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FEATURES OF MODELING AND IDENTIFICATION
OF COGNITIVE MAPS UNDER UNCERTAINTY

Abstract. A process of complex systems identification is examined in this paper. It was
established that it is impossible to create a universal identification method. Only for a
well-identifiable system with a high signal-to-noise ratio for each individual system mode, a
high-quality model can be reconstructed. In other cases, if modes with sufficiently small
signal-to-noise ratio exist, only a surrogate model can be obtained. For cognitive maps,
theoretical foundations are developed, which may be used in approaches to find a surrogate
model and then to improve the result using different tuning and learning algorithms. Numerical
simulation was used to analyze the identification process.

Keywords: cognitive map, system identification, subspace method, complex system,
ill-conditioning, regularization.

PROBLEM STATEMENT

Linear time-invariant (LTI) models are widely used for simulation of impulse

processes in cognitive maps (CM). Many different ecological, social, economical,

educational, financial and other systems can be modeled and analyzed based on

a CM. Mathematically CM is an oriented graph with nodes representing complex

systems coordinates (concepts) and edges describing cause–effect relations between

the nodes. We consider weighted CM where edges are weighted depending on

significance of corresponding relation. See, for example, Fig. 1 (CM of IT

company) [1].

During complex system operation under different disturbances CM coordinates

change in time. Each CM node Ri is set to values z ti ( ) in discrete times t � 0 1 2, , ,� .

The next value z ti ( )�1 is determined by current value z ti ( ) and coordinates

increments of other nodes R j connected to Ri at time t. Change of nodes R j

coordinates P t z t z t z tj j j j( ) ( ) ( ) ( )� � � �� 1 , t �1, is called an impulse. Propagation

of impulses over CM nodes is called impulse process and according to [2] is

described by the equation

z t z t a P t i ni i ij

j

n

j( ) ( ) ( ), , ,� � � �
�
�1 1

1

� , (1)

where aij is a weight of edge from R j to Ri .

Another way, CM nodes coordinates’ evolution rule (1) may be formulated as

first-order difference equation in increments:

� �z t a z t i ni ij

j

n

j( ) ( ), , ,� � �
�
�1 1

1

� . (2)

Equation (2) may be written in a vector form:

� �z t A z t( ) ( )� �1 , (3)

where A is a transposed CM adjacency matrix, � z is a vector of coordinates

ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2023, òîì 59, ¹ 4 43

© V.F. Gubarev, Yu.L. Miliavskyi, 2023



increments. Models (2), (3) describe multivariate dynamic discrete system in free

motion of CM nodes.

To describe a forced motion equation under impulse process the following

equation was proposed in [3]:

� �z t a z t b u t i ni ij

j

n

j i i( ) ( ) ( ), , ,� � � �
�
�1 1

1

� , (4)

where u ti ( ) is external input increment which is implemented by means of

varying resources of Ri node, bi is usually equal to 1 or 0 depending on whether

it is possible to directly affect the ith node. Then equation (3) for the forced

motion case can be written as

� �z t A z t Bu t( ) ( ) ( )� � �1 , (5)

where u t( ) is a vector of external inputs; in the rows of the matrix B ,

corresponding to the numbers of nodes to which the external action is applied,

units are set (in the corresponding columns), and the remaining elements are

assumed to be equal to zero.

Also, it is quite natural that some nodes of CM are not measured. Then equation (5)

can be augmented by the measurement equation

y t C z t( ) ( )� � , (6)

where y t( ) is a vector of increments of measurable coordinates; knowing the

nodes with measured coordinates, one can put units in the matrix C in their

respective places, and the remaining elements are equal to zero.

The cognitive maps impulse process models (5), (6) are associated with

multi-input multi-output (MIMO) LTI systems and their dimension in some cases may

be large. So subspace-based state-space system identification (4SID) method is the

numerically reliable way for model reconstruction directly from measured data. No

nonlinear search is performed nor is a canonical parametrization used. Computational
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Fig. 1. CM of IT company. Nodes: 1 — project duration; 2 — innovation expenses; 3 — salaries, bonuses;
4 — project’s budget; 5 — profit; 6 — manager group expenses; 7 — marketing expenses; 8 — revenue
of projects’ sells; 9 — staff re-assessment expenses; 10 — staff training expenses; 11 — technical control;
12 — intelligent assets; 13 — quality of a final product; 14 — competitive ability; 15 — job satisfaction;
16 — experience exchange



complexity is modest compared to other existing identification methods. Theoretical

base for 4SID is a state-space realization theory. Its origin is linked with classical

contribution [4] where a scheme for recovering the system matrices from impulse

response measurements is outlined. Up to now there are many publications devoted to

different realizations of this method and its applications. Here we mention only two

contributions where subspace method is outlined in details [5, 6].

In this paper we use a subspace concept and its developments including software

for research of identification process features in CM. There are many versions of

subspace method but it is not clear how to choose the most appropriate one in

a specific case. From the general insight it is supposed that each existing method has

its own field of applications which is defined by dynamic system properties,

informativeness of the input and noses in available data. According to consistence

theory the persistently exiting input under presence of white type of noises provides

nonbiased model parameters estimation [5, 7]. But in recent years a shift in paradigm

of stochastic identification (see [8]) happened, caused by ill-conditioning of the

matrices to be inverted in subspace and others methods of identification. With

increasing of a model dimension, it is well known that conditioning of these matrices

become worse and the regularization procedure has to be used.

It is worth mentioning that regularization parameters used for this depend not

only on model dimension but also on noise level and its type (distribution, variance

and so on). Very often, as a regularizing procedure, the choice of an appropriate

model dimension is used, which may turn out to be smaller than the real system

dimension, if one exists in a given class of models.

The most difficult problem is the problem of separating the signal subspace and

the noise subspace. In measurements, only the signal-to-noise ratio (SNR) can be

estimated for each output variable. A contribution of each individual mode to the

outputs remains unknown. First of all, the SNR of individual modes is affected by

the dynamic features of the data generating system, namely, the eigenvalues and their

location on the complex plane with respect to the unit circle.

In this paper, all the features of the identification process based on the Subspace

approach and its dependence on the structural features of the system and a number of

other factors are investigated in detail.

FEATURES OF COGNITIVE MAP MODELING

Impulse processes in cognitive maps are considered as LTI and are described in

the state space by the following system of difference equations, taking into

account (5), (6):

x t Ax t Bu t( ) ( ) ( )� � �1 , y t Cx t( ) ( )� , (7)

where t is the dimensionless discrete time; x t z t( ) ( )� � is the system state vector at

the time t of dimension n, which consists of CM nodes coordinates increments � zi ;

y t( ) is the vector of measurable variables (increments of measured nodes coordinates)

at the moment t of dimension M ; u t( ) is the vector of input impulses at the moment

t of dimension R ; A, B , and C are constant matrices of corresponding dimensions

representing system parameters.

From description (7) based on the Cauchy formula for discrete systems, one can

go to the equivalent matrix representation [9, 10]

Y X UL L� �� 	 , (8)

where trajectory data are used on the observation interval [ , ]l l T� �1 , i.e.,

duration T with starting point l. A cascade vector is formed from the vectors y t( )

on the observation interval

y t L y y yt t t L( , ) [ ]� 
 
 
� � �1 1� ' (9)
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of dimension ML (“' ” is the transposition operation). By analogy with (9),

a column vector u t L( , ) is written, composed of a sequence of vectors u t( ):

u t L u u ut t t L( , ) [ ]� 
 
 
� � �1 1� '. (10)

Cascade vectors (9), (10) actually represent a piece of the system (7) trajectory

from time t to t L� �1, i.e., { }y t u t t
t L( ), ( ) � �1. The matrices �L and 	L in (8) are

represented as

�L

L

C

CA

CA

�

�

�










�

�

�
�
�
��

�

1

, 	L

L

CB

CA B CB

�

�

�










�

�

�
�
�
��

0 0 0

0 0

02

�

�

� � � �

�

. (11)

Equation (8) also includes Hankel trajectory matrices

Y y l L y l L y l T L L� � � �[ ( , ), ( , ), , ( , )]1 � ,

U u l L u l L u l T L L� � � �[ ( , ), ( , ), , ( , )]1 � ,

as well as the Hankel matrix of initial conditions of the form

X x l x l x l T L� � � �[ ( ), ( ), , ( )]1 � .

Matrix equation (8) represents the shift set of system trajectories pieces on the

observation interval. It connects a set of trajectories with system parameters in the

form of observability and impulse response matrices, and each of these trajectories is

determined by its initial state. Matrix equation (8) is the initial direct 4SID method for

identifying MIMO systems from trajectory data.

If the matrix A is reduced to a Jordan form, then using the same Cauchy formula,

one can transform (7) into the input-output relations.

Let A A AQ P� ( ), where AQ is the block-matrix of real eigenvalues � q q Q( , )�1

located on its diagonal; AP is a matrix with Jordan blocks AP
p p

p p

�
��

�
�
�

�

�
�
�

� �

� �

( p P�1, ) on the diagonal corresponding to complex conjugate eigenvalues

� � �p p pi� � . The matrices B and C are in the form

B b b b b b bQ
c s

P
c

P
s� ( )1 1 1

� � ',

C c c c c c cQ
c s

P
c

P
s� ( )1 1 1

� � ,

where bq (q Q�1, ), b bp
c

p
s, ( p P�1, ) are column vectors of dimension R , and cq

( , )q Q�1 , c cp
c

p
s, ( p P�1, ) are column vectors of dimension M .

Then the Cauchy formula for the discrete case will be written as the following

expression [11]:

y t g h t l gm mq q
t l

mp

p

P

mqr q
t j

r

R

q

( ) ( )( ) ( )� � � ��

�

�

�
� �0 0

1 1

� �
��

�

�
��� � �

1

1

1

Q

j l

t

q

Q

ru j( )

� � �
���

�

��� h t j u j m Mmpr r

r

R

p

P

j l

t

( ) ( ), ,

11

1

1 , (12)

where

h t l f t l f t lmp p
t l

mp
c

p mp
s

p
0 0 0( ) [ cos ( ) sin ( )]( )� � � � ��� � � ,
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h t j f t l f t lmpr p
t l

mp
rc

p mpr
rs

p( ) [ cos ( ) sin ( )( )� � � � ��� � � ],

� � � �p p p p� � �| | 2 2 , � �p p� arg ( ) ,

g c x lmq mq q
0 � ( ), f c x l c x lmp

c
mp
c

p
c

mp
s

p
s0 � �( ) ( ),

f c x l c x lmp
s

mp
c

p
s

mp
s

p
c0 � �( ) ( ), f c b c bmp

rc
mp
c

rp
c

mp
s

rp
s� � , f c b c bmp

rs
mp
c

rp
s

mp
s

rp
c� � ,

x lq ( ), x lp
c ( ), x lp

s ( ) are components of the initial state vector, namely

x l x l x l x l x l x l x lQ
c s

P
c

P
s( ) ( ( ) ( ) ( ) ( ) ( ) ( ))� 1 1 1

� � '.

Formula (12) is written for the case where there are no multiple roots. In their

presence (12) becomes more cumbersome. Like the eigenvalues, the parameters gmq
0 ,

f mp
c0 , f mp

s0 , f mp
rc , and f mp

rs in (12) are invariants.

If the trajectory data { }y t u t l( ), ( ) are known, then from (12) it is possible to

create a system of equations appropriate for the study of identification processes.

As follows from the above, for the implementation of the CM corresponding to the

directed graph (see Fig. 1), the matrices B and C in (7) become known, and both of

these matrices consist of zeros and ones. In accordance with the realization theory [12],

the product of matrices CB is invariant under a nonsingular transformation. Therefore,

for any other realization obtained from the original one with the help of a non-singular

transformation T , we can write the relation


 
 �C B CB , (13)

where 
 � �C CT 1, 
 �B TB .

Since for the implementation of the matrix represented by the directed graph C

and B are known, then from (13) we obtain a matrix equation with a known

right-hand side, which, along with (7), (8), (12), can be used to identify the CM.

There is also another invariant

CAB C A B� 
 
 
. (14)

If for some implementation we know matrices 
C , 
A and 
B , then (14) gives

additional equations for finding the initial matrix A corresponding to the CM graph

(see Fig. 1).

ACTIVE EXPERIMENTS WITH INFORMATIVE INPUTS

Usually data for identification are taken from active or passive experiments. In active

experiments, it is planned and organized in order to obtain the best result of a model

reconstruction that is adequate to the data obtained in experiments. In passive

experiments, the input action is implemented without participation of the

experimenter, and the data are obtained from measurements of the object, including

the parameters that determine the input. It is obvious that the result essentially

depends on what process was realized in the experiment. In this case, the quality of

the identified model may turn out to be unsatisfactory. In this research, the main

attention is paid to the study of the identification process itself and its features

depending on various factors, including the dynamic properties of the object

generating data. Research is carried out by numerical simulation methods with

imitation of different conditions implemented in experiments. It is best to do this in

active experiments that allow us to identify all the features and nuances of

identification in all its diversity. Therefore, we begin with a description of the
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experiments in which the data and conditions necessary for this are formed. Particular

attention is paid to the formation of input actions favorable for identification [10].

The existing 4SID identification methods usually use a persistently exciting input. It

is widely used not only in 4SID methods, but also in many others. There are

different interpretations of what is meant by a constantly exciting effect of the order

equal to or greater than the expected dimension of the desired model.

The informativeness of the input signal during identification is evaluated by the

signal-to-noise ratio (SNR). This is usually done for measured quantities. However,

they are an estimate of the total contribution of individual modes, and among them

there may be modes with large and weak signals, and the identification result is

determined by the SNR of each of these modes. Therefore, it is proposed to excite the

system in such a way as to be able to enhance the response of one mode or another.

To do this, we will use different methods, including the resonant properties of modes

with an oscillatory process corresponding to complex conjugate eigenvalues. For real

roots, a signal in the form of a rectangular pulse of the maximum allowable amplitude

is suitable. This assumes that the noise signal does not increase proportionally to the

excitation signal. Then, by varying the pulse length, one can control the response of

each of these modes. At short durations, the fastest modes have the greatest signal, to

which, as the excitation interval increases, slower modes are added.

Based on the foregoing, the following plan for active experiments is proposed to

obtain data for identifying the system under study. Depending on the possibilities

available, it can be implemented in two ways. In the first method, many separate

experiments are carried out, in each of which two intervals are formed. At the first

stage the system is excited, and at the second stage the system relaxes at zero input

(it is assumed that the system is stable), i.e., free movement from some initial state.

Due to the variety of excitation signals (rectangular pulses, harmonics of different

frequencies), it is possible to obtain different initial conditions in which the system is

located at the moment the relaxation process begins. The larger and more diverse the

set of initial conditions, the better the identification results will be. The second

method of obtaining informative data for identification is implemented in one

long-term experiment. It alternates successively intervals of excitation with intervals

of relaxation. At each excitation interval, different signals are used, both rectangular

pulses and harmonics with a variable frequency. The smaller the step of varying the

lengths of rectangular pulses and harmonic frequencies, the more likely it is to obtain

an informative set of initial states for relaxation intervals. And this makes it possible

to more effectively solve the problem of identification.

The experiment with the first method of excitation is most effective when the

system is at rest at each moment of the excitation signal, i.e. with zero initial data.

The second method is more general and allows an acceptable solution of the problem

with non-zero initial data. In any case, to solve the problem based on the subspace

approach, it is necessary that the length of the relaxation intervals be the same and

preferably not less than the duration of the transition process of the slowest mode in

order to have the most informative signals. Let u0 be the admissible maximum value of

the input signal. Then we take the amplitude of rectangular pulses equal to u0 , and it is

desirable that their number be not less than the number of aperiodic modes with

a variable length in the range from the minimum to the maximum length of the

transient. When such information is not available, one should take a sufficiently large

interval with a uniform distribution of the length of rectangular pulses on it, which is

guaranteed to contain transients of all real modes. With harmonic excitation, one
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harmonic is used in each interval, varying in the interval 0
2

,
��

�
�

�

�
�. Since (7) is a

dimensionless description, the frequencies which exceed
�

2
lose their oscillation, and

the long-wavelength harmonics appear to be frequencies close to zero. At the same

time, in order to ensure their information content, the duration of the experiment should

be increased accordingly with decreasing frequency.

REALIZATION-BASED SUBSPACE IDENTIFICATION

We apply Realization-based subspace identification for generalized observability

matrix identification using data on relaxation intervals.

Let each ith relaxation interval start from the point ti . Since the length of all of them

is the same equal to l, exceeding or equal to the time of the transient process, for

identification we will use the data on the set of points [ ]t t ti i i l� � �1 1� , where ti is the

initial and ti l� �1 is the last point of the relaxation interval. The total number of relaxation

intervals is K , i.e., i K�1, . There will be the same number of excitation intervals.

The value K must exceed the expected dimension of the model. From the

measured output in the relaxation intervals, we form a cascade vector of the form

y t l y y yi t t ti i i l
( , ) ( )� 
 
 
 


� � �1 1
� .

Then, according to the Cauchy formula, for the discrete case of the LTI system,

the following equation is held for each relaxation interval:

y t l xi l ti
( , ) � � , (15)

where �l is the generalized observability matrix and xt is the initial state of the

system for the ith relaxation interval. From the vectors y t li( , ) we form a matrix

Yrelax of dimensions l K� in the following form

Y y t l y t l y t lKrelax � ( ( , ) ( , ) ( , ))1 2 � . (16)

As a result, according to (15) and (16), we arrive at the matrix equation

Y Xlrelax � � 0 , (17)

where X 0 is a matrix of dimension n K� (n is the estimated dimension of the

model), which has the form

X x x xt t tK0 1 2
� ( )� , (18)

i.e., matrix of initial states on relaxation intervals. Since instead of accurate

measurements we have noisy measurements containing random errors, instead

of (17) we have
~
Y X Nlrelax � �� 0 , (19)

where N is the corresponding Yrelax error matrix of the measured components of

the cascade vectors y t li( , ) . Based on these approximate data, it is necessary to

find an estimate for the matrices A, C and X 0 . In subspace identification

methods, a realization-based approach is used for this, which begins with the

singular value decomposition (SVD) of the matrix
~
Yrelax , i.e.,

~
Y Q Vrelax � 
� , (20)

where Q and V are square orthogonal matrices, and � is a rectangular matrix of

singular numbers located on the diagonal in non-increasing order [13]. In the
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presence of noise, i.e., in case (19), (20) will have the representation

~
Y Q V Q Vs s s e e erelax � 
 � 
� � , (21)

where the first term allocates the signal subspace corresponding to the output data

generated by the system, and the second term allocates errors in the data.

Separation (21) is done by the values of singular numbers and by partitioning into

blocks of matrices Q , � , V . At low noise, when the SNR is large, the noise part

corresponds to small singular values located at the end of the diagonal of the

matrix � . However, it should be noted here that individual modes with an SNR

less than unity may appear in the second term. This means that these modes have

little effect on the dynamics of the system and it is difficult to identify them at

the background of noise. As a result of identifying systems with such singularities,

approximate models of reduced order can be found.

After selecting the signal subspace according to (21), it is possible to derive the

equations for identification of observability matrix �l and matrix X 0 using the

realization-based subspace approach. As far as all matrices Qs, �s, and Vs have full

rank there is such a realization that

Qs s l� �� , 
 �V Xs 0 . (22)

According to the realization theory, it is possible to obtain equations similar

to (22) for a different realization, if represent Q Vs s s� 
 as a product of two full-rank

matrices differently.

The first equation in (22) is used to find the matrices C and A for some

realization corresponding to (22), while the second one gives directly the initial states

on all relaxation intervals. The first M rows Qs s� represent the matrix C of the

corresponding (22) implementation. The matrix A can be found from a system of

equations derived from the shift invariance of the LTI system. It is written as

( ) ( )Q A Qs s s s� �1 2� , (23)

where the matrix ( )Qs s� 1 is created based on the matrix Qs s� by deleting the last

M rows, and ( )Qs s� 2 consists of the first M rows of the same matrix. It is

proposed to find a solution (23) using the SVD decomposition of the matrix

( )Qs s� 1. We write it in the form

( )Q Q Vs s� �1 1 1 1� 
, (24)

where Q1 and V1 are square matrices of dimensions l l� and n n� , respectively (n is

the number of singular values of the matrix �s). A rectangular matrix �1 has

a dimension l n� and can be written in block form

�
�

1
0

�
�

�



�

�
�

n . (25)

where �n is a square matrix of dimension n. As a result, the least squares solution

of system (23) will be written as

( ) ( )A V Q Qi n n s s i� 
�
1

1
1 2� � , i n�1, . (26)

In (26) the matrix Q n1 is composed of the first n columns of the matrix Q1, and

( )Qs s i� 2 is the ith column vector of the matrix ( )Qs s� 2 . All solutions (26)

completely determine the matrix A of dimension n. Solution (26) is used when the

matrix ( )Qs s� 1 is well conditioned. This can be judged by the condition number
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determined by the ratio of the first and last singular value of the matrix �n . For

an ill-conditioned matrix, regularization should be used. In the considered solution

method based on SVD, regularization will be carried out using the stabilizer

��r
q , q �1 2, , (27)

which is additively added to the matrix �n in (26). In (27) � is the regularization

parameter, and �r is the matrix of the following form

�r

n

n

n n

�

�

�














�

� �

� �

� �

/

/

/

1

2

1

0 0 0

0 0 0

0 0 0

0 0 0 1

�

�

� � � � �

�

�

�

�

�
�
�
�
�
�

,

� i are matrix �n singular values.

As a result, the regularized solution is written as

( ) ( ) ( )A V Q Qi n r
q

n s s i� � �
1

1
1 2� � �� , i n�1, , q �1 2, . (28)

In the absence of information about the properties of the errors, it is expedient to

take its quasi-optimal value as the regularization parameter � in (28) (see [14]). As

such, we take the minimizing element of the extremal problem

inf
�

��
	

��0

d

d
, (29)

where 	� � ( )A i . There may be different values � for different i. In addition,

problem (29) may turn out to be multiextremal. Then the least of them is taken as

� quasiopt .

We will find � quasiopt graphically, building a function �
	

�

�d

d
depending on � .

Denote

� �
��

	

�
�

d

d

and using (29) � � can be found for different � from the equation

� � � �� � � � � ��V V An r
q

r
q

i1
1

1( ) ( )� � � . (30)

For different values � , first the vector 	� � ( )A i is found from (28), and then 
 �
itself is found from (30). Based on the chart of || ||� � , we find � quasiopt for the

selected n. This completes finding a regularized solution for (26) of dimension n.

SIMULATION RESULTS

The quality of identification essentially depends on how successfully the signal

and noise subspaces are separated. This is a rather complicated and not entirely

unambiguous procedure. It essentially depends on the following factors: what are

the dynamic properties of the data generating system, what is the SNR of each of

the modes in the output signal, what is the dimension of the system, what are the

external disturbances, what is the duration of the experiment and the chosen

values of l and K.

ISSN 1019-5262. Ê³áåðíåòèêà òà ñèñòåìíèé àíàë³ç, 2023, òîì 59, ¹ 4 51



In fact, (21) can be considered as a filtering procedure, i.e. separating the useful

signal from the noise. This is the easiest to do when the noise level is much lower than the

signal of the worst observed mode. Then, according to the gap between the essential and

non-essential singular values of the matrix �, it is easy to carry out such a separation.

However, in practice this does not happen often. Therefore, by means of

numerical simulation, we will study the dependence of the singular numbers’

behavior in (20) on the pointed above factors. To do this, we introduce the notion of

a well-identifiable system. First of all, this is defined by informative input. As

mentioned earlier, this is determined by the SNR for all modes of the system. For

each of them, the SNR must be substantially greater than one. The excitation under

consideration most effectively exploits the resonant properties of the system and,

as will be shown below, makes it possible, with the help of certain manipulations,

to influence the SNR of different modes.

Now, on the base of (12), we introduce the concept of a well-identifiable system.

This means that invariants gmq , f mp
rc , f mp

rs and eigenvalues are such that all matrix Yrelax

columns form a system of order n maximally independent vectors (n is the dimension of

the system) i.e., matrix Yrelax should be well-conditioned of order n. Besides matrices C

and B are such that system for some Jordan realization is close to independent blocks. In

addition, all the main modes of the transition matrix have the same high SNR.

It should be noted that an increase of the system dimension leads to a deterioration

in the independence of the eigenvectors, since the eigenvalues approach each other.

As a result, Yrelax conditioning worsens. Figs. 2–7 present the results of modeling the

identification process in the described active experiments with the determination of

matrices A and C from data on relaxation intervals for well-identified systems of

different dimensions. Figures 2–4 show the values of the singular values that are on

the diagonal of the matrix � depending on the SNR, and Figs. 5–7 show eigenvalues

of the system and model.

It can be seen that in the presence of noise in a certain SNR interval it is possible

to establish the dimension of the model, which coincides with the data generating

system’s dimension. A discontinuity is clearly visible in the behavior of singular

values, so it is possible to separate significant singular values from those that

correspond to noise. However, as the dimension increases, the gap decreases, and this

separation can be done at lower and lower noise levels; the larger dimension,
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Fig. 2. Singular values for n � 5, M R� � 3



the stronger noise effect. In addition, knowing the exact dimension does not guarantee

an acceptable solution of the identification problem with decreasing SNR. As it can

be seen from Figs. 5–7, the accuracy of determining the matrix A eigenvalues for

a given SNR deteriorates with increasing dimension. In any case, it is always

effective to increase the SNR.

The greater the deviation of the system from a well-identifiable case, the worse

the solution is. There is a system, which is maximally admissible in terms of

identifiability, starting from which the identification problem becomes substantially

ill-posed in the sense that even in the absence of noise only a surrogate model with

a small forecast horizon can be built, or the identification problem loses any sense.

However, in practice there are often cases when it is possible to construct a reduced

order model of satisfactory quality, i.e. having a dimension smaller than that of the

generating system. The following figures and Table 1 show simulation results for one of

such systems. The CM of the 16th order was considered, which has 10 outputs and

10 inputs. Singular numbers of the matrix Yrelax at different noises are shown in Fig. 8.

It can be seen that, starting from dimension 13, the matrix Yrelax becomes ill-conditioned

for exact data. However, under the influence of noise, we have an improvement in
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conditionality. But as the regularization parameter also increases with increasing noise,

there is a need to use regularization. The proposed regularization procedure is such

that for a given noise level, in the correct case, according to [14], the regularization

parameter � in (27) will naturally tend to zero, i.e., instead of the regularized one, we get
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Fig. 6. Eigenvalues for n � 13

Fig. 7. Eigenvalues for n � 19

Fig. 5. Eigenvalues for n � 5



the usual solution. This is exactly what happened in this example. Comparison of

identification results based on data on relaxation intervals and SNR �10 is presented in

Table 1. This table also gives the eigenvalues for the reduced order model equal to 12.

A feature of the CM in this example was that it had a cluster of modes with eigenvalues close

to zero. This led to appearing of very small singular numbers, starting from dimension 13, in

Fig. 8. As a result, for dimensions 13 and more, the system of equations for finding the matrix

A became ill-conditioned, but regularization was not required to find it. At the same time, the

model of the reduced 12th order turned out to be quite acceptable as a solution to the

identification problem. This is confirmed by Fig. 9, which shows the transient over relaxation

intervals for all 10 output components of the model and the system.

EVALUATION OF THE MATRIX Â

Let each excitation interval begin at the moment t j , j K�1, (t tj i� ). From the

Cauchy formula for the LTI system, one can obtain a matrix equation similar
to (8) that is valid on the excitation interval. Its final form is written as

Y X U
l l

� �� 	( ) ( )1
1

1
, (31)
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Fig. 8. Singular values for the CM

T a b l e 1. Eigenvalues for the CM and its 12-dimensional equivalent

True eigenvalues Estimated eigenvalues, n � 16 Estimated eigenvalues, n � 12

0.73 0.73 0.73

0.29 � 0.55i 0.29 � 0.56i 0.28 � 0.55i

0.29 � 0.55i 0.29 � 0.56i 0.28 � 0.55i

�0.6 �0.61 �0.61

0.5 0.5 0.5

0.05 � 0.39i �0.02 � 0.30i �0.08 � 0.09i

0.05 � 0.39i �0.02 � 0.30i �0.08 � 0,09i

�0.28 � 0.21i �0.04 � 0.18i 0.0004 � 0.18i

�0.28 � 0.21i �0.04 � 0.18i 0.0004 � 0.18i

�0.21 �0.18 �0.02

0.04 �0.4 0.008

0 �0.10 � 0.03i �0.001

0 �0.10 � 0.03i —

0 0 —

0 0 —

0 0 —



where Y y t l y t l y t lK� � � �[ ( , ) ( , ) ( , )]1 21 1 1� is a matrix composed of a cascade

output vector formed according to (9) on the excitation intervals;

�
l

l

A

CA

( )1

1

�

�

�








�

�

�
�
��

� ; X x x xt t tK1 1 2
� [ ]� ; 	
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l l
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CAB CB

CA B CA B CB

( )1

2 3

0 0

0
�

�

�










�

�

�
�
�
�� �

�

�

� � � �

�

;

U u t l u t l u t lK� [ ( , ) ( , ) ( , )]1 2 � .

The matrix U is formed by cascade vectors u t li( , ) formed according to the

following rule:

u t l u t u t u t li i i i( , ) [ ( ) ( ) ( )]� 
 
 
 � � 
�1 1� .

In (31) and the following notation t1, t2� correspond to the initial point of excitation

t j , in contrast to the points ti that specify the initial point of the relaxation interval.

We write expression (31) as

	
l

U Y( )1 � forced , (32)

where Y Y X
lforced � � �� ( )1

1.

The right side of (32) contains only one unknown matrix X 1, i.e. values of the
state vector at the start points t j of the excitation intervals. If at the initial moment t1 of
excitation or at the beginning of the experiment the system was at rest (x1 0� ), then the
first column X 1 is zero and the first column of the matrix Yforced coincides with
measured y t l( , )1 1� in the first excitation interval. If the initial state was non-zero and
unknown, then in (32) it is necessary to form all the matrices, starting from the second
excitation interval, discarding the data of the first interval. All other columns of the
matrix X 1 are easily calculated from the known columns of the matrix X Vs0 � 
 for
the previously established model dimension. All columns of the matrix X 1, starting
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Fig. 9. Comparing outputs for real CM (without noise) and its 12-dimesional equivalent (random relaxation
periods)



from the second one, i.e., matrices X
1

1( ) , are calculated according to the rule

X A Xl K
1

1
0

( ) ( )� , (33)

where X K
0
( ) is the matrix that is formed from X 0 , with the last column deleted.

As a result, the matrix Yforced in the right side of (32) can be calculated.

As a result, matrix equation (32) can be used to find matrix B.

To do this, we multiply (32) on the right by the matrix 
U and obtain

	
l

UU F( )1 
 � , (34)

where F Y U� � 
forced .

When the matrix UU 
 is nondegenerate, we have

	
l

F UU( ) ( )1 1� 
 � . (35)

With the considered method of the system excitation, it will be non-degenerate
when l r M� � . When this condition is not met, it is always possible, when forming
equation (31), to take a smaller value l n1 � instead of l, which is guaranteed to satisfy
the specified condition. This can always be done at the stage when l and K are selected.

Besides one can use another algorithm for determining B. Here it should be noted

that the matrix 	
l1

1( ) is lower triangular, which is violated with a high probability in the

approximate solution. Therefore, this should be taken into account when developing

algorithms for finding B. Note also that the matrix �
l
( )1 can be directly extracted from

the matrix �l defined by relation (22) from the SVD decomposition. When calculating
Yforced on excitation intervals, it should be taken into account that the length of some
rectangular excitation pulses is less than l. Then it is necessary to expand them using
the relaxation intervals following them, on which we assume u � 0. This is acceptable,
since the length of the relaxation intervals is not less than l. Accordingly, the matrix U
will have zero elements at the points of the included relaxation intervals.

Equations (35) should also be supplemented with relation (13), in which the
matrices 
C and 
B correspond to the implementation represented by the graph (see
Fig. 1). As a result, (35) and (13) form an overdetermined system of equations for
finding the matrix B . In contrast to the problem of determining the matrix A for
calculation B we usually have a well-posed problem. This is especially evident for
the considered method of excitation of the system in active experiments. In essence,
after finding the matrix B, we obtain a complete solution of the identification problem.

The described method of calculating a matrix B is not always efficient on accuracy.
So can use another way for finding B. It comes down from the Jordan realization of the
matrix A. For this we define the matrix A according to (26) or (28). After that we calculate
the eigenvalues, which allow us to completely write down the eigenfunctions in (12). This
is easily done in the absence of multiple roots. If they are present, it is necessary to
modify (12) taking into account multiple roots. Then, from (12) or its modification, one

can find the invariants gmqr , f mp
rc , f mp

rs . To obtain them, an overdetermined linear system

of equations is formed based on (12) at the excitation intervals.

Using the LSM or its generalization, including SVD, we solve the resulting
system of equations and find these invariants. But before that, the outputs

corresponding to free movement in each of the excitation intervals, i.e., �
l

X( )1
1�

where X 1 is determined by relation (33), should be subtracted from y tm ( ). Then (12)
will contain a forced motion with a zero initial state.

After finding the invariants for all outputs and inputs (with autonomous
excitations), one can write down a system of equations from the relations connecting
this invariants with the elements of the matrices C and B for the Jordan realization.
Having solved it, we obtain the CM model (approximate) with its representation for the
Jordan form. As computational experiments show, the eigenvalues of an approximate
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model are only slightly different from the exact ones. This permits model tuning to
maximize of the forecasting horizon.

TRANSITION TO GRAPH CM MODEL

CM model reconstructed by means of the realization-based approaches described
above allow us to find an approximate model for either some uncertain or Jordanian
implementation. However, the CM system represented as an oriented graph like
Fig. 1 has a different realization. Therefore, it is desirable to reconstruct exactly the
model that has an implementation represented by the CM graph. This can be done
using the realization theory [12] and the features of CM modeling.

To do this, according to the theory of realizations, one should find a non-singular
transformation T realizing such a transition.

Let A, B and C be the realization obtained from the solution of the identification

problem, and Ag , B g and C g be one of the realizations (the solution may not be
unique) corresponding to the graph. From the realization theory it follows

A T TAg � , B TBg � , C CTg � �1. (36)

In the last two relations, the matrices B g , B, C g and C are known. Then relations

(14) give M R� equations for finding Ag . If the number of zero connections on the
graph is such that these equations are sufficient to calculate the non-zero components of

the matrix Ag , then by solving them, we obtain a model for the implementation of the

corresponding graph. Otherwise, T and the matrix Ag from all equations (36) should be

found. In this case, by eliminating zero elements of the matrix Ag and using the
equations of connection between the elements of the matrix T , which follow from the
last two relations in (36), it is possible to reduce the dimension of the problem being
solved. In the case of non-uniqueness of the remaining equations, we have a set of
realizations corresponding to the CM graph. Then one of the possible realizations is
found by solving underdetermined system of equations.

The performed investigations show that it is impossible to create a general method

for identifying complex systems. Only systems close to well identifiable one which have

large SNR for all modes allow us to solve the problem and obtain a qualitative model for

it. In other cases, a surrogate model is found, or the identification becomes meaningless.

In certain cases, using tuning algorithms, one can try to make transition from a surrogate

model to a better description of the system. Each specific case will require its own

approach, which depends on the behavior of singular values and the eigenvalues of the

obtained surrogate model. Its parameters can be tuned, for example, on the basis of (12),

taking into account that the invariants are close to exact values. The mathematical tools

presented in the article allow to set and solve different problems of tuning and learning.

An important role in the process of model modification is played by actions
aimed at increasing the SNR. In the considered method of excitation of the system
and data acquisition, various manipulations with the signals received from different
outputs but for the same inputs are permissible. If the noises are additive and consist
of independent random realizations, then by adding or subtracting them, we obtain for
some combinations an increase in the excitation signal or a decrease in noise, i.e.,
increase in SNR. When there are few inputs, it is possible to use data not only with
the same, but also close input signals. Addition and subtraction of output signals is
done point by point at relaxation intervals. As a result, we get a set of matrices Yrelax
with different SNRs. For each such matrix, an SVD decomposition is made and charts
of singular values are constructed similar to those shown in Fig. 2. Based on them we
determine which singular values correspond to the signals of the system and which
ones correspond to the noise. Based on the data with the highest SNR, we find
a model. It also is possible to improve surrogate model by other tuning and training
procedures. For example, by artificially adding noise to the measurement data at
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relaxation intervals, one can clarify which of the singular numbers correspond to

errors and which one correspond signals, i.e. to large SNR. Intermediate singular

values between them correspond to the SNR close to 1 and for them, using tuning

algorithms, one can try to extract the signal part.

In cases where tuning algorithms do not give a qualitative model, it is necessary,

if possible, to change the experimental conditions. For example, one can replace the

measuring and exciting system with a more efficient one, providing the closest

proximity to a well-identified system.
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Â.Ô. Ãóáàðåâ, Þ.Ë. Ì³ëÿâñüêèé
ÎÑÎÁËÈÂÎÑÒ² ÌÎÄÅËÞÂÀÍÍß ÒÀ ²ÄÅÍÒÈÔ²ÊÀÖ²¯ ÊÎÃÍ²ÒÈÂÍÈÕ ÊÀÐÒ Â ÓÌÎÂÀÕ
ÍÅÂÈÇÍÀ×ÅÍÎÑÒ²

Àíîòàö³ÿ. Ðîçãëÿíóòî ïðîöåñ ³äåíòèô³êàö³¿ ñêëàäíèõ ñèñòåì. Âñòàíîâëåíî, ùî ñòâîðèòè
óí³âåðñàëüíèé ìåòîä ³äåíòèô³êàö³¿ íåìîæëèâî. Ëèøå äëÿ äîáðå ³äåíòèô³êîâàíî¿ ñèñòåìè ç
âèñîêèì â³äíîøåííÿì ñèãíàë–øóì äëÿ êîæíî¿ îêðåìî¿ ìîäè ñèñòåìè ìîæíà ðåêîíñòðóþâà-
òè ìîäåëü âèñîêî¿ ÿêîñò³. Â ³íøèõ âèïàäêàõ, ÿêùî ³ñíóþòü ìîäè ç äîñòàòíüî íèçüêèì
â³äíîøåííÿì ñèãíàë–øóì, ìîæíà îòðèìàòè ëèøå ñóðîãàòíó ìîäåëü. Äëÿ êîãí³òèâíèõ êàðò
ðîçðîáëåíî òåîðåòè÷í³ îñíîâè, ÿê³ ìîæíà çàñòîñóâàòè â ï³äõîäàõ äî ïîøóêó ñóðîãàòíî¿ ìî-
äåë³, à ïîò³ì äëÿ ïîêðàùåííÿ ðåçóëüòàòó ç âèêîðèñòàííÿì ð³çíèõ àëãîðèòì³â íàëàøòóâàííÿ
òà íàâ÷àííÿ. Äëÿ äîñë³äæåííÿ ïðîöåñó ³äåíòèô³êàö³¿ çàñòîñîâàíî ÷èñëîâå ìîäåëþâàííÿ.

Êëþ÷îâ³ ñëîâà: êîãí³òèâíà êàðòà, ³äåíòèô³êàö³ÿ ñèñòåì, ìåòîä âèä³ëåíîãî ï³äïðîñòîðó,
ñêëàäíà ñèñòåìà, ïîãàíà îáóìîâëåí³ñòü, ðåãóëÿðèçàö³ÿ.
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