106



For regularization, we employed the Random Projection methods that are a family

of randomized algorithms. Randomization of calculations is widely used to increase the

efficiency of calculations with a slight decrease in accuracy. Elsewhere, random

projections are widely used to reduce the dimensionality of vector representations while

maintaining the vector similarity values for some similarity measures, see, e.g., [21] and

references therein. Random projections are also used as a stage in algorithms that

transform the input vectors to the binary format, as exemplified in [22, 23]. Even

earlier, randomized methods have been used to perform a nonlinear transform of the

original vector data into binary high-dimensional vectors, making possible to apply

linear classifiers for solution on non-linear problems, such as in [24, 25]. Also, those

and other randomized transforms are widely used in the field known as

Hyperdimensional Computing or Vector Symbolic Architectures, see [26–28]. We

believe that randomized transformations and computations are promising for Artificial

Intelligence systems.
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Î.Â. Òèùóê, Î.Î. Äåñÿòåðèê, Î.ª. Âîëêîâ,
Î.Ã. Ðåâóíîâà, Ä.À. Ðà÷êîâñüêèé
ÏÅÐÅÒÂÎÐÅÍÍß ÂÈÕÎÄÓ Ë²Í²ÉÍÎ¯ ÑÈÑÒÅÌÈ
ÄËß ÐÎÇÐ²ÄÆÅÍÎ¯ ÀÏÐÎÊÑÈÌÀÖ²¯

Àíîòàö³ÿ. Ðîçãëÿíóòî ï³äõ³ä, ùî çàáåçïå÷óº ñò³éêå ïåðåòâîðåííÿ âèõîäó ë³í³éíî¿ ñèñòåìè
ó âèõ³ä ñèñòåìè ³ç çàäàíèì áàçèñîì. Ìàòðèöÿ áàçèñíèõ ôóíêö³é ë³í³éíî¿ ñèñòåìè ìàº âè-
ñîêå ÷èñëî îáóìîâëåíîñò³, ³ ðÿä ¿¿ ñèíãóëÿðíèõ ÷èñåë ïëàâíî ñïàäàº äî íóëÿ. Ðîçðîáëåíî
äâà òèïè ñò³éêèõ ìåòîä³â ïåðåòâîðåííÿ âèõîäó ç âèêîðèñòàííÿì àïðîêñèìàö³¿ ìàòðèöü íà
îñíîâ³ óñ³÷åíîãî ñèíãóëÿðíîãî ðîçêëàäàííÿ òà íà îñíîâ³ âèïàäêîâî¿ ïðîºêö³¿ ç ð³çíèìè
òèïàìè âèïàäêîâèõ ìàòðèöü. Ïîêàçàíî, ùî çà ðàõóíîê ïåðåòâîðåííÿ âèõîäó ÿê ïîïåðåä-
íüîãî îáðîáëåííÿ ìîæíà çá³ëüøèòè òî÷í³ñòü ðîçâ’ÿçàííÿ çàäà÷ ðîçð³äæåíî¿ àïðîêñèìàö³¿.
Ðîçãëÿíóòî ïðèêëàä âèêîðèñòàííÿ ìåòîäó â çàäà÷³ âèçíà÷åííÿ àêòèâíîñò³ ñëàáêèõ äæåðåë
ðàä³îàêòèâíîãî âèïðîì³íþâàííÿ.

Êëþ÷îâ³ ñëîâà: ðîçð³äæåíà àïðîêñèìàö³ÿ, äèñêðåòíà íåêîðåêòíà çàäà÷à, âèïàäêîâà
ïðîºêö³ÿ, ñèíãóëÿðíå ðîçêëàäàííÿ.
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