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CONNECTIONS BETWEEN ROBUST STATISTICAL ESTIMATION,
ROBUST DECISION=MAKING WITH TWO-STAGE STOCHASTIC
OPTIMIZATION, AND ROBUST MACHINE LEARNING PROBLEMS1

Abstract. The paper discusses connections between the problems of two-stage stochastic
programming, robust decision-making, robust statistical estimation, and machine learning.
In the conditions of uncertainty, possible extreme events and outliers, these problems require
quantile-based criteria, constraints, and “goodness-of-fit” indicators. The two-stage STO
problems with quantile-based criteria can be effectively solved with the iterative stochastic
quasigradient (SQG) solution algorithms. The SQG methods provide a new type of machine
learning algorithms that can be effectively used for general-type nonsmooth, possibly
discontinuous, and nonconvex problems, including quantile regression and neural network
training. In general problems of decision-making, feasible solutions and concepts of optimality
and robustness are characterized from the context of decision-making situations. Robust ML
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approaches can be integrated with disciplinary or interdisciplinary decision-making models,
e.g., land use, agricultural, energy, etc., for robust decision-making in the conditions of
uncertainty, increasing systemic interdependencies, and “unknown risks.”

Keywords: two-stage STO, robust decision-making and statistical estimation, robust quantile
regression, machine learning, general problems of robust decision making, systemic risks,
uncertainties.

INTRODUCTION

Various problems of decision-making under uncertainty, statistics, big data analysis,

artificial intelligence (AI) can be formulated or can be reduced to the two-stage

stochastic optimization (STO) problems. For example, these are problems inherent to

engineering, economics, finance, operations research, etc., that involve minimization

or maximization of an objective or a goal function when randomness is present in

model’s data and parameters, e.g., observations, costs, prices, returns, crop yields,

temperature, precipitation, soil characteristics, water availability, emissions, return

periods of natural disasters, etc. Uncertain parameters can be interpreted as

environment-determining variables [1], that conditions the performance of the system

under investigation. Randomness can enter the problems in several ways:

1) through stochastic (exogenous or/and endogenous) parameters, e.g., costs,

prices, returns, crop yields;

2) stochastic resources, e.g., water, land, biomass, investments;

3) random occurrence of exogenous natural disasters depleting resources and

assets;

4) stochastic endogenous events (systemic risks) induced by decisions of various

agents.

Non-normal probability distributions of stochastic parameters and
percentile-based criteria functions. Stochastic variables can be characterized by

means of a probability distribution (parametric or nonparametric) function or can be

represented by probabilistic scenarios. Probability distributions of stochastic

parameters are often non-normal, heavy tailed and even multimodal. For example,

Fig. 1 depicts probability distribution of wheat yields for several countries — major

grain producers. Horizontal axis denotes yield (in kilograms per hectare of harvested

land) and vertical axis shows the number of years (frequency) the corresponding yield

occurred in the 1960–2012 period. Cumulative distribution refers to the percentage of

total of the yield occurrences at or below the value on the horizontal axis. Low wheat

yields on the left-hand side visualized in all four panels can cause imbalances in grain

supply-demand chains and thus lead to prices increase, market disturbances, trade

bans, etc. These low values correspond to about 20 % percentiles of the crop yield

observations and can correspond to production years characterized by bad weather

conditions, e.g., low precipitation or/and high temperature in important grain growth

periods/months (e.g., grain filling period).

If probability distribution functions of stochastic parameters are non-normal,

non-symmetrical, or even heavy tailed, such decision-making or/and parameter

estimation criteria as Mean-Variance, Ordinary Least Square (OLS) or Root Mean

Squared Error (RMSE) are not appropriate. They rely only on the first two moments,

i.e., mean and variance, which characterize normal distributions. Thus, the

information about the tails of the distributions is not accounted for. Extreme values

(outliers) can distort the results, i.e., the criteria are not robust. In statistics and

machine learning, the OLS and RMSE estimates can be misleading, and the effects

can be different for different subsets of data sample.
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For decision-making, statistical estimation and machine learning problems in the

presence of non-normal, heavy tailed and possibly multimodal probability distributions it is

more natural to use the median or other quantile-based criteria instead of the mathematical

expectation. The problems can be formulated in the form of a two-stage STO with

discontinuous chance (probabilistic or quantile-based) constraints used for robust

decision-making under uncertainty and risks [2]. For nonsmooth, possibly discontinuous

and nonconvex problems, including quantile-based regression and neural networks training,

the discussion about the application and convergence of the stochastic quasigradient (SQG)

methods can be found, e.g., in ([3–7]). For the case of a general endogenous reinforced

learning, the convergence of the SQG procedure was proven in [8] based on the results of

nondifferentiable optimization providing a new type of machine learning algorithms solving

the problem of distributed decentralized models’ linkage under asymmetric information and

uncertainty. In this case, the SQG procedure enables to organize an iterative computerized

negotiation between individual systems (models) representing Intelligent Agents (IA). The

models act as “agents” that communicate with a “central hub” (a regulator) and take

decisions in order to maximize the “cumulative reward.”

Two-stage decisions. Often, decisions (actions) or parameter estimation have to be

performed ex-ante before the true values (realizations) of the uncertain parameters become

known or observed [9–15]. Sometimes, the observations can be only partial or incomplete,

i.e., incomplete “learning”. These situations happen, for example, in the process of

agricultural production planning under weather variability and market risks [10–13]; water

reservoir management [14]; investments in irrigation and crop storage facilities [10]; energy

technologies investment planning [13], and in many other application areas.

The ex-ante decisions may require revisions and corrections after the information

about the uncertain parameter realization becomes known (i.e., after “learning” or

partial “learning” of uncertain parameters values). Which means, that the ex-ante

decisions/solutions can incur the costs for their correction, revision, or reversion. Thus,
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Fig. 1. Empirical wheat yield distributions by major grain producers, 1960– 2012, FAO data analysis



there are two types (two-stage) of decisions. The term “two-stage” does not necessary

mean two consequent time intervals. Rather, they correspond to steps in the decision

process. The ex-ante decision x may be “here-and-now” decision whereas ex-post

decisions y correspond to all future actions to be taken in different time periods in

response to the environment created by the chosen x and the observed value of the

uncertain parameter � in that specific time period [10–13]. In another instance, the x y,

solutions may represent sequences of control actions over a given time horizon. In the

case of dynamical systems, there may also be an additional group of variables

characterizing the state of the system [14, 15]. These problems often emerge in

operations research models, economics and system analysis, in the theory of optimal

control and its applications in engineering, inventory control, etc. Specific applications

include: deriving parameters of a statistical model (parametric or nonparametric) or

training a machine learning model that maps an input to an output based on examples of

input-output pair through minimizing/maximizing a percentile-based “goodness-of-fit”

criteria; deciding on optimal dynamic investments allocation into new technologies

(irrigation, energy, agricultural, water management) to minimize costs or/and maximize

profits accounting for various norms and constraints; deciding when to release water

from a multipurpose reservoir for hydroelectric power generation, agricultural and

industrial production, household requirements, environmental constraints, food

protection; defining insurance coverage and premiums to minimize risk of bankruptcy

of insurers and risk of overpayments of individuals.

Basic model of a two-stage decision-making and parameter estimation. Let

us illustrate the concept of the two-stage decision making and robust statistical

estimation problem with an example of a simplest two-stage STO model.

Assume, there are observations of an uncertain variable � , which can be associated

with a stochastic parameter, e.g., demand for a certain product or resource (water level),

a crop yield, a weather parameter (temperature, precipitation, pressure). The choice of the

decision x x� � 0, to fulfill stochastic demand � (or the estimate of a crop yield or

weather parameter based on observations of �) can be associated with a function f x( , )�

reflecting costs of overestimation and underestimation of �. In the simplest case, f x( , )�

is a random piecewise linear function f x x x( , ) max ( – ), ( – )� � � � �� { }, where � is

the unit overestimation/surplus cost (associated e.g., with storage costs) and � is the unit

underestimation/shortage cost (associated e.g., with import costs, which also can be

interpreted as borrowing). The problem is to find the level x that is “optimal”, in a sense,

for all foreseeable random scenarios/observations �.

The expected cost criterion leads to the minimization of the following function:

F x E f x E x x( ) ( , ) max ( – ), ( – )� �� � � � �{ }

subject to x x� � 0 for a given upper bound x . This stochastic minimax problem

is also reformulated as a two-stage stochastic programming.

The optimal solution minimizing F x( ) and more general stochastic minimax

problems defines quantile type characteristics of solutions [2, 10–15], e.g., CVaR risk

measures. For example, if the distribution of � has a density, � �, � 0 , then the optimal

solution x minimizing F x( ) is the quantile defined as Pr x{ }� � � �� � �/ ( ) .

Function F x( ) is convex, therefore the SQG algorithm can be defined as the

following discontinuous adaptive machine learning process:

x x x kk k
k

k� � � � �1 0 0 1min max , , , , ,{ { } }� � ,

where � �k � , if the current level of production x k exceeds the observed demand �

and � �k � � otherwise, � k is a positive step size. The SQG method can be viewed as
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an adaptive machine learning process which is able to learn the optimal level x through

sequential adjustments of its current levels x x x x k0 1 2, , , , ,� � to observable

(or simulated) scenarios/observations � � � �0 1 2, , , , ,� �k . The SQG process is

a convergent with probability 1 sequential estimation procedure. Problem of minimizing

F x( ) illustrates the essential difference between the so-called scenario analysis aiming

at the straightforward calculation of x( )� for various scenarios of � and the STO

optimization approach, the STO model produces one solution that is optimal (“robust”)

against all possible stochastic scenarios � [2, 10–16]. The model of this section

illustrates typical difficulties in dealing with optimization of continuously differentiable

expectation functions F x( ) when sample functions f x( , )� are nonsmooth.

1. CONNECTIONS AND NEW PROBLEMS OF STATISTICS
AND STOCHASTIC OPTIMIZATION

Let us formulate a general stochastic optimization (STO) model, which can be

appropriately revised to capture various problems of decision-making under

uncertainty, statistics, big data analysis, artificial intelligence (AI): find x

minimizing (maximizing) the expectation functional:

F x E f x f x P x d( ) ( , ) ( , ) ( , )� � 	� � � , (1)

x X
 , (2)

where the set of feasible solutions X can be a set of scalar quantities, a set of

vectors or a set of abstract elements, e.g., a set of probability density functions. In

general problems X is described by using similar to (1) expectation functionals. The

random “loss” functions f x( , )� are often non-smooth and discontinuous functions.

The main complexity of the STO model (1), (2) is that exact evaluation of F x( ) is

practically impossible. This may be due to various reasons: probability measure P x d( , )�

is unknown or only partially known, random function f x( , )� is analytically intractable,

or the evaluation of F x( ) is analytically intractable despite well-defined f x( , )� and P.

All these makes impossible to use standard optimization methods. When exact evaluation

of the objective function F x( ) (or derivatives) is not possible, the SQG methods enable

effective solution of the problems. SQG methods perform a sequential revision of

approximate solutions towards the optimal using newly acquired information on the

system, obtained via either direct on-line observations or(and) simulations. This feature is

especially practical in decision-making problems with decision-dependent exogenous

uncertainties and risks, in statistical estimation, ML and AI problems.

Standard statistical problems are formulated as the minimization of the type (1)

functionals in the case when the probability measure P is unknown but the sample

� �1, ,� N of observations drawn randomly according to P is available. It is assumed

that P does not depend on X .

Statistics (statistical decision theory) deals with situations in which the model

of uncertainty and the optimal solution are defined by unknown sampling model P.

The main issue is to recover P by using available samples. In other words, the desirable

optimal solutions x x� � is associated with P (or its parameters), the performance of x�

can be observed from available random data on its performance.

STO models were introduced for decision making problems under uncertainty
arising in operation research and systems analysis which are typically described by
a large number of decision variables and uncertainties. These models deal with
fundamentally different situations. The uncertainty, feasible solutions, and performance
of the optimal solution are not given by the sampling model. All of these have to be
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characterized from the context of the decision-making situation. As a consequence,
multiple performance indicators, constraints, and dependencies among decisions and
uncertainties play a key role. Thus, in STO, which in fact arose as an extension of
linear and non-linear programming with their sophisticated computation techniques,
the accent is on solving problems (1), (2) with large number of decisions variables,
random parameters and constraints.

The classical statistics has been developed on the basis of asymptotic analysis
requiring large samples of historical data. In this case, additional apriori information
on “true” to be estimated parameters of the sampling model can be ignored, and the
multidimensional optimization problem (1), (2) can be separated into independent
small optimization problems. Consequently, a large place in statistics is occupied by
the search for closed form solutions and simple computational procedure. In
particular, this is often possible due to simple structure of the loss function f x( , )�
which is often defined as a quadratic function characterizing a distance between true

parameters x� � � and its estimate x.
New important problems in statistics and STO have to confront situations with

small data samples, cases of missing observations or absence of direct observations. For

these problems, experiments may be dangerous or even simply impossible. These new

problems require explicit joint treatment of all relevant interdependent observable,

partially observable and non-observable variables by using various prior information in

the form of additional constraints describing these interdependencies. These leads to

high dimensions. The key issue is the representation of interdependencies enabling

to organize pseudo-sampling based on proper characterization of probability measure

P by using all available information.

Consequently, these new problems are formulated as general constrained STO

problems where estimation of unknown probability measure P is directly associated

with goals of overall decision-making problem. Since only specific data are essential

for desirable decisions, the combined consideration of statistical estimation within

overall decision-making problem can considerably reduce the quality and quantity of

estimated information, e.g., the accuracy of the true parameters of P including even

requirements on the uniqueness of P. New type of estimation problems arise which

can be called as downscaling problems.

Consider some important statistical estimation problems which can be formulated as

STO model (1), (2). Instead of asymptotic analysis, this provides the natural criterion of

efficiency which can be used to evaluate the convergence to optimal solutions with respect

to increasing number of real observations, resampling schemes, and pseudo sampling

procedures. This section characterizes also loss functions which are typical for statistics.

1.1. Regression estimation. Assume that a random function u( )� for each

element � from a set V corresponds a random element u( )� of the set U . Assume that

V R l� , U R� 1. Let P is a joint probability measure defined on pairs � �� ( , )u .

The regression function is defined as the conditional mathematical expectation

r E u uP U( ) ( | ) ( | )� � �� � 	 . (3)

It is easy to see that r( )� minimizes the functional (providing it is well defined)

F x E u x( ( )) ( ( ) ( ))� � �� � 2 , (4)

where Eu2 ( )�  � , Ex 2 ( )�  � .

It follows from the fact that

min ( ( )) min [( ( ) ) | ]
( )x x

F x E E u x
�

� � �� � 2 ,

d

dx
E u x E u x� � � � � �[( ( ) ) | ] ( ( | ) )� � �2 2 0 .
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The estimation of r( )� is usually considered in the set of functions given in

a parametric form { }r x x X( , ),� 
 . In this case, the criterion (4) can be rewritten as

F x E u r x E r r x E u r x( ) ( ( ) ( , )) ( ( ) ( , )) ( ( ) ( , )� � � � � �� � � � � �2 2 )2 ,

i.e., the minimum of F x( ) is attained at the function r x( , )� which is close to r( )�

in the metric L P2 ( ) defined as E r r x( ( ) ( , ) )� �� 2 .

1.2. Quantile based regression. The conditional expectation r( )� provides

a satisfactory representation of stochastic dependencies u( )� when they are well

approximated by two first moments, e.g., for normal distributions. For general

(possibly, multimodal) distributions it is more natural to use the median or other

quantiles instead of the expectation. Let us define the quantile regression function

r� �( ) as the maximal value y satisfying equation

P u y( ( ) | ) ( )� � � �� � , (5)

where 0 1 � �( ) . It can be shown that function r� �( ) minimizes the functional

F x E x u x( ( )) ( ( ) ( ) max , ( ) ( ) )� � � � � �� � �{ }0 . (6)

This is due to the following. First of all, we have

min ( ( )) min [ ( ) max , ( ) ( ) | ]
( )x x

F x E E x u x
�

� � � � � �� � �{ }0 .

Assume that probability P d( )� has continuous density function p( )� , P d p d( ) ( )� � �� .

Then from the optimality condition for internal stochastic minimax problem follows that

optimal solution x satisfies the equation

� � � �( ) ( | )� �
�

	
x

P d 0 , (7)

i.e., indeed, it satisfies (5).

Let us note, that the minimization of more general at the first glance functional

F x E a x u x u x u( ( )) ( ( ) ( ) max ( )( ( ) ( )), ( )( ( )� � � � � � � � �� � � �{ ( )) )� }

is reduced to the minimization of (6) with � � � � �( ) ( )( )� � � �a 1. The median

corresponds to the case when a � 0, � �� . The existence of optimal solution

requires a �. The literature on the support vector (as Huber [7]) uses

F x E u x x u( ( )) max ( ) ( ) , ( ) ( )� � � 	 � � 	� � � � �{ }.

There is interesting effect of 	 on the optimality condition (7) and, thus,

corresponding modification of the basic idea (5).

The estimation of r� �( ) can be considered by a parametric set of functions

{ }r x x X� �( , ), 
 . In this case, the criterion (6) is rewritten as

F x E r x u x r x( ) [ ( ) ( , ) max , ( ) ( , ) ]� � �� � � �{ }0

or equivalently

F x E u r x r x u( ) max[ ( )( ( ) ( , )), ( )( ( , ) ( ))]� � �� � � � � � � � ,

for

� �( ) � 0, � �( ) � 0, � � � � � � � �( ) ( ) / ( ( ) ( ))� � .

Assuming r( , )� � in (6) is a convex function for all � 
V , F x( ) is also a convex

function. If r( , )� � is a linear function for all � 
V , then F x( ) can be minimized

by linear programming methods.
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If | ( ) |u �  const , � 
V , then | ( ) ( ) | | ( ) ( , ) |F x F r E r r x�  �� � � �const , i.e., the

minimum of F x( ) in (6) is attained at the function r x( , )� which is closed to r� �( ) in

the metric L P1 ( ) defined as E r r x| ( ) ( , ) |� � �� .

1.3. Density estimation. Assume P d( )� has a density function p( )� . Consider

an arbitrary density function x( )� � 0, x d( )� �	 �1 and the expectation functional

F x E x x p d( ( )) ln ( ) ln ( ) ( )� � � � �� � 	 . (7)

The maximum of F x( ( ))� (if it exists) is attained at the function p( )� . The proof

follows from the Jensen’s inequality, which states that for a concave function � and

integrable �( )� , E | ( ) |� �  � , E E� � � �( ( )) ( ( ))� �� .

Let � � �( ) ln� , �( ) ( ) / ( )� � �� x p , then

F x F p
x

p
p d

x

p
p d( ( )) ( ( )) ln

( )

( )
( ) ln

( )

( )
( )� �

�

�
� �

�

�
�� � �	 	 � � �ln1 0.

Example 1. Let � �1, ,� N be available (not necessarily distinct) observations of �.

The sample mean value of F x( ( ))� is calculated as

F x
N

x P x dN i

i

N
N( ( )) ln ( ) ( ) ln ( )� � � � �



� �

�
� 	

1

1

, (8)

where p
N

N i
i

N
( ) ( )� 
 � �� �

��
1

1
is the empirical density defined by the Dirac

function 
( )� .

The maximization of F xN ( ( ))� with respect to feasible density functions x( )� � 0,

x d( )� �	 �1 yields the empirical density function

x
N

N i

i

N

( ) ( )� 
 � �� �
�
�

1

1

. (9)

2. PROBLEMS WITH SMALL SAMPLES AND HIGH DIMENSIONS OF �

Standard statistical estimation and STO approaches for solving (1), (2) are based

on the ability to obtain observations according to probability measure P. In fact,

the justification of these methods, e.g., their consistency (convergence) and

efficiency, rely on asymptotic analysis requiring infinite number of observations.

For new problems, in particular, arising in the study of global change processes,

we often have large number of unknown interdependent variables �, x and only

very restricted samples of real observations.

Experiments to generate new real observations may be extremely expensive,

dangerous or simply impossible. The natural approach for dealing with new problems

can be based on using all additional information on P. The main issue is not to obtain

a good estimation of P, but to achieve a robust solution of (1), (2). A key problem is

the design of pseudosampling procedures enabling to generate samples of closed to

reality observations ensuring the robustness (in a sense) of the solution. High

dimensions and general cases of random functions f x( , )� in (1) will require often

rather sophisticated STO computational methods. Given observations � �1, ,� N of

vector �, function F x( ( ))� in (1) is estimated often by using the empirical density

p
N

N i

i

N

( ) ( )� 
 � �� �
�
�

1

1

, (10)

i.e., as the sample mean functional

F x f x p d
N

f xN
N

i

i

N

( ) ( , ) ( ) ( , )� �
�
�	 � � � �

1

1

. (11)
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Here we use notation x instead of x( )� for the sake of simplicity, i.e., instead of

vector-function x( )� we view x( )� as a vector x R n
 .

Besides the sample � �1, ,� N of size N , there often exist additional information

on unknown P. Let us denote by � the set of admissible distributions consistent with

available information. The robust solution can be defined as x X
 which minimizes

F x f x P d f x P x d
P

( ) max ( , ) ( ) ( , ) ( , )� �

 		�

� � � � , (12)

where P x d( , )� denotes the worst-case distribution. Thus, we have to deal with

a general case of STO (1), (2) where probability measure is, in general,

analytically intractable and it is affected by decision x .

The empirical density function pN ( )� may not belong to � , therefore, pN ( )�
and estimator (11) of function F x( ) have to be modified according to (12). In

particular, model (12) can be applied for the estimation of density function x( )� by

maximizing function (8) for x( )� 
� . If pN ( )� �� , this would not lead to the

empirical density pN ( )� . In other words, the empirical distribution function pN ( )�
which is constructed only on the basis of empirical observations may not belong to � .

The representation of available information on P d( )� plays the key role in cases

of small sample size N . Besides the sample, class � may include information on some

quantiles of P d( )� , its shape, marginal distributions, and moments. The representation

of � by given marginal distributions plays an important role in multidimensional

samples of �. In this case, it is possible to include any components but maintain fixed

the one dimensional marginal. Although there is no general systematic procedure to

elicit a class � , and the procedure will depend on the particular application,

commonly used ways of eliciting such a class are the following. We can derive from

the sample straightforward nonparametric empirical density function pN ( )� defined

by (10). It says that P d( )� is concentrated at observed points with equal probability

1 / N . Density pN ( )� can be used to derive new observations. Although any other

observation according to pN ( )� is a repetition of the already observed points

� �1, ,� N , yet, this is exactly the main idea of the bootstrapping. Clearly, it would be

preferable to use pseudo-sampling schemes based on better nonparametric density

estimators. The sample � �1, ,� N may have certain tendencies, e.g., clustering

around some regions in admissible set �, �
 �� R l . In the case of low dimensions

(small l ) this tendency can be utilized by a histogram. This nonparametric density

estimation function provides the possibility to sample new plausible observations

within “windows” of the histogram.

The use of histograms with fixed mesh in the case of high dimensions leads

to “exponential explosion” of computations (say, only 10 intervals per dimension

lead to 10 l equispaces Cartesian mesh points). Since the available sample � �1, ,� N

tends to come from regions where the density is relatively high, the main idea of

better nonparametric estimators is to use observations � �1, ,� N as anchor points

from which the fine structure of density can be examined further. In fact, for solving

problem (1), (2) the philosophy of nonparametric density estimation can be used only

as guidance without actually precise estimation. However, nonparametric density

estimation uses only information which are contained in the sample. The key task is to

combine this information with other available information.

Assume that in accordance with sample � �1, ,� N , and our beliefs we can

subdivide the set � into a collection of sets { }C k Kk , , ,�1 � . Some of them may

correspond to clusters of available observations whereas others may reflect experts

opinions on the degree of uncertainty and its heterogeneity across the admissible set � ;
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for instance, we can distinguish some critical zones (“catalogues of earthquakes”)

which may cause significant losses f x( , )� although with high degree of uncertainty.

Accordingly, the additional beliefs can be given in terms of a “quantile” class

� �
�
�
�

� �
�
�
�

	P P d s Ss

Cs

: ( ) , , ,� � 1 � , (13)

where � ss

S

�� �
1

1; more generally — in terms of ranges of probabilities

� �
�
�
�

� � �
�
�
�

	P P d s Ss s

Cs

: ( ) , , ,� � � 1 � , (14)

where � s, � s are given numbers such that � �ss

S
ss

S

� �� �� �
1 1

1 . This class is

considered as “the most natural elicitation mechanism. It is important that both

classes (13), (14) for problem (12) lead to the type (11) mean value functions

F x f xs
s

s

S

( ) ( , � )�
�
� � �

1

, � s

s

S

�
� �

1

1, � s � 0,

where ��s belongs to Cs. Namely:

Proposition 1. For any function f x( , )� assumed to be integrable w.r.t. all P in �

defined by (13):

max ( , ) ( ) ( , � )
P

s
s

s

S

f x P d f x

 �

��	�
� � � �

1

, (15)

where

f x f xs

Cs

( , � ) max ( , )� �
�

�



, s S�1, ,� . (16)

In the case of � defined by (14):

max ( , ) ( ) � ( , � )
P

s

s

S
sf x P d f x


 �
	 ��

�
� � � �

1

, (17)

where ��s is defined by (16) and � ( � , , � )� � �� 1 � s is such that

� max ( , � | ,� � � � � � �� � � �
�
�
�

��

�
�
�

� �
� �arg s

s
s s s

s

S

s

s

S

f x

1 1

1

��
. (18)

Corollary 1. Formula (15) generalizes the standard mean value estimator (12).

Let { }� �1, ,�
S be distinct observations of � and N s the number of times �s has been

observed in Cs Let � s sN N� / , where N is the sample size. Then from (15) follows

that

max ( , ) ( ) ( , )
P

s

s

S
sf x P d

N

N
f x


 �
	 ��

�
� � �

1

, (19)

assuming that function f x( , )� is constant in Cs.

Remark 1. Subproblem (16), (17) have explicit simple solutions for loss

functions defined in the support vector literature.

Assume P d p d( ) ( )� � �� , p K y Q dy( ) ( , ) ( )� �� 	 , where Q dy( ) satisfies quantile

constraints (13) or in terms of ranges of probability measure (14). If Q dy( ) satisfies

(13), then

max ( , ) ( ) ( , ) ( � , )
P

s
s

s

S

f x P d f x K y d

 �

	 �	�
�

�
 
 

!

"
#
#�

� � � � �
1

� , (20)

where �ys is defined similar to (16):

� max ( , ),y K y y Cs
s� 
arg { }� , s S�1, ,� . (21)
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Remark 2. From (21) follows that within approach defined by (12) the kernel-type

estimators for the density function arise from assumptions on its shape characterized by

K y( , )� , Q dy( ). (This is a natural way to characterize, e.g., seismicity — the

Guettenberg–Richter law; distributions of claims in the insurance loss distributions;

floods severities — mixed Poison law and so on.) If function K ( , )� � is constant, we have

standard kernel estimates.

There can be various extensions of this approach to cases in which we have

additional constraints on moments, monotonicity constraints on P d( )� , marginal

distributions. If

� � � �s s
s

C

K d

s

� 	 ( , ) ,

where K s( , )� � , characterizes similarity between �s, and � which can be viewed as

a probability density, then

max ( , ) ( ) ( , � ) ( , )
P

s

s

S
s

C

f x P d f x K d

s


 �

��	 	
�

� � � � � �
1

. (21)

3. SOLUTION PROCEDURES: SQG METHODS FOR ROBUST MACHINE LEARNING

Minimization of (15)–(17) correspond to deterministic minimax problems which can

be solved by linear or nonlinear programming methods. These problems are very

simple in the case of loss functions f x( , )� , which are typical for the support vector

applications. In more general cases such as (20), the problem is a standard type

STO problem (1), (2) with known probability distribution P x d( , )� . This problem

can be solved by STO methods. In particular, we can use pseudo-sampling in

addition to the real sample � �1, ,�
N . Stochastic SQG methods allow to overcome

the complexity arising in cases when P x d( , )� is analytically intractable. The

combination of pseudo-sampling with SQG can be viewed as the generalization of

the bootstrapping to STO procedures. We have to remember that often the main

issue is not to predict estimation of P but to find a robust solution of problem (1),

(2) what requires only similar to reality pseudo-samples.

3.1. Machine learning. SQG methods can be effectively used for Machine

Learning (ML) problems. ML approaches (also utilizing hardly interpretable neural

networks) can be combined with disciplinary or interdisciplinary decision-making

models, e.g., agricultural, environmental, energy, etc., for decision-making in the

conditions of uncertainty, increasing interdependencies and complex analytically

intractable systemic (“unknown risks”). ML algorithms are supposed to find natural

patterns in data that generate insight and help make better decisions and predictions. In

many cases, ML problems utilize Deep Neural Networks characterized by transfer

functions, etc. Neural networks are considered to be universal “predictors”

(“approximators”, “estimators”). ML grounds on the principles of statistical estimation

and learning theory [17, 18]. Robust ML in the presence of outliers is similar to robust

statistical learning. Robust ML derives a model which does not deteriorate too much

when training and testing with slightly different data (either by adding

observations/noise or by taking other dataset). In the presence of potential extreme

events, the prediction model has to be able not to ignore, but to predict extreme

outcomes. The use of quantile (percentile)-based “loss” or “goodness of fit” functions

for ML learning opens up a possibility of using the two-stage STO models [19].

In the traditional statistics theory, one has to know almost everything, including

the number of parameters and the types of dependency in order to recover the

dependency. Parameter estimation problem is considered to be the dependency
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estimation problem. According to the learning theory, it was shown that in order to

estimate the dependency from the data, it is sufficient to know some general properties of

the set of functions to which the unknown dependencies belong [17]. Machine learning

(of a perceptron, a network of neurons, a decision tree, and other models) is being used in

patters and image recognition, the type of the model does not affect the general machine

learning principles. Major achievement in the machine learning is the implementation in

1986 of the so called back-propagation methods for finding the weights of neurons. The

method is based on traditional gradient decent procedures.

3.2. Numerical optimization algorithms for machine learning. Numerical

optimization has played an important role in the evolution of ML. For example, the

gradient decent procedures, the stochastic gradient decent and their modifications and

extensions (stochastic average gradient, stochastic dual coordinate ascent, Nesterov’s

accelerated gradient, stochastic variance reduced gradient and other) are possible

approaches to the solution of large-scale machine learning problems [20, 21]. Many

algorithms are based on the results of Robins and Monro [22], Nesterov [20], Polyak

and Judinsky [23] for smooth optimization.

However, nonsmooth quantile-based loss, activation, and regularization

functions are more typical characteristics of many practical big data and ML

problems. In neural networks training, multiple layers and nonsmooth activation

functions depend in terms of absolute value, maximum or minimum operations,

further complicate the problem. Nonsmooth functions have abrupt bends and even

discontinuities requiring methods based on subdifferential and stochastic

quasigradient calculus [4–7, 24–27]. In these cases, the SQG methods make use of

generalized directional derivatives, subgradients and stochastic quasigradients. The

convergence of the SQG methods is proven in rather general cases (see discussion in

[1, 3–7, 28], references therein).

3.3. SQG methods for machine learning. The convergence of the SQG method

follows from the results of the theory of nonconvex nonsmooth stochastic

optimization [1, 3–6, 26, 27]. For highly nonconvex models such as deep neural

networks, the SQG methods allow to avoid local solutions. In cases of nonstationary

data, the SQGs allow for sequential revisions and adaptation of parameters to the

changing environment, possibly, based on offline adaptive simulations.

Let us formulate a problem ML of a neural network. It is necessary to define the

structure of a net and train it, i.e., estimate the weights/parameters of the network

model using the training set for which the solution of the problem is known, i.e., on

the available input-output data. The training task is formulated as the problem of

minimizing a loss function (empirical risk), which measures the forecast error of the

model. The root mean squared error (RMSE) predicts only an average response. For

extreme events/scenarios, e.g., crop yield shocks, production and market risks,

catastrophe (structural) losses, it is more appropriate to use a quantile-based loss (QL)

function [19, 29]. As discussed in the Introduction, the QL allows to identify values

higher or lower than the specified quantile (or critical) value of the data in the training

set and penalize the positive and negative deviations from the value differently

depending on the problem at hand. For example, over- and underestimation can incur

different costs associated with over or undersupply of a specific product or resource.

As an example, assume, that a hydropower station is undersupplied with water, which

has been diverted to be used in other sectors or activities.

The training of a neural net is achieved through the minimization of the loss

function F x( ) with respect to the net parameters x ,
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F x F i x

i

N

( ) ( , )�
�
�

1

, (22)

where F i x( , ) are (nested) neuron-type functions. Each function F i x( , ) corresponds

to one training object. At each step k � �0 1, , , an object i i k� ( ) is picked up at

random with probability �� 0 among N alternatives. Starting from the initial

parameter x 0 , the vector x k of parameters x is adjusted in the direction opposite

to the (sub)gradient

� �( ) / ( ( )) ( ( ), )k i k F i k xx
k�1 (23)

of the function F i k( , ). Let us note that if function f is differentiable at x, then its

gradient at x is its subgradient. If function f is nonsmooth at x , there exist a set of

subgradients of function f in x, and the function is called subdifferentiable at x .

The SQG solution procedures can be applied to the class of generalized

differentiable (GD) functions, which include continuously differentiable, convex,

concave, weakly convex and concave, semismooth and semiconvex functions. It is

easy to see that [ ( ) | ] ( )� k x F xk
x

k� . The index i k( ) changes from iteration to

iteration in order to cover more or less uniformly the set of indices 1, ,� m.

Calculation of �( )k , and in particular, F i k xx
k( ( ), ) for different cases, including

nonsmooth and nonconvex functions F and discrete event systems is discussed, for

example, in [1, 3–7, 19] and references therein.

CONCLUSIONS

The paper discusses the connections between the problems of robust decision

making, statistical estimation, and machine learning. Robust decision making in the

presence of possible extreme events and uncertainties relies on quantile-based goal

functions, constraints, and performance indicators. This approach produces solutions,

which enable stability and resilience of relevant systems irrespectively of what

uncertainty scenario (extreme event) occurs (i.e., the systems become less or even

insensitive to the scenarios). Robust statistical estimation also produces solutions,

which are not deteriorated by inclusion of additional observations especially from

non-normal and possibly heavily skewed distributions. The discussed in this paper

quantile-based regression can be considered as a nonparametric estimation method

as it does not require specific assumptions about the probability distribution of

observation (data) errors. Machine learning grounds on the principles of statistical

learning. Using quantile-based “goodness-of-fit” criteria for machine learning derives

(a) model(s) which do(es) not deteriorate too much when training and testing with

slightly different or additional data. The use of nonsmooth, possibly discontinuous

quantile (percentile)-based criteria, “loss” or “goodness of fit” functions for robust

decision-making, statistical estimation and machine learning opens-up a possibility

of using the two-stage STO models. We illustrated the application the stochastic

quasigradient (SQG) methods for the robust decision making and machine learning

problems. For general type nonsmooth, possibly discontinuous and nonconvex

problems, including for example neural networks training, the discussion about the

application and convergence of the stochastic quasigradient (SQG) methods is

available in [3–7]. For the case of a general endogenous reinforced learning, the

convergence of the SQG procedure was proven in [8] based on the results of

nondifferentiable optimization providing a new type of machine learning algorithms

solving the problem of distributed decentralized models’ linkage under asymmetric

information and uncertainty.
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ÇÂ’ßÇÊÈ Ì²Æ ÑÒ²ÉÊÎÞ ÑÒÀÒÈÑÒÈ×ÍÎÞ ÎÖ²ÍÊÎÞ, ÍÀÄ²ÉÍÈÌ ÏÐÈÉÍßÒÒßÌ
Ð²ØÅÍÜ ²Ç ÄÂÎÅÒÀÏÍÎÞ ÑÒÎÕÀÑÒÈ×ÍÎÞ ÎÏÒÈÌ²ÇÀÖ²ªÞ ÒÀ ÍÀÄ²ÉÍÈÌÈ
ÏÐÎÁËÅÌÀÌÈ ÌÀØÈÍÍÎÃÎ ÍÀÂ×ÀÍÍß

Àíîòàö³ÿ. Ðîçãëÿíóòî çâ’ÿçêè ì³æ çàäà÷àìè äâîåòàïíîãî ñòîõàñòè÷îãî ïðîãðàìóâàííÿ,
ïðîáëåìàìè âèçíà÷åííÿ ðîáàñòíèõ ð³øåíü, ðîáàñòíèìè ìåòîäàìè ó ñòàòèñòèö³ òà ìàøèí-
íîìó íàâ÷àíí³. Â óìîâàõ íåâèçíà÷åíîñò³, à òàêîæ ìîæëèâîãî íàñòàííÿ åêñòðåìàëüíèõ
ïîä³é òà ñèòóàö³é, ö³ çàäà÷³ ïîòðåáóþòü ðîçãëÿäó òà îïòèì³çàö³¿ ñèñòåì ç êâàíòèëüíèìè
êðèòåð³ÿìè, îáìåæåííÿìè òà ³íäèêàòîðàìè ÿêîñò³ ðåçóëüòàò³â (ôóíêö³ÿìè çáèòê³â). Çàäà÷³
äâîåòàïíî¿ ñòîõàñòè÷íî¿ îïòèì³çàö³¿ ìîæíà åôåêòèâíî ðîçâ’ÿçàòè ³òåðàòèâíèìè ìåòîäàìè
ñòîõàñòè÷íèõ êâàç³ãðàä³ºíò³â (SQG). Ìåòîäè SQG äàþòü çìîãó ðîçâ’ÿçóâàòè íåãëàäê³,
ìîæëèâî ðîçðèâí³ òà íåîïóêë³ çàäà÷³ ìàøèííîãî íàâ÷àííÿ, íàïðèêëàä, çàäà÷³ êâàíòèëüíî¿
ðåãðåñ³¿ òà íàâ÷àííÿ íåéðîííî¿ ìåðåæ³. Òàê³ ïîíÿòòÿ, ÿê äîïóñòèì³ ðîçâ’ÿçêè, îïòè-
ìàëüí³ñòü òà ðîáàñòí³ñòü ó çàãàëüíèõ çàäà÷àõ ïðèéíÿòòÿ ð³øåíü âèçíà÷àþòüñÿ êîíêðåòíîþ
ñèòóàö³ºþ ïðèéíÿòòÿ ð³øåíü. Çàäà÷³ ðîáàñòíîãî ñòàòèñòè÷íîãî îö³íþâàííÿ òà ìàøèííîãî
íàâ÷àííÿ ìîæíà ³íòåãðóâàòè ó çàäà÷³ ïëàíóâàííÿ äèñöèïë³íàðíèõ òà ì³æäèñöèïë³íàðíèõ
ñèñòåì, ÿê-îò: ñèñòåì çåìëåêîðèñòóâàííÿ, ñ³ëüñüêîãîñïîäàðñüêèõ, åíåðãåòè÷íèõ, òèõ, ùî
ñëóãóþòü äëÿ ï³äòðèìêè ïðèéíÿòòÿ ðîáàñòíèõ ð³øåíü â óìîâàõ íåâèçíà÷åíîñòåé, çðîñòàþ-
÷èõ ñèñòåìíèõ çàëåæíîñòåé òà íåâ³äîìèõ ðèçèê³â.

Êëþ÷îâ³ ñëîâà: äâîåòàïíà çàäà÷à ñòîõàñòè÷íî¿ îïòèì³çàö³¿, ðîáàñòíå ïðèéíÿòòÿ ð³øåíü
òà ñòàòèñòè÷íå îö³íþâàííÿ, ðîáàñòíà êâàíòèëüíà ðåãðåñ³ÿ, ìàøèííå íàâ÷àííÿ, çàãàëüí³
ïðîáëåìè ïðèéíÿòòÿ ðîáàñòíèõ ð³øåíü, ñèñòåìí³ ðèçèêè, íåâèçíà÷åíîñò³.
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