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FEATURES OF MODELING AND IDENTIFICATION
OF COGNITIVE MAPS UNDER UNCERTAINTY

Abstract. A process of complex systems identification is examined in this paper. It was
established that it is impossible to create a universal identification method. Only for a
well-identifiable system with a high signal-to-noise ratio for each individual system mode, a
high-quality model can be reconstructed. In other cases, if modes with sufficiently small
signal-to-noise ratio exist, only a surrogate model can be obtained. For cognitive maps,
theoretical foundations are developed, which may be used in approaches to find a surrogate
model and then to improve the result using different tuning and learning algorithms. Numerical
simulation was used to analyze the identification process.
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PROBLEM STATEMENT

Linear time-invariant (LTI) models are widely used for simulation of impulse
processes in cognitive maps (CM). Many different ecological, social, economical,
educational, financial and other systems can be modeled and analyzed based on
a CM. Mathematically CM is an oriented graph with nodes representing complex
systems coordinates (concepts) and edges describing cause—effect relations between
the nodes. We consider weighted CM where edges are weighted depending on
significance of corresponding relation. See, for example, Fig. 1 (CM of IT
company) [1].

During complex system operation under different disturbances CM coordinates
change in time. Each CM node R; is set to values z; (¢) in discrete times ¢ =0,1,2, ... .
The next value z;(#+1) is determined by current value z;(#) and coordinates
increments of other nodes R; connected to R; at time 7. Change of nodes R;
coordinates P; (1) = Az; () = z;(¢) — z; (¢ —1), ¢ > 1, is called an impulse. Propagation
of impulses over CM nodes is called impulse process and according to [2] is
described by the equation

n
zi(t+1) =z (1) + Y ayP;(1), i=1....n, (1)
j=1
where a;; is a weight of edge from R; to R;.

Another way, CM nodes coordinates’ evolution rule (1) may be formulated as
first-order difference equation in increments:

n
Az;(t+1) =Y a;Az; (1), i=1,...,n. )
j=1
Equation (2) may be written in a vector form:

Az(t +1)= AA z(1), 3)
where A is a transposed CM adjacency matrix, Az is a vector of coordinates
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Fig. 1. CM of IT company. Nodes: 1 — project duration; 2 — innovation expenses; 3 — salaries, bonuses;
4 — project’s budget; 5 — profit; 6 — manager group expenses; 7 — marketing expenses; 8 — revenue
of projects’ sells; 9 — staff re-assessment expenses; 10 — staff training expenses; 11 — technical control;
12 — intelligent assets; 13 — quality of a final product; 14 — competitive ability; 15 — job satisfaction;
16 — experience exchange

increments. Models (2), (3) describe multivariate dynamic discrete system in free
motion of CM nodes.

To describe a forced motion equation under impulse process the following
equation was proposed in [3]:

n
Az;(t+1) =) ayAz; () +bu; (1), i=1,....n, 4)
j=1
where u;(¢) is external input increment which is implemented by means of
varying resources of R; node, b; is usually equal to 1 or 0 depending on whether
it is possible to directly affect the ith node. Then equation (3) for the forced
motion case can be written as
Az(t +1)= AAz(t) + Bu(t), %)
where u(t) is a vector of external inputs; in the rows of the matrix B,
corresponding to the numbers of nodes to which the external action is applied,
units are set (in the corresponding columns), and the remaining elements are
assumed to be equal to zero.

Also, it is quite natural that some nodes of CM are not measured. Then equation (5)
can be augmented by the measurement equation

W(1)=CAz(1), (6)

where y(¢) is a vector of increments of measurable coordinates; knowing the
nodes with measured coordinates, one can put units in the matrix C in their
respective places, and the remaining elements are equal to zero.

The cognitive maps impulse process models (5), (6) are associated with
multi-input multi-output (MIMO) LTI systems and their dimension in some cases may
be large. So subspace-based state-space system identification (4SID) method is the
numerically reliable way for model reconstruction directly from measured data. No
nonlinear search is performed nor is a canonical parametrization used. Computational
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complexity is modest compared to other existing identification methods. Theoretical
base for 4SID is a state-space realization theory. Its origin is linked with classical
contribution [4] where a scheme for recovering the system matrices from impulse
response measurements is outlined. Up to now there are many publications devoted to
different realizations of this method and its applications. Here we mention only two
contributions where subspace method is outlined in details [5, 6].

In this paper we use a subspace concept and its developments including software
for research of identification process features in CM. There are many versions of
subspace method but it is not clear how to choose the most appropriate one in
a specific case. From the general insight it is supposed that each existing method has
its own field of applications which is defined by dynamic system properties,
informativeness of the input and noses in available data. According to consistence
theory the persistently exiting input under presence of white type of noises provides
nonbiased model parameters estimation [5, 7]. But in recent years a shift in paradigm
of stochastic identification (see [8]) happened, caused by ill-conditioning of the
matrices to be inverted in subspace and others methods of identification. With
increasing of a model dimension, it is well known that conditioning of these matrices
become worse and the regularization procedure has to be used.

It is worth mentioning that regularization parameters used for this depend not
only on model dimension but also on noise level and its type (distribution, variance
and so on). Very often, as a regularizing procedure, the choice of an appropriate
model dimension is used, which may turn out to be smaller than the real system
dimension, if one exists in a given class of models.

The most difficult problem is the problem of separating the signal subspace and
the noise subspace. In measurements, only the signal-to-noise ratio (SNR) can be
estimated for each output variable. A contribution of each individual mode to the
outputs remains unknown. First of all, the SNR of individual modes is affected by
the dynamic features of the data generating system, namely, the eigenvalues and their
location on the complex plane with respect to the unit circle.

In this paper, all the features of the identification process based on the Subspace
approach and its dependence on the structural features of the system and a number of
other factors are investigated in detail.

FEATURES OF COGNITIVE MAP MODELING

Impulse processes in cognitive maps are considered as LTI and are described in
the state space by the following system of difference equations, taking into
account (5), (6):

x(t +1)=Ax(t) + Bu(t), y(t)=Cx(t), @)
where ¢ is the dimensionless discrete time; x(z) = Az(¢) is the system state vector at
the time ¢ of dimension #, which consists of CM nodes coordinates increments Az;;
¥(¢) is the vector of measurable variables (increments of measured nodes coordinates)
at the moment ¢ of dimension M ; u(t) is the vector of input impulses at the moment
t of dimension R; A, B, and C are constant matrices of corresponding dimensions
representing system parameters.

From description (7) based on the Cauchy formula for discrete systems, one can
go to the equivalent matrix representation [9, 10]

Y =T X +®,U, (8)

where trajectory data are used on the observation interval [L[+T7 —1], i.e.,
duration 7" with starting point /. A cascade vector is formed from the vectors y(7)
on the observation interval

V(& L)=[y; Vigr - Vier—1] 9
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of dimension ML (“'” is the transposition operation). By analogy with (9),
a column vector u(¢,L) is written, composed of a sequence of vectors u(z):

ult,L) =[u; ujpy ... upyp ] (10)

Cascade vectors (9), (10) actually represent a piece of the system (7) trajectory

from time ¢ to ¢t + L -1, i.e., {)(?), u(t)}§+1‘_l. The matrices I'; and ®; in (8) are

represented as

C 0 0
CA CB ... 0

rp={ . , @y = ) . R (11)
cat! cA¥2B ... CB 0

Equation (8) also includes Hankel trajectory matrices
Y=[yL),y(l+LL),.. y(l+T-L,L)],
U=[ull,L),u(l+1,L),...,u(l+T-L,L)],

as well as the Hankel matrix of initial conditions of the form

X =[x(D), x(I+1),....,x(I+T - L)].

Matrix equation (8) represents the shift set of system trajectories pieces on the
observation interval. It connects a set of trajectories with system parameters in the
form of observability and impulse response matrices, and each of these trajectories is
determined by its initial state. Matrix equation (8) is the initial direct 4SID method for
identifying MIMO systems from trajectory data.

If the matrix 4 is reduced to a Jordan form, then using the same Cauchy formula,
one can transform (7) into the input-output relations.

Let A =(Ap Ap), where 4y is the block-matrix of real eigenvalues a, (¢ =1,0)

a -_—
located on its diagonal; 4p is a matrix with Jordan blocks Ap :( r P J
a
r “p
(p=l,7) on the diagonal corresponding to complex conjugate eigenvalues

A, =a, tif,. The matrices B and C are in the form

B=(by...by bf b ... b5 b3,

c S Cc S
C=(cp...cg ¢f ¢]...cp Cp),

where b, (¢ :@), bs, b;7 (pzl,?) are column vectors of dimension R, and ¢,
(g=10), Cps € (p=1,P) are column vectors of dimension M.

Then the Cauchy formula for the discrete case will be written as the following
expression [11]:

Q P -1 0 R .
I =Y gmad™D 3 h =D+ XY g u, () +
g=1 =1 j=lg=1r=1
-1 P R L
+ 2D D gy (= Py (), m=1, M, (12)

=1

~N

Jj=lp=1
where
Iy (t =1 =p YD f 0 cosw , (¢ = 1) + fus sinw , (¢ = D],
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B (= )= p SO0 cOs @, (£ = 1) + f, sinw , (1 = D],
b=, I=ya + B2, w, =arg(2,),

Eong = CmgXq (s foy CW%@HWAD

Iy = gy (D = Copxp (D, fon = Cpbiy + b, Sy Cmpbip:

xq (D), xp ), xp (/) are components of the initial state vector, namely

x(D)= (e (D)o xp (D LD x5 (D) x5 (D 5 (D).

Formula (12) is written for the case where there are no multiple roots. In their
presence (12) becomes more cumbersome. Like the eigenvalues, the parameters g,(,)u],

£ g0 rre and Smp in (12) are invariants.

If the trajectory data { (), u(¢)}; are known, then from (12) it is possible to
create a system of equations appropriate for the study of identification processes.

As follows from the above, for the implementation of the CM corresponding to the
directed graph (see Fig. 1), the matrices B and C in (7) become known, and both of
these matrices consist of zeros and ones. In accordance with the realization theory [12],
the product of matrices CB is invariant under a nonsingular transformation. Therefore,
for any other realization obtained from the original one with the help of a non-singular
transformation 7, we can write the relation

C'B'=CB, (13)
where C' :CTfl, B'=TB.

Since for the implementation of the matrix represented by the directed graph C
and B are known, then from (13) we obtain a matrix equation with a known
right-hand side, which, along with (7), (8), (12), can be used to identify the CM.

There is also another invariant

CAB =C'A'B’. (14)

If for some implementation we know matrices C', A" and B’, then (14) gives
additional equations for finding the initial matrix 4 corresponding to the CM graph
(see Fig. 1).

ACTIVE EXPERIMENTS WITH INFORMATIVE INPUTS

Usually data for identification are taken from active or passive experiments. In active
experiments, it is planned and organized in order to obtain the best result of a model
reconstruction that is adequate to the data obtained in experiments. In passive
experiments, the input action is implemented without participation of the
experimenter, and the data are obtained from measurements of the object, including
the parameters that determine the input. It is obvious that the result essentially
depends on what process was realized in the experiment. In this case, the quality of
the identified model may turn out to be unsatisfactory. In this research, the main
attention is paid to the study of the identification process itself and its features
depending on various factors, including the dynamic properties of the object
generating data. Research is carried out by numerical simulation methods with
imitation of different conditions implemented in experiments. It is best to do this in
active experiments that allow us to identify all the features and nuances of
identification in all its diversity. Therefore, we begin with a description of the
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experiments in which the data and conditions necessary for this are formed. Particular
attention is paid to the formation of input actions favorable for identification [10].
The existing 4SID identification methods usually use a persistently exciting input. It
is widely used not only in 4SID methods, but also in many others. There are
different interpretations of what is meant by a constantly exciting effect of the order
equal to or greater than the expected dimension of the desired model.

The informativeness of the input signal during identification is evaluated by the
signal-to-noise ratio (SNR). This is usually done for measured quantities. However,
they are an estimate of the total contribution of individual modes, and among them
there may be modes with large and weak signals, and the identification result is
determined by the SNR of each of these modes. Therefore, it is proposed to excite the
system in such a way as to be able to enhance the response of one mode or another.
To do this, we will use different methods, including the resonant properties of modes
with an oscillatory process corresponding to complex conjugate eigenvalues. For real
roots, a signal in the form of a rectangular pulse of the maximum allowable amplitude
is suitable. This assumes that the noise signal does not increase proportionally to the
excitation signal. Then, by varying the pulse length, one can control the response of
each of these modes. At short durations, the fastest modes have the greatest signal, to
which, as the excitation interval increases, slower modes are added.

Based on the foregoing, the following plan for active experiments is proposed to
obtain data for identifying the system under study. Depending on the possibilities
available, it can be implemented in two ways. In the first method, many separate
experiments are carried out, in each of which two intervals are formed. At the first
stage the system is excited, and at the second stage the system relaxes at zero input
(it is assumed that the system is stable), i.e., free movement from some initial state.
Due to the variety of excitation signals (rectangular pulses, harmonics of different
frequencies), it is possible to obtain different initial conditions in which the system is
located at the moment the relaxation process begins. The larger and more diverse the
set of initial conditions, the better the identification results will be. The second
method of obtaining informative data for identification is implemented in one
long-term experiment. It alternates successively intervals of excitation with intervals
of relaxation. At each excitation interval, different signals are used, both rectangular
pulses and harmonics with a variable frequency. The smaller the step of varying the
lengths of rectangular pulses and harmonic frequencies, the more likely it is to obtain
an informative set of initial states for relaxation intervals. And this makes it possible
to more effectively solve the problem of identification.

The experiment with the first method of excitation is most effective when the
system is at rest at each moment of the excitation signal, i.e. with zero initial data.
The second method is more general and allows an acceptable solution of the problem
with non-zero initial data. In any case, to solve the problem based on the subspace
approach, it is necessary that the length of the relaxation intervals be the same and
preferably not less than the duration of the transition process of the slowest mode in
order to have the most informative signals. Let u be the admissible maximum value of
the input signal. Then we take the amplitude of rectangular pulses equal to u, and it is
desirable that their number be not less than the number of aperiodic modes with
avariable length in the range from the minimum to the maximum length of the
transient. When such information is not available, one should take a sufficiently large
interval with a uniform distribution of the length of rectangular pulses on it, which is
guaranteed to contain transients of all real modes. With harmonic excitation, one
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harmonic is used in each interval, varying in the interval (O, Z} Since (7) is a

dimensionless description, the frequencies which exceed 5 lose their oscillation, and

the long-wavelength harmonics appear to be frequencies close to zero. At the same
time, in order to ensure their information content, the duration of the experiment should
be increased accordingly with decreasing frequency.

REALIZATION-BASED SUBSPACE IDENTIFICATION

We apply Realization-based subspace identification for generalized observability
matrix identification using data on relaxation intervals.

Let each ith relaxation interval start from the point ¢,. Since the length of all of them
is the same equal to /, exceeding or equal to the time of the transient process, for
identification we will use the data on the set of points [¢; #;,; ... t;;;_1 ], where ¢; is the
initial and #;, ;_; is the last point of the relaxation interval. The total number of relaxation
intervals is K, i.e.,, i=1, K. There will be the same number of excitation intervals.

The value K must exceed the expected dimension of the model. From the
measured output in the relaxation intervals, we form a cascade vector of the form
VD=t Vi e )"

Then, according to the Cauchy formula, for the discrete case of the LTI system,
the following equation is held for each relaxation interval:

Wi D=Tpx, . (15)

where I'; is the generalized observability matrix and x, is the initial state of the
system for the ith relaxation interval. From the vectors y(¢;,/) we form a matrix
Y, of dimensions /x K in the following form

relax
Yielax = (0(t1, D) Wt2,10)... Wik, D). (16)

As a result, according to (15) and (16), we arrive at the matrix equation

i+1 i+[-1

Yielax =11 X0, (17)

where X is a matrix of dimension nx K (n is the estimated dimension of the
model), which has the form

Xo =0 x4 o0 X5 (18)

i.e., matrix of initial states on relaxation intervals. Since instead of accurate
measurements we have noisy measurements containing random errors, instead
of (17) we have N

Yielax =171 X + N, (19)
where N is the corresponding Y., error matrix of the measured components of
the cascade vectors y(¢;,/). Based on these approximate data, it is necessary to
find an estimate for the matrices 4, C and X,. In subspace identification
methods, a realization-based approach is used for this, which begins with the

singular value decomposition (SVD) of the matrix Y ., 1.€.,

Yrelax =QxV’, (20)

where Q and V' are square orthogonal matrices, and X is a rectangular matrix of
singular numbers located on the diagonal in non-increasing order [13]. In the
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presence of noise, i.e., in case (19), (20) will have the representation
Yielax =OQ5Z5 + 0.2V, (21)

where the first term allocates the signal subspace corresponding to the output data
generated by the system, and the second term allocates errors in the data.
Separation (21) is done by the values of singular numbers and by partitioning into
blocks of matrices O, X, V. At low noise, when the SNR is large, the noise part
corresponds to small singular values located at the end of the diagonal of the
matrix X. However, it should be noted here that individual modes with an SNR
less than unity may appear in the second term. This means that these modes have
little effect on the dynamics of the system and it is difficult to identify them at
the background of noise. As a result of identifying systems with such singularities,
approximate models of reduced order can be found.

After selecting the signal subspace according to (21), it is possible to derive the
equations for identification of observability matrix I'; and matrix X using the
realization-based subspace approach. As far as all matrices O, X, and ¥ have full
rank there is such a realization that

0.2, =T, V!=X,. (22)

According to the realization theory, it is possible to obtain equations similar
to (22) for a different realization, if represent QX V, as a product of two full-rank
matrices differently.

The first equation in (22) is used to find the matrices C and A for some
realization corresponding to (22), while the second one gives directly the initial states
on all relaxation intervals. The first M rows Q X represent the matrix C of the
corresponding (22) implementation. The matrix 4 can be found from a system of
equations derived from the shift invariance of the LTI system. It is written as

(Qszs)l A= (Qszs)b (23)

where the matrix (O X;); is created based on the matrix QX by deleting the last
M rows, and (Q,X;), consists of the first M rows of the same matrix. It is
proposed to find a solution (23) using the SVD decomposition of the matrix
(O,Z5);- We write it in the form

(OsZ) =017, (24)

where Q; and V| are square matrices of dimensions /x / and nx n, respectively (n is
the number of singular values of the matrix X;). A rectangular matrix X; has
adimension /x n and can be written in block form

z:I’l
zl={0}. (25)

where X, is a square matrix of dimension n. As a result, the least squares solution
of system (23) will be written as

(A); =2, 01 (OZ) i, i=1,n. (26)

In (26) the matrix (;,, is composed of the first n columns of the matrix Q;, and
(OZ5),; is the ith column vector of the matrix (Q.X;),. All solutions (26)
completely determine the matrix 4 of dimension n. Solution (26) is used when the
matrix (Q,X); is well conditioned. This can be judged by the condition number
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determined by the ratio of the first and last singular value of the matrix X,. For
an ill-conditioned matrix, regularization should be used. In the considered solution
method based on SVD, regularization will be carried out using the stabilizer

azl, ¢=1,2, (27)

which is additively added to the matrix £, in (26). In (27) « is the regularization
parameter, and X, is the matrix of the following form

(0,/0;, 0 .. 0 0]

0 0,0, ... 0 0

= : : : S
0 0 .. 0,110,410

. 0 0 0 1]

o, are matrix X, singular values.
As a result, the regularized solution is written as

(A); =N, +a20) 01, (0202, i=Ln, g=12. (28)

In the absence of information about the properties of the errors, it is expedient to
take its quasi-optimal value as the regularization parameter « in (28) (see [14]). As
such, we take the minimizing element of the extremal problem
do,,
da

inf

a>0

a s (29)

where 6, =(A4);. There may be different values « for different i. In addition,
problem (29) may turn out to be multiextremal. Then the least of them is taken as

@ quasiopt -
. . . . do .
We will find & gyagi0pt graphically, building a function | —%| depending on .
o
Denote o do,,
“ da

and using (29) v, can be found for different « from the equation
v, =—aVi(Z, +az?)7 39y (4),. (30)

For different values «, first the vector 6, = (4); is found from (28), and then v,
itself is found from (30). Based on the chart of |[v, ||, we find @ guag0p; for the
selected n. This completes finding a regularized solution for (26) of dimension #.

SIMULATION RESULTS

The quality of identification essentially depends on how successfully the signal
and noise subspaces are separated. This is a rather complicated and not entirely
unambiguous procedure. It essentially depends on the following factors: what are
the dynamic properties of the data generating system, what is the SNR of each of
the modes in the output signal, what is the dimension of the system, what are the
external disturbances, what is the duration of the experiment and the chosen
values of / and K.

ISSN 1019-5262. KibepHeTtuka ta cucteMHuit anaiis, 2023, rom 59, Ne 4 51



In fact, (21) can be considered as a filtering procedure, i.e. separating the useful
signal from the noise. This is the easiest to do when the noise level is much lower than the
signal of the worst observed mode. Then, according to the gap between the essential and
non-essential singular values of the matrix Z, it is easy to carry out such a separation.

However, in practice this does not happen often. Therefore, by means of
numerical simulation, we will study the dependence of the singular numbers’
behavior in (20) on the pointed above factors. To do this, we introduce the notion of
a well-identifiable system. First of all, this is defined by informative input. As
mentioned earlier, this is determined by the SNR for all modes of the system. For
each of them, the SNR must be substantially greater than one. The excitation under
consideration most effectively exploits the resonant properties of the system and,
as will be shown below, makes it possible, with the help of certain manipulations,
to influence the SNR of different modes.

Now, on the base of (12), we introduce the concept of a well-identifiable system.

This means that invariants g,,,,, f, mps [, ,Z; and eigenvalues are such that all matrix ¥ qjax

columns form a system of order » maximally independent vectors (n is the dimension of
the system) i.e., matrix Y .1, should be well-conditioned of order n. Besides matrices C
and B are such that system for some Jordan realization is close to independent blocks. In
addition, all the main modes of the transition matrix have the same high SNR.

It should be noted that an increase of the system dimension leads to a deterioration
in the independence of the eigenvectors, since the eigenvalues approach each other.
As aresult, Y ..« conditioning worsens. Figs. 2—7 present the results of modeling the
identification process in the described active experiments with the determination of
matrices 4 and C from data on relaxation intervals for well-identified systems of
different dimensions. Figures 2—4 show the values of the singular values that are on
the diagonal of the matrix X depending on the SNR, and Figs. 5—7 show eigenvalues
of the system and model.

It can be seen that in the presence of noise in a certain SNR interval it is possible
to establish the dimension of the model, which coincides with the data generating
system’s dimension. A discontinuity is clearly visible in the behavior of singular
values, so it is possible to separate significant singular values from those that
correspond to noise. However, as the dimension increases, the gap decreases, and this
separation can be done at lower and lower noise levels; the larger dimension,
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Fig. 2. Singular values for n=5, M =R =3
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the stronger noise effect. In addition, knowing the exact dimension does not guarantee
an acceptable solution of the identification problem with decreasing SNR. As it can
be seen from Figs. 5-7, the accuracy of determining the matrix A4 eigenvalues for
agiven SNR deteriorates with increasing dimension. In any case, it is always
effective to increase the SNR.

The greater the deviation of the system from a well-identifiable case, the worse
the solution is. There is a system, which is maximally admissible in terms of
identifiability, starting from which the identification problem becomes substantially
ill-posed in the sense that even in the absence of noise only a surrogate model with
a small forecast horizon can be built, or the identification problem loses any sense.

However, in practice there are often cases when it is possible to construct a reduced
order model of satisfactory quality, i.e. having a dimension smaller than that of the
generating system. The following figures and Table 1 show simulation results for one of
such systems. The CM of the 16th order was considered, which has 10 outputs and
10 inputs. Singular numbers of the matrix Y., at different noises are shown in Fig. 8.
It can be seen that, starting from dimension 13, the matrix Y ., becomes ill-conditioned
for exact data. However, under the influence of noise, we have an improvement in
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conditionality. But as the regularization parameter also increases with increasing noise,
there is a need to use regularization. The proposed regularization procedure is such
that for a given noise level, in the correct case, according to [14], the regularization
parameter ¢ in (27) will naturally tend to zero, i.e., instead of the regularized one, we get
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Table 1. Eigenvalues for the CM and its 12-dimensional equivalent

True eigenvalues Estimated eigenvalues, n=16 Estimated eigenvalues, n=12
0.73 0.73 0.73
0.29+0.55i 0.29+0.56i 0.28 +0.55i
0.29 —0.55i 0.29 - 0.56i 0.28 — 0.55i
-0.6 -0.61 -0.61
0.5 0.5 0.5
0.05+0.39¢ —0.02+0.30i —0.08+0.09¢
0.05 -0.39i —-0.02 - 0.30i —-0.08 - 0,09i
-0.28+0.217 —0.04+0.18i 0.0004 +0.18i
-0.28 -0.21; —0.04 -0.18; 0.0004 —0.18i
-0.21 —-0.18 —-0.02
0.04 -0.4 0.008
0 —0.10+0.03; —0.001

0 —0.10+0.03; —
0 0 —
0 0 —
0 0 —

the usual solution. This is exactly what happened in this example. Comparison of
identification results based on data on relaxation intervals and SNR =10 is presented in
Table 1. This table also gives the eigenvalues for the reduced order model equal to 12.
A feature of the CM in this example was that it had a cluster of modes with eigenvalues close
to zero. This led to appearing of very small singular numbers, starting from dimension 13, in
Fig. 8. As a result, for dimensions 13 and more, the system of equations for finding the matrix
A became ill-conditioned, but regularization was not required to find it. At the same time, the
model of the reduced 12th order turned out to be quite acceptable as a solution to the
identification problem. This is confirmed by Fig. 9, which shows the transient over relaxation
intervals for all 10 output components of the model and the system.

EVALUATION OF THE MATRIX B

Let each excitation interval begin at the moment 7, j=1,7 (t;<t;). From the

Cauchy formula for the LTI system, one can obtain a matrix equation similar

to (8) that is valid on the excitation interval. Its final form is written as
Y = rl(‘))(1 + cbg”U, (31)
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where Y =[y(¢t; +L1) y(¢t, +1,1)... y(tx +1,[)] is a matrix composed of a cascade
output vector formed according to (9) on the excitation intervals;
CB 0 .. 0

A
. CAB cB ... 0
Fl(l): : ; )(lz[xt1 xtz"'fo]; ol = : . SEE

[ :
CA[,] : : .
c4'"2B c4 3B ... CB
U =[u(ty. 1) u(ty, D) ... ultg, D).

The matrix U is formed by cascade vectors u(¢;,/) formed according to the
following rule:

u(t;, =[u'(t;) u'(tiyy) ... u'(t; +1-=-1)].

In (31) and the following notation ¢, ¢, ... correspond to the initial point of excitation
in contrast to the points ¢; that specify the initial point of the relaxation interval.
We write expression (31) as

CDEI)U = Yorced> (32)

tj,

where Yiyceq =Y —Fl(l) - X

The right side of (32) contains only one unknown matrix X, i.e. values of the
state vector at the start points ¢ ; of the excitation intervals. If at the initial moment #; of
excitation or at the beginning of the experiment the system was at rest (x; =0), then the
first column X; is zero and the first column of the matrix Yg,.oq coincides with
measured y(#; +1,/) in the first excitation interval. If the initial state was non-zero and
unknown, then in (32) it is necessary to form all the matrices, starting from the second
excitation interval, discarding the data of the first interval. All other columns of the
matrix X are easily calculated from the known columns of the matrix Xy =V for
the previously established model dimension. All columns of the matrix X, starting
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from the second one, i.e., matrices X 1(1), are calculated according to the rule
xW=a'x{®, 33)
where X éK ) is the matrix that is formed from X 0. with the last column deleted.

As a result, the matrix Yg,..oq in the right side of (32) can be calculated.
As a result, matrix equation (32) can be used to find matrix B.
To do this, we multiply (32) on the right by the matrix U’ and obtain

oDuu =F, (34)
where F =Yg ceq U
When the matrix UU" is nondegenerate, we have

o) =Fuun. (35)

With the considered method of the system excitation, it will be non-degenerate
when /-7 < M. When this condition is not met, it is always possible, when forming
equation (31), to take a smaller value /; > n instead of /, which is guaranteed to satisfy
the specified condition. This can always be done at the stage when /and K are selected.

Besides one can use another algorithm for determining B. Here it should be noted

that the matrix d)gl) is lower triangular, which is violated with a high probability in the
1

approximate solution. Therefore, this should be taken into account when developing
algorithms for finding B. Note also that the matrix Fl(]) can be directly extracted from

the matrix I'; defined by relation (22) from the SVD decomposition. When calculating
Yorced ON excitation intervals, it should be taken into account that the length of some
rectangular excitation pulses is less than /. Then it is necessary to expand them using
the relaxation intervals following them, on which we assume u =0. This is acceptable,
since the length of the relaxation intervals is not less than /. Accordingly, the matrix U
will have zero elements at the points of the included relaxation intervals.
Equations (35) should also be supplemented with relation (13), in which the
matrices C' and B' correspond to the implementation represented by the graph (see
Fig. 1). As a result, (35) and (13) form an overdetermined system of equations for
finding the matrix B. In contrast to the problem of determining the matrix A for
calculation B we usually have a well-posed problem. This is especially evident for
the considered method of excitation of the system in active experiments. In essence,
after finding the matrix B, we obtain a complete solution of the identification problem.
The described method of calculating a matrix B is not always efficient on accuracy.
So can use another way for finding B. It comes down from the Jordan realization of the
matrix A. For this we define the matrix 4 according to (26) or (28). After that we calculate
the eigenvalues, which allow us to completely write down the eigenfunctions in (12). This
is easily done in the absence of multiple roots. If they are present, it is necessary to
modify (12) taking into account multiple roots. Then, from (12) or its modification, one

can find the invariants g,,,g,» /> fmp- T obtain them, an overdetermined linear system

of equations is formed based on (12) at the excitation intervals.
Using the LSM or its generalization, including SVD, we solve the resulting
system of equations and find these invariants. But before that, the outputs

corresponding to free movement in each of the excitation intervals, i.e., Fl(l) - X4

where X is determined by relation (33), should be subtracted from y,, (¢). Then (12)
will contain a forced motion with a zero initial state.

After finding the invariants for all outputs and inputs (with autonomous
excitations), one can write down a system of equations from the relations connecting
this invariants with the elements of the matrices C and B for the Jordan realization.
Having solved it, we obtain the CM model (approximate) with its representation for the
Jordan form. As computational experiments show, the eigenvalues of an approximate
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model are only slightly different from the exact ones. This permits model tuning to
maximize of the forecasting horizon.

TRANSITION TO GRAPH CM MODEL

CM model reconstructed by means of the realization-based approaches described
above allow us to find an approximate model for either some uncertain or Jordanian
implementation. However, the CM system represented as an oriented graph like
Fig. 1 has a different realization. Therefore, it is desirable to reconstruct exactly the
model that has an implementation represented by the CM graph. This can be done
using the realization theory [12] and the features of CM modeling.

To do this, according to the theory of realizations, one should find a non-singular
transformation 7 realizing such a transition.

Let 4, B and C be the realization obtained from the solution of the identification
problem, and 4%, B% and C¢ be one of the realizations (the solution may not be
unique) corresponding to the graph. From the realization theory it follows

AT =TA, BS =TB, C8 =CT". (36)

In the last two relations, the matrices B$, B, C€ and C are known. Then relations

(14) give M x R equations for finding 4% . If the number of zero connections on the
graph is such that these equations are sufficient to calculate the non-zero components of
the matrix 4%, then by solving them, we obtain a model for the implementation of the
corresponding graph. Otherwise, T and the matrix 4% from all equations (36) should be
found. In this case, by eliminating zero elements of the matrix 4% and using the
equations of connection between the elements of the matrix 7', which follow from the
last two relations in (36), it is possible to reduce the dimension of the problem being
solved. In the case of non-uniqueness of the remaining equations, we have a set of
realizations corresponding to the CM graph. Then one of the possible realizations is
found by solving underdetermined system of equations.

The performed investigations show that it is impossible to create a general method
for identifying complex systems. Only systems close to well identifiable one which have
large SNR for all modes allow us to solve the problem and obtain a qualitative model for
it. In other cases, a surrogate model is found, or the identification becomes meaningless.
In certain cases, using tuning algorithms, one can try to make transition from a surrogate
model to a better description of the system. Each specific case will require its own
approach, which depends on the behavior of singular values and the eigenvalues of the
obtained surrogate model. Its parameters can be tuned, for example, on the basis of (12),
taking into account that the invariants are close to exact values. The mathematical tools
presented in the article allow to set and solve different problems of tuning and learning.

An important role in the process of model modification is played by actions
aimed at increasing the SNR. In the considered method of excitation of the system
and data acquisition, various manipulations with the signals received from different
outputs but for the same inputs are permissible. If the noises are additive and consist
of independent random realizations, then by adding or subtracting them, we obtain for
some combinations an increase in the excitation signal or a decrease in noise, i.e.,
increase in SNR. When there are few inputs, it is possible to use data not only with
the same, but also close input signals. Addition and subtraction of output signals is
done point by point at relaxation intervals. As a result, we get a set of matrices ¥ qjax
with different SNRs. For each such matrix, an SVD decomposition is made and charts
of singular values are constructed similar to those shown in Fig. 2. Based on them we
determine which singular values correspond to the signals of the system and which
ones correspond to the noise. Based on the data with the highest SNR, we find
a model. It also is possible to improve surrogate model by other tuning and training
procedures. For example, by artificially adding noise to the measurement data at
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relaxation intervals, one can clarify which of the singular numbers correspond to
errors and which one correspond signals, i.e. to large SNR. Intermediate singular
values between them correspond to the SNR close to 1 and for them, using tuning
algorithms, one can try to extract the signal part.

In cases where tuning algorithms do not give a qualitative model, it is necessary,
if possible, to change the experimental conditions. For example, one can replace the
measuring and exciting system with a more efficient one, providing the closest
proximity to a well-identified system.
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B.®. I'y6apes, FO.JI. MinaBcbkuii

OCOBJHUBOCTI MOJEJIOBAHHS TA ITEHTU®IKALIL KOTHITUBHAX KAPT B YMOBAX
HEBU3HAYEHOCTI

AHoTauisi. Po3rissHyTo mponec iaeHTHdIKamil CKIAIHUX CHCTEM. BCTaHOBJIEHO, L0 CTBOPUTH
yHIBepcalbHUAN MeTox imeHTHdikanii HemMoxuBo. Jlume mis modpe iaeHTH(]IKOBaHOT CHCTEMH 3
BHCOKHMM BIJHOLICHHSM CHIHAJ—IIYM Ui KOXKHOI OKPEeMOI MOJM CHCTEMH MOYKHA PEKOHCTpPYIOBa-
TH MOJCTb BHUCOKOi SIKOCTi. B IHIIMX BHUMAAKax, SKIIO ICHYIOTh MOAM 3 JOCTATHHO HU3BKUM
BI/IHOIICHHSAM CUTHAJI-IIyM, MOYKHa OTPUMATH JIHIIE CypOraTHy MOJeNb. I KOTHITHBHHMX KapT
PO3pOGIICHO TEOPETHUYHI OCHOBH, SIKi MOJKHA 3aCTOCYBAaTH B IiJIXOJaX JO TIOIIYKY CYpOTaTHOI MO-
JIeTTi, a MOTIM JUlsl HOKPAIICHHS Pe3yJbTaTy 3 BUKOPHCTAHHSIM Pi3HHX aJIrOPHTMIB HAJAIlTyBaHHS
Ta HaByaHHs. IS JOCHIDKEHHS mpolecy ineHTH(ikaii 3aCTOCOBAHO YHCIIOBE MOJICTIOBAHHSL.

KiwouoBi cioBa: KOTHITHBHA KapTa, 1ACHTH(]IKAIS CHCTEM, METOA BHJIJICHOTO IIiIIpOCTOPY,
CKJIaJHa CHCTEMa, IOraHa OOYMOBJICHICTb, pETyJISpU3allis.

Haoituna oo peoaryii 13.03.2023
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