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IDENTIFICATION OF THE BOUNDARY MODE
IN ONE THERMAL PROBLEM BASED ON
THE SINGLE-PHASE STEFAN MODEL

Abstract. The process of melting a one-dimensional block of ice by heating it from the left
border is considered. A one-dimensional Stefan model is proposed for the mathematical
description of the melting process. It describes the temperature change in the resulting melt
zone with a movable boundary. Within the framework of this model, the task is to identify the
heating mode on the border of the block, which ensures the movement of the movable
boundary of the melt zone according to a predetermined law. The posed inverse problem for
the single-phase Stefan model belongs to the class of inverse boundary-value problems. With
the use of the method of front straightening, the problem area with a movable boundary is
transformed into a domain with fixed boundaries. A discrete analog of the inverse problem is
constructed using the finite-difference method, and a special representation is proposed for the
numerical solution of the resultant difference problem. As a result, the difference problem for
each discrete value of the time variable splits into two independent second-order difference
problems, for which the absolutely stable Thomas method is used, and a linear equation with
respect to the approximate value of the heating temperature at the left boundary of the block.
Numerical experiments were carried out on the basis of the proposed computational algorithm.

Keywords: heat transfer with phase transformation, ice melting process, movable phase inter-
face, front rectification method, boundary inverse problem, difference method.

INTRODUCTION

It is known that the study of heat transfer processes taking into account phase
transformations is an important task in many fields of science and technology. Ex-
amples of physical phenomena and processes with phase transformations are: the
process of melting ice with an unknown time-varying boundary between water
and ice, the process of melting a solid with an unknown boundary between solid
and liquid phases, the process of concentration redistribution during mutual diffu-
sion in a metal alloy with movable phase boundaries, etc. Such processes occur in
a number of modern metallurgical technologies, in the heat treatment of materials,
in the cultivation of single crystals, during freezing-thawing of soils, in electric
welding, as well as in a number of other fields of science and practice. For the
mathematical description of such thermal, diffusion and thermodiffusion processes,
accompanied by phase transformations and the absorption or release of latent heat,
single-phase or two-phase Stefan models are used [1-4]. The main feature of the
Stefan model is that the phase boundary moving in time, which creates time-vary-
ing regions in which the determination of temperature fields or concentration of
substances is required, is not set a priori and must be determined during the solu-
tion process. The questions of the existence and uniqueness of the solution of sin-
gle-phase and two-phase Stefan problems are studied in [5]. Currently, a large
number of analytical and numerical methods for studying the single-phase and
two-phase Stefan model are known [6—-10].

It should be noted that the efficiency of many technological processes, where
heat transfer with phase transformation takes place, largely depends on the law of
movement of the movable phase interface. In this regard, the task of regulating the
movement of the phase interface in the processes of heat transfer with phase transfor-
mation is very important. In this paper, on the example of the ice melting process, the
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problem of regulating the movement of the interface is presented as a boundary in-
verse problem [11,12] for the single-phase Stefan model.

The general theory and applications of numerical methods for solving boundary
inverse problems are discussed in [11-14]. It should be noted that the questions of the
existence and uniqueness of the solution of boundary inverse problems were studied
in [15, 16]. In [17], similar questions were investigated for various types of inverse
problems of the single-phase and two-phase Stefan model. Currently, there is an ex-
tensive literature on numerical methods for solving inverse Stefan problems [18-20].
However, most of these papers are devoted to coefficient inverse problems and prob-
lems about sources, where the gradient iterative method is mainly used. In this paper,
a non-iterative computational algorithm is proposed to solve the inverse problem.

PROBLEM STATEMENT

Let us consider a one-dimensional block of ice with a length / at the melting tem-
perature of the ice T«. From the moment of time # =0, the block from the border
x =0 is heated under the temperature f (), f(¢)>T«. As a result, the process of
melting ice begins and a melting zone [0, s(¢)] with a movable boundary s(z) is

d . . .
formed, and —S>0, t>0, i.e., the melting zone expands over time. Consequently,
t

the ice block is divided into thawed and frozen zones corresponding to different
aggregate states. It is assumed that the mobile interface of the frozen and thawed
zone s(¢) has a melting point of ice. Assume that the temperature in the frozen
zone [s(¢), [] is equal to the melting temperature of ice 7. Then the mathematical
description of the ice melting process under consideration can be presented in the
form of a single-phase Stefan model [1-4], which includes a thermal conductivity
equation describing the temperature change in the melt zone
2

al:xa—T, (x, 1) e ={0<x<s(t), 0<t=Zts}, @)

ot ox 2
a condition on a fixed boundary describing the temperature change over time on
the boundary of the block

TO,t)=f(1), 0<t< ts, )
Stefan’s condition, which determines the speed of movement of the movable
boundary
wp B = 7 TGO Yoy oy, @)
dt Ox

condition on the movable boundary between the thawed and frozen zone
T(s(t),t)=Tx«, 0< t < tx, 4)

initial temperature distribution
T(x,0)="Tx, %)

where T'(x, t) is the temperature in the melt zone, w is the specific latent heat of
melting, A, p, x is the coefficient of thermal conductivity, density and coefficient
of thermal conductivity in the melt zone.

It should be noted that the direct problem for the model (1)—(5) consists in
finding functions T'(x, ¢) and s(¢) satisfying equations (1), (3) with given coefficients
% A, p, wand additionally given conditions (2), (4), (5). However, in practice, for
many thermal, diffusion processes accompanied by phase transformations, tasks are
very important in which those boundary conditions are determined in which the
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movement of the movable boundary is ensured according to a predetermined law. In this
regard, within the framework of model (1)+(5), we set the following inverse problem: find
such an ice heating mode on the border of the block that would ensure the movement of the
movable boundary between the thawed and frozen zone according to a given law.
Thus, the law of moving the movable boundary s(¢) is considered to be known and
it is required to determine the functions 7'(x, ¢) and f'(¢) from equation (1) and addi-
tional conditions (2)—(5). Since the unknown problems are functions 7'(x, ¢) and f'(¢),
therefore, problem (1)—(5) belongs to the class of boundary inverse problems [11-14].

METHOD FOR SOLVING THE PROBLEM

Assuming the existence and uniqueness of the solution of the inverse problem
(1)—(5), we transform it using the method of straightening the fronts [4]. To this
end, we introduce variable substitutions

y=" t=t, T(x,0)=T(»1).
s(1)
It is obvious that in this case the )  area of setting equation (1) is uniquely
mapped to the area Q ={0< y<1, 0<¢<t¢«}. Then equation (1) and additional
conditions (2)—(5) in the new variables take the form

oT o°T oT
7=d(1)72+”(y, t)ia (6)
ot dy Oy
(1) eQ={0<y<l, 0<t<ts}, TO,t)=f(t), 0<t= ts, @)
TLD _ vy, 0< 1< 1, ®)
y
T(,t)=Tx«, 0<t< tx, )
T(,0)="Tx, (10)
X y ds s(t)wp ds
here d(¢) = ; )= ———; v(t)=——"1 .,
where d(1) o =T v0 =S

The advantage of such a transformation is that the computational domain of the
problem (6)—(10) Q becomes a rectangular area with fixed boundaries.

For the numerical solution of the boundary inverse problem (6)—(10), we con-
struct its discrete analogue using the finite difference method. To do this, we intro-
duce a uniform difference grid

o ={(y;,t;)y; =iAy, t;=jAt, i=0,12,..n, j=0,12,...m}

in a rectangular area Q ={0< y<1, O<t<t«} with Ay=1/n, variable y and
At =t« / m time steps. The discrete analogue of the problem (6)—(10) on the grid
o 1is represented as the following implicit difference scheme

A e Y B N o T/ T
i i =d/ i+1 12 l_l+rij i+1 i , (11)
At Ay Ay
i=L2,..,n-1, j=1L2,...m,
1 =17, (12)
T/ —T/ .
———rl =y, (13)
Ay
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T) =Tx, (14)
70 =T, (15)

where T/ ~T(x;, t; ), 1/ =r(yit;), d/ =d(t;), f/=f(t;). v/ =v(;).

It should be noted that the difference problem (11)—(15) on the solution of the
original differential problem (6)—(10) has the first order of approximation in Ay and Az.
The resulting difference problem is a system of linear algebraic equations in which
the approximate values of the desired functions 7'(y, ) and f(¢) in the nodes of the

difference grid @ act as unknowns , i.e. T; Joofli=0, 12,0, j=123,.

To split the system of difference equations (11)—(15) into mutually independent
subsystems, each of which can be solved independently, the solution of this system
for each fixed value j=1,2,...,m is represented as [12, 21]

) =ul +f/pl, =012 ..n, (16)

1

where u/, p/are unknown variables.

Substituting the expression 7}/ into equation (11), we get

X , S o
ul +f7pl 17" g l+1+f/ —Zuif—2ffpl.f+z4if_1+ffpl.f_lJr
At e
ul — It
. wly+ S p), —ul - p;
1 Ay
or j -1 I oy vyt Y
u! =T/ g M 2uf +ul |
At Ay2 ' Ay
J Jo_opl J S )
ypd | Pl gi P T2PC P P TP
A Ap? ! Ay '
34

A substitution expression 7 l.j in (12), (13) gives

J_ 7 J_ ]
u; un—l +fj Pn pn—l _
Ay Ay

uj +fpy =17, v/,

From the presented relations we obtain the following difference problems for de-
termining auxiliary variables u/, p/, i=0,1,2,..,n, for each fixed value j,

JELLm, J oyl el Jo_
u! =T/~ ul o =2u! +u’ u’ . —u
1 i _dj i+1 12 i—1 _rj i+1 ! =0’ (17)
At Ay Ay
ul =0, (18)
ul —u’ )
R (19)
Ay
J _9 ] Jo_ ]
PP p; +p p P;
P; —d’ i+1 12 i—1 l] i+1 i =0, (20)
At Ay Ay
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pd =1, @1)

J_ ]

P~ Puct_g, 22)
Ay

j=L2,...,m

The difference problems (17)-(19) and (20)—(22) for each fixed value j,
j=L2,..., m, are a system of linear algebraic equations with a tridiagonal matrix and
solutions of these systems can be found by the Thomas method [12]. And substituting
representation (16) into (14), we will have

) + f7 pl =Tx.
From here we obtain a formula for determining the approximate value of the de-
sired function f(z) at t=t¢;, ie. f/

T —
fl= 12,3, m, (23)
J
Pi
Thus, the computational algorithm for solving the difference problem (11)~(15)
by definition 7/, f/,i=0, 1,2,.., n, on each time layer j, j=1, 2,...., m, consists
of the following stages:
* solutions of two independent difference problems (17)—(19) and (20)+(22) with
respect to auxiliary variables u/, p/, i=0, 1,2,..,n, are determined;
+ the formula (23) determines the approximate value of the desired function f'(7)
at t=1;, ie. 7
 the values of variables T I.J are calculated according to the formula (16).

It should be noted that the applicability of the proposed computational algorithm
is associated with the fulfillment of the condition

pl#0, j=1,23,...,m. 24)

To check condition (24), we find an explicit formula for calculating p,{ . To this
end, we first transform the system (20)—(22) into the form

a;pl | —cip! +bipl =0, i=12..n-1, (25)
p§=1. (26)
Pin =Py @7)
]21929" )ma
oo
where a; :L, b; :d7+17’ c;=a; +b; +L_
Ayz Ay2 Ay At

The system of equations (25)—(27) has a tridiagonal matrix and according to the
Thomas method, its solution for each fixed value j =1,2,3, ..., m can be represented as

ply=amap] B, =012, n-1, (28)
. b: B
where «; :ail, Bi :71/3)”1 ,i=n—-1n-2,..,1, a, =1, B, =0.
¢ —Ajp1b; ¢ —Ajp1b;

We will write the representation (28) when i=n—1:

pl{ =anp,{_1 +ﬂn'
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Substituting here the representation for p! ., ie. p/ =a, p/  +f,, we
have . ‘
prjz :anan—lpi_z +a,fu 1+,

Further, substituting the corresponding representations p}{_z, p-y{_3, s plj into
the last equation, we obtain an explicit formula for calculating p,{ :

. .n n—1 n
i ZPéHai +Zﬁi Hak +B,
i=1

i=1 k=i+1

But a simple analysis taking into account @; >0, b; >0, ¢; >a; +b;,i=1,n-1,
shows that

O<aq;=— i = 4i <1, B; =0, i=Ln—1.
¢ —aiby (¢g—a;=bj)+a; +(—a; )b

As a result, for the calculation p,{ we finally get

. . N
Pi ZPéHar
i=l

It follows that p; #0, j=12,3,...,m.

RESULTS OF NUMERICAL CALCULATIONS

To test the effectiveness of the practical application of the proposed computational
algorithm, the following model problem is considered:
— according to a given law of motion of a moving boundary s(¢) =3 \/;, find
functions 7T'(x, #) and f(¢) satisfying the following conditions:
a—T:xaz—T, O<x<s(t), 0<t<tx,
ot ox 2

T, 6)=f(t), 0< < tx,

) oT (s(2), t) _
Ox

T(s(t),t)=Tx, 0< < tx.

ds
wo —, 0<t< tx,
pdt

This problem has an exact solution

'[ et d&
0

where the magnitude § is the root of the nonlinear equation
2

B A (Ty —Tx) 67@'
wp\/; BI2\x 5
I e ¢ d&
0

Based on the proposed computational algorithm, the numerical solution of the
model problem under consideration is determined. Numerical calculations were per-
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Table 1. Calculated values of f(¢) for given s(¢)

o)

t|7=5 |/=10, |f=15 [f=20, |f=25 |f=30, |f=35 |f=40, |f=45 |f=50,

R 4|90 4|50 4|55 4|50 4|05 4|05 4| 585 4|20 4
1| 5074 | 10379 | 15.910 | 21.630 | 27.417 | 33.405 | 39.681 | 46.118 | 52.572 | 59.299
2| 4998 | 9.960 | 14.966 | 19.953 | 24.822 | 29.689 | 34.622 | 39.516 | 44.267 | 49.066
3| 4.994 | 9.970 | 15.000 | 20.031 | 24.969 | 29.938 | 35.011 | 40.087 | 45.061 | 50.136
41 4994 | 9.970 | 14.992 | 20.028 | 24.964 | 29.927 | 34.990 | 40.052 | 45.007 | 50.057
51 4.994 | 9970 | 14.992 | 20.028 | 24.964 | 29.927 | 34.991 | 40.054 | 45.010 | 50.061
6| 4.994 | 9.970 | 14.992 | 20.028 | 24.964 | 29.927 | 34.991 | 40.054 | 45.010 | 50.061
7| 4994 | 9970 | 14.992 | 20.028 | 24.964 | 29.927 | 34.991 | 40.054 | 45.010 | 50.061
8| 4.994 | 9.970 | 14.992 | 20.028 | 24.964 | 29.927 | 34.991 | 40.054 | 45.010 | 50.061
9| 4.994 | 9970 | 14.992 | 20.028 | 24.964 | 29.927 | 34.991 | 40.054 | 45.010 | 50.061
10| 4.994 | 9.970 | 14.992 | 20.028 | 24.964 | 29.927 | 34.991 | 40.054 | 45.010 | 50.061

formed for the following values of variables; T« =0 ° C; p=9998 kg/m3;
1=0.569 W/(m °C); x =135-10"° m?/s; w=3335-10° J/kg. The results of numerical

calculations carried out under various laws of motion of the movable boundary are
presented in Table 1; in it ¢ is the time, f is the exact values, and f (¢) is the calcu-

lated values of the function f(¢), 4 =107%¢"2 .

From Table 1 it follows that during the first 5 seconds a certain constant tempera-
ture is set on the border of the block x =0 and this temperature is taken to solve this
problem. At the same time, the relative error of restoring the temperature regime at
the border in all variants does not exceed 0.5%. The results of numerical calculations
confirm that the constant temperature regime on the border of the block ensures the
movement of the movable border according to the law s(¢)=p Jt.

CONCLUSIONS

Within the framework of Stefan’s single-phase model, the inverse problem of
melting a one-dimensional block of ice is considered, which consists in identifying
the heating mode at a fixed boundary according to a given law of motion of the
movable boundary. The proposed computational algorithm, based on the use of the
method of rectification of fronts, discretization of the problem and the use of a
special representation for solving a discrete problem, allows us to consistently
determine the heating temperatures at a fixed boundary and the temperature
distribution in the melt zone in each time layer. The proposed computational
algorithm can be used in the study of the single-phase Stefan model.
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X.M. TI'am3aeB

INEHTUPIKANIA 'PAHUYHOT'O PEXUMY B OJIHIN TEILJIOBINH 3AJIAYI
HA OCHOBI OJHO®A3HOI MOJEJII CTE®AHA

AHoTamnis. Po3risiHyTO mpomec IUIaBIeHHS OZHOMIPHOTO JIbOJOBOrO OJIOKY HUIIXOM HAarpiBaHHS
floro 3 miBoi Mexi. J[isg MaTeMaTHYHOro ONHWCY IPOLeCcy IUIABJICHHS 3alpOIIOHOBAHO OJHO-
BuMipHY oxHOo(dasHy mozaenb CredaHa, ska OMUCYE 3MiHY TEMIIEpaTypH B YTBOPIOBaHIW Tauiit
30HI 3 PyXOMOIO Mexelo. B mexax miel Mojeni mocTaBieHO 3anady igeHTH(iKamii pexnmy
HarpiBy Ha JiBiif Mexi OJIOKy, KUl 3a0e3reuye mepeMilieHHs: pyxoMoi MeXi Tajoi 30HH 3a 3a-
naHuM 3akoHOM. [locraBiieHa obOepHeHa 3amava Ui oxHOgasHoi mozaeni CredaHa HaIeKUTH
KJIacy TpaHWYHUX OOepHeHHX 3ajgad. Merojqom crpsmiieHHs (pPOHTIB 00JacTh 3ajgadi 3 pyxo-
MOIO MEXKEI0 MEepeTBOPEHO Ha 001acTh 3 (pikcoBaHMMH Mekamu. [100yqoBaHO TUCKpeTHHI aHa-
nor obepHeHOi 3a7adi 3 BUKOPUCTAHHSIM METOAY KIHIIEBHX PI3HUIG i 3alPONOHOBAHO CIICHiallb-
HE TMPEACTAaBJICHHS JUIsl YHCEIbHOIO PO3B’sI3aHHS OJepkaHol pi3HMIEBOI 3axadi. B pesymbrati
pi3HUIIEBa 3amada Ui KOXKHOTO JUCKPETHOTO 3HAYEHHS YacoBOi 3MIHHOI JITUTHCS Ha JBI He3a-
JIeKHI PI3HHUIEB] 3a/1adi JPYroro MOPSAKY, IS PO3B’SI3aHHS SKUX 3aCTOCOBAHO aOCOJIIOTHO
criiikuit meronx Tomaca Ta JiHiifHe PIBHSHHS BiHOCHO HAOJIMKEHOTO 3HAUYCHHS TEMIIEpaTypu
HarpiBy Ha JiBii Mexi Ooky. Ha OCHOBI 3aIipOIIOHOBaHOTO OOYHMCIIOBAIBFHOTO alTOPUTMY TPO-
BEJICHO YHCJIOBI EKCIICPHMEHTH.

KonrodoBi cioBa: TemnonepeHeceHHS 3 (ha30BHM IEPETBOPEHHSM, MPOIEC IUIABICHHS IHOIY,
pyxoMa Mexxa mnoxainry a3, MeTox CHpsSMICHHS (POHTIB, TpaHWYHAa oOepHeHa 3ajaya,
PI3HMIEBHIT METO.I.

Haoituna oo peoaxyii 30.08.2022
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