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IDENTIFICATION OF THE BOUNDARY MODE
IN ONE THERMAL PROBLEM BASED ON
THE SINGLE-PHASE STEFAN MODEL

Abstract. The process of melting a one-dimensional block of ice by heating it from the left
border is considered. A one-dimensional Stefan model is proposed for the mathematical
description of the melting process. It describes the temperature change in the resulting melt
zone with a movable boundary. Within the framework of this model, the task is to identify the
heating mode on the border of the block, which ensures the movement of the movable
boundary of the melt zone according to a predetermined law. The posed inverse problem for
the single-phase Stefan model belongs to the class of inverse boundary-value problems. With
the use of the method of front straightening, the problem area with a movable boundary is
transformed into a domain with fixed boundaries. A discrete analog of the inverse problem is
constructed using the finite-difference method, and a special representation is proposed for the
numerical solution of the resultant difference problem. As a result, the difference problem for
each discrete value of the time variable splits into two independent second-order difference
problems, for which the absolutely stable Thomas method is used, and a linear equation with
respect to the approximate value of the heating temperature at the left boundary of the block.
Numerical experiments were carried out on the basis of the proposed computational algorithm.

Keywords: heat transfer with phase transformation, ice melting process, movable phase inter-
face, front rectification method, boundary inverse problem, difference method.

INTRODUCTION

It is known that the study of heat transfer processes taking into account phase

transformations is an important task in many fields of science and technology. Ex-

amples of physical phenomena and processes with phase transformations are: the

process of melting ice with an unknown time-varying boundary between water

and ice, the process of melting a solid with an unknown boundary between solid

and liquid phases, the process of concentration redistribution during mutual diffu-

sion in a metal alloy with movable phase boundaries, etc. Such processes occur in

a number of modern metallurgical technologies, in the heat treatment of materials,

in the cultivation of single crystals, during freezing-thawing of soils, in electric

welding, as well as in a number of other fields of science and practice. For the

mathematical description of such thermal, diffusion and thermodiffusion processes,

accompanied by phase transformations and the absorption or release of latent heat,

single-phase or two-phase Stefan models are used [1–4]. The main feature of the

Stefan model is that the phase boundary moving in time, which creates time-vary-

ing regions in which the determination of temperature fields or concentration of

substances is required, is not set a priori and must be determined during the solu-

tion process. The questions of the existence and uniqueness of the solution of sin-

gle-phase and two-phase Stefan problems are studied in [5]. Currently, a large

number of analytical and numerical methods for studying the single-phase and

two-phase Stefan model are known [6–10].

It should be noted that the efficiency of many technological processes, where

heat transfer with phase transformation takes place, largely depends on the law of

movement of the movable phase interface. In this regard, the task of regulating the

movement of the phase interface in the processes of heat transfer with phase transfor-

mation is very important. In this paper, on the example of the ice melting process, the
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problem of regulating the movement of the interface is presented as a boundary in-

verse problem [11,12] for the single-phase Stefan model.

The general theory and applications of numerical methods for solving boundary

inverse problems are discussed in [11–14]. It should be noted that the questions of the

existence and uniqueness of the solution of boundary inverse problems were studied

in [15, 16]. In [17], similar questions were investigated for various types of inverse

problems of the single-phase and two-phase Stefan model. Currently, there is an ex-

tensive literature on numerical methods for solving inverse Stefan problems [18–20].

However, most of these papers are devoted to coefficient inverse problems and prob-

lems about sources, where the gradient iterative method is mainly used. In this paper,

a non-iterative computational algorithm is proposed to solve the inverse problem.

PROBLEM STATEMENT

Let us consider a one-dimensional block of ice with a length l at the melting tem-

perature of the ice T* . From the moment of time t � 0 , the block from the border

x � 0 is heated under the temperature f t( ) , f t T( ) *� . As a result, the process of

melting ice begins and a melting zone [ , ( )]0 s t with a movable boundary s t( ) is

formed, and
ds

dt
� 0 , t � 0 , i.e., the melting zone expands over time. Consequently,

the ice block is divided into thawed and frozen zones corresponding to different

aggregate states. It is assumed that the mobile interface of the frozen and thawed

zone s t( ) has a melting point of ice. Assume that the temperature in the frozen

zone [ ( ), ]s t l is equal to the melting temperature of ice T* . Then the mathematical

description of the ice melting process under consideration can be presented in the

form of a single-phase Stefan model [1–4], which includes a thermal conductivity

equation describing the temperature change in the melt zone
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, ( , ) ( ), *x t x s t t ts� � � � � �� { }0 0 , (1)

a condition on a fixed boundary describing the temperature change over time on

the boundary of the block

T t f t( , ) ( )0 � , 0� �t t* , (2)

Stefan’s condition, which determines the speed of movement of the movable

boundary

w
ds
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T s t t

x
� �� 	

�

�

( ( ), )
, 0� �t t* , (3)

condition on the movable boundary between the thawed and frozen zone

T s t t T( ( ), ) *� , 0� �t t* , (4)

initial temperature distribution

T x T( , ) *0 � , (5)

where T x t( , ) is the temperature in the melt zone, w is the specific latent heat of

melting, � �, , � is the coefficient of thermal conductivity, density and coefficient

of thermal conductivity in the melt zone.

It should be noted that the direct problem for the model (1)–(5) consists in

finding functions T x t( , ) and s t( ) satisfying equations (1), (3) with given coefficients

�, �, �, w and additionally given conditions (2), (4), (5). However, in practice, for

many thermal, diffusion processes accompanied by phase transformations, tasks are

very important in which those boundary conditions are determined in which the
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movement of the movable boundary is ensured according to a predetermined law. In this

regard, within the framework of model (1)–(5), we set the following inverse problem: find

such an ice heating mode on the border of the block that would ensure the movement of the

movable boundary between the thawed and frozen zone according to a given law.

Thus, the law of moving the movable boundary s t( ) is considered to be known and

it is required to determine the functions T x t( , ) and f t( ) from equation (1) and addi-

tional conditions (2)–(5). Since the unknown problems are functions T x t( , ) and f t( ) ,

therefore, problem (1)–(5) belongs to the class of boundary inverse problems [11–14].

METHOD FOR SOLVING THE PROBLEM

Assuming the existence and uniqueness of the solution of the inverse problem

(1)–(5), we transform it using the method of straightening the fronts [4]. To this

end, we introduce variable substitutions

y
x

s t
�

( )
, t t� , T x t T y t( , ) ( , )� .

It is obvious that in this case the � s area of setting equation (1) is uniquely

mapped to the area � � � � � �{ }0 1 0y t t, * . Then equation (1) and additional

conditions (2)–(5) in the new variables take the form
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s t w ds
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The advantage of such a transformation is that the computational domain of the

problem (6)–(10) � becomes a rectangular area with fixed boundaries.

For the numerical solution of the boundary inverse problem (6)–(10), we con-

struct its discrete analogue using the finite difference method. To do this, we intro-

duce a uniform difference grid

� � � � � �{( , ): , , , , , ... , , , , ...y t y i y t j t i n j mi j i j� � 0 1 2 0 1 2 }

in a rectangular area � � � � � �{ }0 1 0y t t, * with �y n�1 / , variable y and

�t t m� * / time steps. The discrete analogue of the problem (6)–(10) on the grid

� is represented as the following implicit difference scheme
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T Tn
j � * , (14)

T Ti
0 � * , (15)

where T T x ti
j

i j� ( , ) , r r y ti
j

i j� ( , ) , d d tj
j� ( ) , f f tj

j� ( ) , � �j
jt� ( ) .

It should be noted that the difference problem (11)–(15) on the solution of the

original differential problem (6)–(10) has the first order of approximation in �y and �t.

The resulting difference problem is a system of linear algebraic equations in which

the approximate values of the desired functions T y t( , ) and f t( ) in the nodes of the

difference grid � act as unknowns , i.e. T fi
j j, , i n� 0 1 2, , , . . , , j m�1 2 3, , , ..., .

To split the system of difference equations (11)–(15) into mutually independent

subsystems, each of which can be solved independently, the solution of this system

for each fixed value j m�1 2, , ..., is represented as [12, 21]
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A substitution expression Ti
j in (12), (13) gives
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From the presented relations we obtain the following difference problems for de-

termining auxiliary variables u pi
j

i
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p j
0

1� , (21)
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j m�1 2, , ..., .

The difference problems (17)–(19) and (20)–(22) for each fixed value j,

j m�1 2, , ..., , are a system of linear algebraic equations with a tridiagonal matrix and

solutions of these systems can be found by the Thomas method [12]. And substituting

representation (16) into (14), we will have

u f p Tn
j j

n
j
 � * .

From here we obtain a formula for determining the approximate value of the de-

sired function f t( ) at t t j� , i.e. f j

f
T u

p

j n
j

n
j

�
	* , j m�1 2 3, , , ..., . (23)

Thus, the computational algorithm for solving the difference problem (11)–(15)

by definition T fi
j j, , i n� 0 1 2, , , . . , , on each time layer j , j m�1 2, , . . . ., , consists

of the following stages:
• solutions of two independent difference problems (17)–(19) and (20)–(22) with

respect to auxiliary variables u pi
j

i
j, , i n� 0 1 2, , , . . , , are determined;

• the formula (23) determines the approximate value of the desired function f t( )

at t t j� , i.e. f j ;

• the values of variables Ti
j are calculated according to the formula (16).

It should be noted that the applicability of the proposed computational algorithm

is associated with the fulfillment of the condition

pn
j � 0 , j m�1 2 3, , , ..., . (24)

To check condition (24), we find an explicit formula for calculating pn
j . To this

end, we first transform the system (20)–(22) into the form
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The system of equations (25)–(27) has a tridiagonal matrix and according to the

Thomas method, its solution for each fixed value j m�1 2 3, , , ..., can be represented as

p p
i
j

i i
j

i
 
 
� 

1 1 1� � , i n� 	0 1 2 1, , , ..., , (28)

where �
�

i
i

i i i

a

c b
�

	 
1

, �
�

�
i

i i

i i i

b

c b
�

	






1

1

, i n n� 	 	1 2 1, , ..., , � n �1, � n � 0 .

We will write the representation (28) when i n� 	1:

p pn
j

n n
j

n� 

	

� �
1

.

108 ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2023, òîì 59, ¹ 2



Substituting here the representation for p
n
j
	1

, i.e. p p
n
j

n n
j

n	 	 	 	� 

1 1 2 1� � , we

have
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As a result, for the calculation pn
j we finally get
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It follows that pn
j � 0 , j m�1 2 3, , , ..., .

RESULTS OF NUMERICAL CALCULATIONS

To test the effectiveness of the practical application of the proposed computational

algorithm, the following model problem is considered:

— according to a given law of motion of a moving boundary s t t( ) � � , find

functions T x t( , ) and f t( ) satisfying the following conditions:
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where the magnitude � is the root of the nonlinear equation
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Based on the proposed computational algorithm, the numerical solution of the

model problem under consideration is determined. Numerical calculations were per-
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formed for the following values of variables; T Co
* � 0 ; � � 9998. kg/m 3;

�=0.569 W/(m °C); � � � 	135 10 8. m 2/s; w � �3335 105. J/êg. The results of numerical

calculations carried out under various laws of motion of the movable boundary are

presented in Table 1; in it t is the time, f is the exact values, and
~

( )f t is the calcu-

lated values of the function f t( ) , A t� 	10 6 1 2/ .

From Table 1 it follows that during the first 5 seconds a certain constant tempera-

ture is set on the border of the block x � 0 and this temperature is taken to solve this

problem. At the same time, the relative error of restoring the temperature regime at

the border in all variants does not exceed 0.5%. The results of numerical calculations

confirm that the constant temperature regime on the border of the block ensures the

movement of the movable border according to the law s t t( ) � � .

CONCLUSIONS

Within the framework of Stefan’s single-phase model, the inverse problem of
melting a one-dimensional block of ice is considered, which consists in identifying
the heating mode at a fixed boundary according to a given law of motion of the
movable boundary. The proposed computational algorithm, based on the use of the
method of rectification of fronts, discretization of the problem and the use of a
special representation for solving a discrete problem, allows us to consistently
determine the heating temperatures at a fixed boundary and the temperature
distribution in the melt zone in each time layer. The proposed computational
algorithm can be used in the study of the single-phase Stefan model.
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Õ.Ì. Ãàìçàºâ
²ÄÅÍÒÈÔ²ÊÀÖ²ß ÃÐÀÍÈ×ÍÎÃÎ ÐÅÆÈÌÓ Â ÎÄÍ²É ÒÅÏËÎÂ²É ÇÀÄÀ×²
ÍÀ ÎÑÍÎÂ² ÎÄÍÎÔÀÇÍÎ¯ ÌÎÄÅË² ÑÒÅÔÀÍÀ

Àíîòàö³ÿ. Ðîçãëÿíóòî ïðîöåñ ïëàâëåííÿ îäíîì³ðíîãî ëüîäîâîãî áëîêó øëÿõîì íàãð³âàííÿ
éîãî ç ë³âî¿ ìåæ³. Äëÿ ìàòåìàòè÷íîãî îïèñó ïðîöåñó ïëàâëåííÿ çàïðîïîíîâàíî îäíî-
âèì³ðíó îäíîôàçíó ìîäåëü Ñòåôàíà, ÿêà îïèñóº çì³íó òåìïåðàòóðè â óòâîðþâàí³é òàë³é
çîí³ ç ðóõîìîþ ìåæåþ. Â ìåæàõ ö³º¿ ìîäåë³ ïîñòàâëåíî çàäà÷ó ³äåíòèô³êàö³¿ ðåæèìó
íàãð³âó íà ë³â³é ìåæ³ áëîêó, ÿêèé çàáåçïå÷óº ïåðåì³ùåííÿ ðóõîìî¿ ìåæ³ òàëî¿ çîíè çà çà-
äàíèì çàêîíîì. Ïîñòàâëåíà îáåðíåíà çàäà÷à äëÿ îäíîôàçíî¿ ìîäåë³ Ñòåôàíà íàëåæèòü
êëàñó ãðàíè÷íèõ îáåðíåíèõ çàäà÷. Ìåòîäîì ñïðÿìëåííÿ ôðîíò³â îáëàñòü çàäà÷³ ç ðóõî-
ìîþ ìåæåþ ïåðåòâîðåíî íà îáëàñòü ç ô³êñîâàíèìè ìåæàìè. Ïîáóäîâàíî äèñêðåòíèé àíà-
ëîã îáåðíåíî¿ çàäà÷³ ç âèêîðèñòàííÿì ìåòîäó ê³íöåâèõ ð³çíèöü ³ çàïðîïîíîâàíî ñïåö³àëü-
íå ïðåäñòàâëåííÿ äëÿ ÷èñåëüíîãî ðîçâ’ÿçàííÿ îäåðæàíî¿ ð³çíèöåâî¿ çàäà÷³. Â ðåçóëüòàò³
ð³çíèöåâà çàäà÷à äëÿ êîæíîãî äèñêðåòíîãî çíà÷åííÿ ÷àñîâî¿ çì³ííî¿ ä³ëèòüñÿ íà äâ³ íåçà-
ëåæí³ ð³çíèöåâ³ çàäà÷³ äðóãîãî ïîðÿäêó, äëÿ ðîçâ’ÿçàííÿ ÿêèõ çàñòîñîâàíî àáñîëþòíî
ñò³éêèé ìåòîä Òîìàñà òà ë³í³éíå ð³âíÿííÿ â³äíîñíî íàáëèæåíîãî çíà÷åííÿ òåìïåðàòóðè
íàãð³âó íà ë³â³é ìåæ³ áëîêó. Íà îñíîâ³ çàïðîïîíîâàíîãî îá÷èñëþâàëüíîãî àëãîðèòìó ïðî-
âåäåíî ÷èñëîâ³ åêñïåðèìåíòè.

Êëþ÷îâ³ ñëîâà: òåïëîïåðåíåñåííÿ ç ôàçîâèì ïåðåòâîðåííÿì, ïðîöåñ ïëàâëåííÿ ëüîäó,
ðóõîìà ìåæà ïîä³ëó ôàç, ìåòîä ñïðÿìëåííÿ ôðîíò³â, ãðàíè÷íà îáåðíåíà çàäà÷à,
ð³çíèöåâèé ìåòîä.
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