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MINIMAX THEOREM FOR FUNCTIONS ON THE CARTHESIAN
PRODUCT OF BRANCHING POLYLINES

Abstract. The paper proves the minimax theorem for a specific class of functions that are
defined on branching polylines in a linear space, not on convex subsets of a linear space. The
existence of a saddle point for such functions does not follow directly from the classical
minimax theorem and needs individual consideration based both on convex analysis and on
graph theory. The paper presents a self-sufficient analysis of the problem. It contains
everything that enables plain understanding of the main result and its proof and avoids using
concepts outside the scope of obligatory mathematical education of engineers. The paper is
adressed to researchers in applied mechanics, engineering and other applied sciences as well as
to mathematicians who lecture convex analysis and optimization methods to
non-mathematicians.
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The minimax theorem, also known as the saddle point theorem, states one of the
fundamental concepts in economics, mechanics, electrical engineering and other
applied nonmathematical sciences. Classical version of the minimax theorem has
been formulated and proven by J. von Neumann in 1928 [1], generalized by
M. Sion in 1958 [2] and newly proven in [3-5].

This paper proves the minimax theorem for specific functions that do not satisfy
the conditions of the minimax theorem in its commonly used formulation. These
functions are defined on non-convex subsets of linear spaces referred to as branching
polylines. The existence of a saddle point for such functions cannot be resolved by
a mere reference to the classical minimax theorem and needs individual consideration.
The paper presents a self-sufficient analysis of the problem. It contains everything
that enables a plain understanding of the main result and its proof and avoids using
concepts outside the scope of obligatory mathematical education of engineers.

1. DEFINITIONS AND FORMULATION OF THE MAIN RESULT

Let R, N, N* be sets of real numbers, nonnegative and positive integers,

respectively. Let R¥, k eN*, be a k-dimensional linear space with Euclidean
metric A¥:R¥Fx R¥ —> R, where value AK (x,x") is the distance between points

xeR¥ and x' eR¥. A line segment between points x, x' eR* is denoted as
[x,x"]={a-x+(1—-a)-x"|0<a<1}.

For a given set X and a function f : X — R symbols “argmax” and “argmin” are
used to express the sets

argmax f (x) = {u X | f(u) =max f(x)},
xeX xeX
argmin f(x)={ueX|f(u)=min f(x)}.
xeX xeX
Let X cR™ and Y cR"” be closed bounded sets and f:X xY - R be
a continuous function of two arguments. For any such function the inequality
min max f (x, y) > max min f (x, ) @)
xeX yeY yeY xeX
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holds because it follows from the chain of evident inequalities

min max f (x, y) = max f (x", y) > f(x*, y* ) 2 min f (x, y* ) = max min f (x, ),
xeX yeY yeY xeX yeY xeX

where x* earg min[max f(x, y)], y* earg max [min £ (x, y)] .
xeX yeY ye¥ xeX

The classical minimax theorem states that if X and ¥ are convex subsets in two
finite-dimensional linear spaces and f belongs to a certain class of functions then
inequality (1) turns into equality. This article formulates and proves a similar theorem
for a case when X and Y are not convex subsets but subsets of a specific nature,
which are called branching polylines and are defined in the following way.

Let I'=(V, E cV x V') be an undirected graph with a finite set J of vertices and
aset £ of edges. Each vertex v €/ of the graph is a point in a finite-dimensional
linear space and each edge (v,v') e E defines a straight-line segment [v, v'] that
connects v and v'.

Let T=(V cR™ EcVxV) be an unoriented tree.

Definition 1. The set X = U [v,v"]1s called a branching polyline without
(v,v")eE

self-intersections if ([v,v' N ([u, u']) =< for all edges (v,v'), (u, u') such that
v n{uu'}=0.

Hereinafter a short identifier “polyline” is used instead of “branching polyline
without self-intersections”.

Definition 2. A sequence v,vy,...,V;,...,v; of vertices v; €V is called
a path in I' between v and v, if (v,_;,v;)€FE for all 0<i</.

Let X be a polyline defined by unoriented tree T =(V c R",E ¥V xV'), and

let x, x' e X.
Definition 3. A path between x and x' in polyline X is
— either a straight-line segment [x, x' ] if an edge (v, v’) € E exists such that
x,x" €[v,v']; its length equals A™ (x,x');
/-1
— oraset[x,v;]U U[vi_l,vi]u[v,_l,x’]ifapathvo LV vpin D >,
i=2
exists such that x e[v,v] and x' €[v;_;,v,]; its length equals
/-1
A" (xv)+ A" (0,0, + A" (0, x).
i=2

Figure 1 illustrates the difference between paths in I and X. A path in I is
a finite sequence of vertices whereas a path in X is a set of continuum cardinality.

Let us denote by (x; <>x;)y a path in
apolyline X between points x;, x, € X and use
simply (x; <> x5 ) if it is clear which polyline this path
belongs to. Let us denote by d y (xq, x, ) the length of
a path (x; <> x,) y . It is easy to see that the function
dy: X xX — R forms ametric on X .

Let us consider the set {x e X |a e(x <> b)}
for some polyline X and points a, be X, a # b,
and introduce short expressions (> a <> b) or
(b <> a =) for such sets,

Fig. 1. Path between a and b in a graph

(white circles); path between a’ and b’
in a polyline (bold lines) (raob=(0boa=<)=xeX|aecx < b).
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Unformally, expressions (> a <> b)
and (b <> a <) represent the subset of
points that the point a separates from the
point b, expressions (>b<>a) and
(a > b <) represent the subset of points
that b separates from «. Figure 2
illustrates the essence of such subsets.

Definition 4. A function p: X — R

is called uniformly continuous on a set X
if for any £>0 a number A(e) >0 exists
such that for any x|, x, €X the
inequality dy (x1,x5) < h(e) implies the inequality |@(x;)—¢(x;y)| <L e.
Let X and Y be polylines with metricesd y : X x X > Randdy:Y xY - R.
Definition 5. A function f: X xY — R of two arguments is called uniformly

(-a<ob) (a> b=)

Fig. 2. Examples of sets (> a <> b)and (a <> b <)

continuous on a set X x Y if for any € >0 a number A(¢) > 0 exists such that for any x;,
X, €X and y;, y, €Y the inequalities dy (x;,x,) < h(e) and dy (), ¥5) < h(e€)
imply the inequality | f'(x;, 1) — f (x5, )| <&

Definition 6. A function ¢: X — R is called quasiconvex if for any x;, x*, x,
such that x* e (x; >x,)y the inequality p(x™) < max {p(x1), p(x5)} holds;
afunction ¢: X — R is called quasiconcave if for any x;, x*, x, such that
x" e(x; <>x;)x the inequality ¢(x*)>min {p(x), p(x;)} holds.

Figure 3 shows examples of quasiconvex and quasiconcave functions for a case
when X consists of one straight-line segment. The examples illustrate the difference
between quasiconvex or quasiconcave functions and functions that are convex or
concave in the accepted meaning of these words.

Hereinafter a prefix “quasi” in words “quasiconvex”, “-concave” is omitted.

Definition 7. A function f: X xY — R is called convex on X if the function
0 X >R, ppix> f(x,b), is convex for any beY; a function f: X xY - R
is called concave on Y if the function y ,:Y - R, ¢ ,: v+ f(a, y), is concave for
any a € X.

The paper proves the following theorem.

Theorem 1. Let X and Y be two polylines. If f: X xY — R is uniformly

continuous on X xY, convex on X and concave on Y then

min max f (x, y) = max min f(x, y).
xeX yeY yeY xeX

v Al Al
X X X
a b c

Fig. 3. Quasiconvex and quasiconcave functions: quasiconcave, non-concave function (a); quasiconvex,
non-convex function (b); quasiconvex, quasiconcave, non-convex, non-concave function (c)
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2. OUTLINE OF THE PROOF

Theorem 1 generalizes Lemma 7 in [6], the last being a special case of Theorem 1
when both polylines X and Y consist of a single straight-line segment. Naturally,
there are several similar fragments in proofs of these two statements. However the
generalization of the quoted lemma onto case of Theorem 1 is not quite
straightforward because it needs interlaced consideration based both on convex
analysis and on graph theory. The next Subsections 2.1, 2.2 and 2.3 annotate key
points of the proof and enable to embrace the whole proof at one glance. A complete
proof of the theorem consists of three parts described in Secs. 4, 5 and 6.

Everywhere in the following text, the conjunction “or” is used in a non-exclusive
sense. So, for some conditions P, QO a proposition “P or Q” means that at least one of
these conditions is satisfied and it is not excluded that both P and Q are satisfied.
An expression P = Q is used in a sense “if P then Q.

2.1. Lemmas about two points. Let X be a polyline, Y be a closed bounded set,
f: X xY — R be a continuous function, convex on X and not necessarily concave

on Y. It is proved in Sec.4 that in this case a point y* €Y exists such that

min max £ (x, y) = min £ (x, y*) (2
xeX yeY xeX

or two points yi, y, €Y, y # y,, exist such that

min max f (x, ) = min max {/ (x, 31 ), £ (x, ¥3 )} . 3)
xeX yeY xeX

Evidently, if (2) fulfils then min max f (x, y) = max min f'(x, y). Section 4 proves that
xeX yeY yel xeX

if (3) fulfils then points x;,x, € X and x* e(x; <> x,) exist such that

S (u, y; )= min max f (x, y) for all ue(x; <>x" <), “)
xeX yeY

f(u, 5 ) > min max f (x, y) for all ue(>x" <> x,), (5)
xeX yeY

Similarly, if X and Y are polylines and f: X xY — R is a continuos function

concave on Y then max min f(x, y)=min max f(x,y) or points xl ,x2 ex,
yeY xeX xeX yeY

x{ #x5, and points y;, y, €Y, y" €(y <> y,) exist such that

max min f (x, y) = max min {f (x] , ), f (x2, »)}, (©)
yel xeX yeY
f(x1,v) < maxmin f(x, y) for all v e(y < V' <), @)
yeY xeX
f(x5,v)<maxmin £ (x, ) for all ve(> )" < »). )
yel xeX

2.2. Polylines in the Carthesian product of polylines. Let X and Y be
polylines, x;, x5, x* €(x; <>x,) be some three points in X, y;, y5 be some two

points in Y. The triple (xq, x", x5 ) does not necessarily satisfy conditions (4) and (5),
the pair (y;, y, ) does not necessarily satisfy condition (3). Section 5 defines how
a certain polyline XYX < X xY has to be composed of subsets (x; o x <),
(~x" < x,) and a path (3] < y5).
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Similarly, let y;, y, €Y, y" €(y; <> »,) and x{ , x5 € X. It is defined in Sec. 5
how a certain polyline YX¥ < X x Y has to be composed of subsets (y; <> y* <),
(- Y © ») and a path (x] <> x5)c X.

It is proved in Sec. 5 that the mentioned polylines XYX and YXY have a non-empty

intersection.
2.3. Proof completion. Let a function f: X xY — R be convex on X and

concave on Y. As it is mentioned in Subsec. 2.1, in this case the equality
)rcren)r(l r;lgf (. »)= ma )rcren')r(lf (x, )
holds or there exist
points y,y, €Y that satisfy (3),
points xq,x, €X, x* €(xy <> x,) that satisfy (4) and (5),
points xik ,x’zk € X that satisfy (6),
points y;, y, €Y, y* €(y; <> y,) that satisfy (7) and (8).
It is proved in Sec. 6 that conditions (3)—(5) imply inequalities

f(u,v) > min max f(x, y) for all (4,v)e XYX, 9)
xeX yeY

and conditions (6)—(8) imply that
f(u,v) <maxmin f(x, y) for all (u,v)eYXY. (10)
yeY xeX

As it has been mentioned in Subsec. 2.2, XYX N YXY #O. Due to (9) and (10)
any point (x', ') € XYX N YXY satisfies inequalities

min max f(x, y) < f(x', y') < max min f'(x, y)
xeX yeY yeY xeX
and consequently, due to (1), min max f (x, y) = max min f (x, y).
xeX yeY yel xeX
3. PRELIMINARY STAGE OF THE PROOF

This section formulates formal properties of polylines and functions defined on
polylines that are used in next stages of the proof. With the exception of Lemma 1,
all these properties follow rather straightforwardly from definitions and are formulated
without proofs. As for Lemma 1, it formulates a special case of a known and
thoroughly researched property of set-valued functions (see, for example,
a Theorem 1.4.16 in [7]). The Lemma 1 is formulated and proved below in a form
that is appropriate to the context of this paper.

Property 1. Let X be a polyline, x;,x, € X, x| #X,, x" €(x| <> x,). In this
case X =(x; ©x <)U(=x ©x,).

Figure 4 shows two examples of different coverings of X with
X,=(; ©x"<)and X, =(-x" ¢<>x,). If x" is not a branching point in X then
the subsets X; and X , intersect in a single point x*, as depicted by Fig. 4, a. Another

case is shown on Fig. 4, b when x” is a branching point in X and the intersection
X, N X, contains not only x".

Property 2. Let x;,x", x, € X be three points such that x* e (x; <> x;), let
X, =0 x"<), X, =(-x"<x,) and let x| ,x; € X be some points.
If x" ¢(xf ©x5)then {x{,x5}c X, or {x],x5}c X,.
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X2:(>x*(—)x2) Xlz(x]<_)x*-<) X2=(>X*(—)X2) X]Z(Xl(%x*-<)

*
. x .
a b

Fig. 4. Two fogms of covering X by X and X,: first case (X| N X,)= {x"} (a); second case
(X1 nXy)#{x} (b)

Fig. 5. Tllustration of Property 2: x* ¢ (xl* > x; ), {xl* R x;} c X, (a) X' e (xl* (—)x; ), {xl* s x;} c
CX|NnX, b X" e ©x), 4.5} cX; (©

Figure 5 illustrates Property 2 for different locations of points xf and x§ .

Property 3. Let X and Y be polylines. If a function f: X x ¥ — R is convex on X

then the function ¢: X — R, x> max f(x, y), is convex as well.
yeY
Property 4. If ¢: X — R is a convex function and a, b € X are points such that

@(b)>p(a) then ¢p(x)= p(b) for any x (> b <> a).
Lemma 1. If a function f: X xY — R is uniformly continuous on X x Y then

the function ¢: X - R, x> max f(x, y), is uniformly continuous on X.
yeY
Proof. Since f:X xY — R is uniformly continuous on X x Y, there exists

a function 4#:R — R such that the implication

[max {d x (x1,x2), dy (3, y2)i < h(e)]= )

= [-e< f(x, ) - f(x2, 02) < €] (12)

holds for all €>0, all x;, x, €X, and all y;, », €Y including all cases when
¥| = ¥,. For these cases, condition (11) takes the form dy (xy,x,) < h(¢) because

dy (y, ¥)=0 for any yeY. So, for these cases implication (11) and (12) takes the
form

[dx (x1,x2) S h(&)]= [-€< [(x1,y) = [ (x2, y) < ] (13)
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that is valid for all x|, x, € X and all yeY, and consequently, is valid for values
v, €arg r;l:;(f(xl, y)cY and v, €arg r}r}l:})/(f(xz, y)c Y as well. For the value

v earg max f(x;, y) it follows from (13) that
yeY

[dy (x1,x2) < h(e)]= [f (x1,v1) = f(xp,v)) < €] &
< [max f(xy, y) = f(x2,v1) < e]= [max f(x), y) —max f(xy, y)<e]. (14)
yeY yeY yeY
Similarly, for the value v, € arg ma;f; f(x,,p) it follows from (13) that
ye
[dx (x1,x2) Sh(e)]= [-e< f(x,v2) = f(x2,00)] &

=4 [—sSf(xl,vz)]—ma;((xz,y): [-e< ma;jf(xl,y)—ma?(xz,y)]- (15)

ye ye ye
It follows from (14) and (15) that
[dx (x1,x3) < h(e)]= [-& < max f(xy, y) —max f(x3, y) < ]. =
yeY yeY

4. LEMMAS ABOUT TWO POINTS
Lemma 2. Let X be a polyline and ¢;: X >R, ¢,: X >R be convex

continuous functions such that

)rcreli)f(l<,01(x)< )rcren)r(l max {¢ (x), P, (x)}, (16)
g}lfl’z(xk )ICI;I)I(I max {¢(x), 5 (x)}. (17)

In this case points x;, x, and x* exist such that

x| €argmin @ (x), X, € argming, (x), X} #xy, X €(x]; <> x,), (18)
xeX eX
gol(x*):<p2(x*):nu')r(1 max {p (x), ¢ (X)} . (19)
xXe

Proof. Since the functions ¢, ¢, are continuous, the sets arg min ¢ (x) and
xeX
arg min ¢, (x) are not empty. Let x; earg min¢;(x)and x, €arg min ¢, (x) be some
xeX xeX xeX
points. Due to condition (16) the chain

¢1(x1) =)13€11')I(1<P1(X)< )fcfell)l(l max {¢(x), ¢, (x)} < max{p;(x;),p,(x1)} (20)

is valid that results in inequality ¢ (x;)< max {¢(xy), ¢, (x;)} and so in inequality
¢1(x1)< @, (x;). Similarly, condition (17) implies the chain

P2 (x2)=min g, (x)< min max {¢(x), P, (x)} < max {p;(x2), 95 (x2)} (21
xeX xeX
and, consequently, implies the inequality ¢, (x,)< ¢(x;) and so

P1(x1) =2 (x1)<0< P (x2) — o (x). (22)

It follows from (22) that x; #x,. Due to continuity of ¢, and ¢, it follows also
from (22) that a point x* e (x; <> x,) exists such that <p1(x* ) =<p2(x* ).
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max {py, P}
2 P2 max {p;, 92}
P 1
0 . 4 P2
x| X XXt
LY J \ J

v h
X X
a b

Fig. 6. Tllustration of Lemma 2: conditions (16), (17) are satisfied, conditions (18), (19) are consistent («);
conditions (16), (17) are violated, conditions (18), (19) are inconsistent (b)

Condition (16) and several evident equalities and inequalities form the chain
P1(x" )= (x" ) =max {p; (x"), P (x7 )} 2
2 min max {¢ (x), ¢, (x)} > min ¢ (x) = ¢ (xy)
xeX xeX
that results in inequality ¢;(x")>¢,(x;). Due to Property 4 inequality
@1(x*)> @ (x)) implies inequalities
P ()2 (x*)=p, (") for all xe(x; ©x <)
and, consequently,
max {p (x), P2 (X)} > (x* )=, (x") for all xe(x; <> x"<). (23)

In a similar way condition (17) validates the chain

Qo (x")=max {p(x"), P, (x" )} = ;Iél)f(l max {¢(x), <p2(x)}>)1£r€11')1(1<p2(x) =py(x2)

that results in inequality ¢ 2(x* )>@,(xy). Due to Property 4 the last inequality

implies that ¢, (x) > ¢, (x" )=, (x") for all x e(~ x o X, ) and, consequently,

max {p;(x), 0, (X)) =9 (x")=p,(x") for all xe(>x" x,). (24

Expressions (23) and (24) state that the certain condition holds on two subsets of
X whose union is X (see Property 1). Thus the expressions may be represented in the

unified form max {¢ (x), ¢, (x)} = ¢, (x")= ¥r (x*) for all x € X or, equivalently,
P1(x")=@s(x")=min max{p; (x),s (x)}. .
xeX

See Fig. 6 that illustrates the lemma for a special case when X consists of
asingle line segment.
Let P:Y —>{Y"Y"} be a function that for each polyline Y defines two
connected subsets Y’ and Y'' such that Y'UY'" =Y.
Definition 8. A function P is called a contracting one if
lim max dy(y,)')=0 (25)
i—0 y,y'el;
for any sequence (Y;|ieN) such that Y; e P(Y;_;) for all ieN*™.

1
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Let us choose some contracting function P and fix it for subsequent
consideration.
Definition 9. A sequence (¥;|0< i< m) is called a finite nesting for a function

f:X xY — N if conditions

Yo=Y, Y; eP(Y;_;), min max f(x, y)=min max f (x, ) (26)
xeX yeY; xeX yeY

are satisfied for all i, 0< i< m; an infinite sequence (Y;|i €N) is called an infinite
nesting for f if conditions (26) are satisfied for all ieN™.

Lemma 3. Let f: X xY — R be a continuous function convex on X and let
a finite nesting (Y¥;]0< i< m) for the function f exist such that

min max f (x, y)< min max f (x, y), min max f(x y)< rmnmaxf(x ), (27)
xeX yel’ xeX yeY xeX yeY xeX yeY

where {Y,Y"}=P(,,).
In this case points x|,x, € X, x| X5, x" €(x] <> x3), y| €¥', y; V", exist
such that

ST )=, yy)=minmax (v, ), (28)
xeX yeY
1 (u, yT ) > min max f(x, y) for all ue(x; o x' <), (29)
xeX yeY
f(u, y5 )= min max f (x, y) for all ue(x; <> x" <). (30)
xeX yeY

Proof. The equalities

min max{max f(x ), maxf(x )} =min max f(x, y) = mlnmaxf(x y) (31
xeX xeX yeY, xeX yeY¥

are valid. The first one is valid because Y,, =Y" U Y '’ and the second one is valid
due to Definition 9.

Functions ¢,:X - R, meaxf(x y), and p,: X >R, x|—>maxf(x ¥),
yeY yey"

satisfy conditions of Lemma 2. They are continuous due to Lemma 1, convex due to
Property 1 and satisfy conditions (16) and (17) because due to (31) conditions (27)
may be represented as

min ¢ (x)< min max {1 (x), ¢, (x)}, min g, (x)< min max {¢; (x),P, (x)}.
xeX xeX xeX xeX
It follows from Lemma 2 that there exist points

x; €earg min max f(x, y), x, €argmin max f(x, y), x| #xp, x* e(x) ©xy),
xeX yeY' xeX yeYy"

that satisfy equalities
max f (x", y) = max f(x", y) = min max {max / (x, y), max f (x, y)},
yeY'’ yey" xeX yel'’ yey"

and due to (31) equalities

rynng(x V)= maXf(x y)= Irn)l(lmaXf(x ¥)
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as well. Consequently, points yik €Y' and y; €Y' exist such that
SOy = (", y5) = minmax f(x, y). (32)
xeX yeY

Let us prove that points xy, x5, x", yf , yZ satisfy inequalities (29) and (30).

The chain of equalities and inequalities
f(xla J’T ) < maxf(xla J/) = minmaxf(xa y)< min maxf(x, y) :f(x*: yik )
yel'’ xeX yeY'’ xeX yeY

is valid. The inequality at the first link of the chain is evident, the equality at the

second link is valid by definition x; €arg min max f'(x, y), the strict inequality at
xeX yeY’

the third link is valid by condition (27), the equality at the last link is valid due
to (32). The chain results in inequality f (xq, yf V< f(x", yf ) that due to Property 4

implies inequalities (29). Similarly, the chain
f(x25 y; ) < max f(x27 J’) = min max f(x7 y)< minmaxf(xa y) :f(x)ka y; )
yeY" xeX yeY" xeX yeY

results in f(x,, yz )< f(x", y;) that due to Property 4 implies (30). [ ]

The next lemma relates to functions f: X xY — R, for which an infinite
nesting (Y;|7eN) exists. Let us recall that for such nestings

min max f (x, y) = min maxf(x y) for all ieN, (33)
xeX yel; xeX yeY
lim max dy(y, )')=0. (34)
i—=0 y,y'el;

Lemma 4. If for a continuous function f:X xY — R an infinite nesting

(Y;|ieN) exists then min max f(x, y) = max mmf(x ).
xeX yeY yeY x

Proof. Let for all x € X a sequence (max f (x, y)| i eN) be defined. Any such
yel;

sequence has a lower bound min max f'(u, y) because
ueX yeY

max f(x, y) 2 min max f (u, y) = min max f (u, y) for all ieN.
yeY; ueX yeY; ueX yeY
The inequality in this expression is evident, the equality is valid due to condition (33).
Any such sequence does not increase because ¥; < Y;_; and, consequently, it has a
limit such that

lim max f'(x, y) 2 min max f (x, y) for all xeX. (35)

i—>w yel; xeX yeY

Due to (34) all sequences (y; €Y;|i € N) have the same limit y* = lim y; and it
i—0
holds for the sequence (y; eargmax f(x, y)|i eN) as well. For all sequences of the
yey;
form (y; eargmax f(x, y)|ieN) and all x € X the chain
yel;

min max f (u, y)<11mma;<f(x y)=lim f(x, yi) =/ lim ;)= [ ™)

ueX yeY i—0© ye
is valid. The inequality at the first link of the chain is valid due to (35),
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the equality at the second link is valid because y; € argmax f'(x, y), the third link
yeY;
is valid because f is a continuous function. It follows from the chain that

min max f (u, y) < f(x, y") for all xeX
ueX yeY
)

and, consequently, for all x eargmin f(x,y")c X as well. So, for a value
xeX

x' eargmin f(x, y*) the chain
xeX

min max £ (u, ) < £ (', ") = min f (x, y” ) < max min f (x, )

ueX yeY xeX yeY xeX
is valid that implies min max f (x, y) < max mm f(x,y) and due to (1)
xeX yeY yeY x
min max f (x, y) = max min f (x, y). |
xeX yeY yel xeX

Since any function f:X xY — R has either a finite nesting that satisfies
condition (27) or an infinite nesting, Lemmas 3 and 4 may be formulated in the
following unified form.

Lemma 5. Let function f: X xY be convex on X and continuous on X x Y.

In this case the equality min max f (x, y) = max mm f(x,y) is valid or points
xeX yeY yeY x

yik,yz €Y, x;,xy €X, xq ¢x2,x* e(x) ©xy),

exist such that

f(X*ayik)=f(X*5y;)=minmaXf(x’y)a
xeX yeY

f(u, y{ )= minmax f(x, y) for all ue(x; <>x" <),
xeX yeY

f(u, y2)>m1nmaxf(x y) for all ue(>—x > Xxp).
xeX yeY

Evidently, the following dual version of Lemma 5 is correct as well.
Lemma 6. Let function f: X xY be concave on ¥ and continuous on X x Y.

In this case the equality min max f(x, y) = max min f'(x, y) is valid or points
xeX yeY yeY xeX
* * &
X, X €X, y,y €Y, m#yy, ¥y en# )

exist such that
SO1, Yy ) =[5, )" )=maxmin £ (x, y),
yeY xeX

£ (x{,v) < maxmin f (x, y) for all v e(y; < y* <),
yeY xeX
f(x5,v) < maxmin f(x, ) for all v e(> )" < »).
yel xeX
5. POLYLINES IN THE CARTHESIAN PRODUCT OF POLYLINES

Let X cR™ be a polyline and points x;,x", x, € X, x; #x5, X" €(x] © x3),

define subsets X[ =(x; <>x" <)X, X, =(=x" ©x;)c X.
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Xox (2} IO 53)

/7 NT

Fig. 7. Composing polyline XYX of subsets X;, X, and a path (yl* > y;)

Let Y =« R" be a polyline and points y;, ", vy €Y,y # ¥, y* e(y © »m),
define subsets Y, = (1 o)y <)y, Yy =(> y*<—>y2)CY.

Definition 10. For given points )] €Y, y5 €Y, x* € X and subsets X; c X,
X, c X a polyline XYX is a subset

XYX =[ X x { OUx" x (0] > p)]U[Xy x{»}lc X xY.

Figure 7 illustrates how a set XYX is composed of subsets X| c X, X, € X
and apath (y; < y5)cY.

Definition 11. For given points x; € X, x; € X, y* €Y and subsets Y| C Y,
Y, Y a polyline YXY is a subset

YXY =[{x] }x Y ]Ul(x] ©x3)x {y HUlfxs}xY]c X xY.

Figure 8 illustrates how a set YXY is composed of subsets Y| Y, Y, c Y and
a path (xiIF <—>x§)cX.

As may be seen from Definitions 10 and 11 any point on polylines XYX and YXY
represents some pair (x, y) of points x € X and yeY. The polyline X is a subset of
some m-dimensional linear space, the polyline Y belongs to other linear space,
n-dimesion al one, polylines XYX and YXY are two different subsets of a third space,
an (m + n)-dimensional one.
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*
Yox{xg}

Fig. 8. Composing polyline YXY of subsets ¥},Y, and a path (xl* <—>x; )

Lemma 7. Polylines XYX and YXY have a non-empty intersection.
Proof. The lemma is proved for a case when both conditions

)c*e(xik <—>x;), y*e(y;= <—>y§) (36)
are satisfied as well as for a case when one of these conditions is not satisfied.

Let both conditions (36) be satisfied. It follows from x*e(xik <—>x§) and

Definition 11 that
",y ) el < x3)x (' }]c ¥XY.

It follows from y* e( yik © y;) and Definition 10 that
@7 ) el x O © y2)]c XXX,
Thus, (x*, y")e XYX NYXY # Q.

Let one of the conditions (36) be not fulfilled. If x* ¢ (x] <> x5 ) then due to

Property 2 at least one of the conditions {x;,x5}c X, {x,x,}c X, fulfils. It
follows from Definition 10 that

if {x7,x3}c X then [{x],x3}x {3 < [X]x{) < X¥X,
if {x7,x3}c X, then [{x],x5}x {y;]c[X, x{)5}]c X¥X.

So, a point y' € {y], y5 } exists such that both points (xi,)') and (x5, y') belong
to XYX. Let us show that at least one of them belongs to YXY.
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Due to Property 1 the equality ¥ =Y, UY, is valid and so at least one of
inclusions )’ €Y or y' €Y, is valid. It follows from Definition 11 that

if y' €Y, then (x7,)")e[{x]}xY,]c YXY,
if y' €Y, then (x5,)')e[{x3}xY¥,]c YXY.

So, if x* e (x) <—>x§) then a point ) exists such that both points (xik ,y") and
(xz, V') belong to XYX and at least one of them belongs to YXY that results in
XYX NnYXY #O.

In a similar way it may be proved that XYX nYXY =@ if y" ¢()] <> ;) as
well. In this case a point x exists such that both points (x’, yik ) and (x', y; ) belong to
YXY and at least one of them belongs to XYX. |

6. PROOF COMPLETION

This section completes the proof of Theorem 1 as a corollary of Lemmas 5-7.
Theorem 1 states that if f: X xY — R is a continuous, convex on X and concave
on Y function then

min max f (x, y) = max min f (x, y). 37
xeX yeY yeY xeX

Proof. It follows from Lemma 5 that equality (37) is valid when conditions

STy ) =f (", y3)=min max f (x, y), (38)
xeX yeY
f(u, y; )= min max f (x, y) for all ue(x; < x" <), (39)
xeX yeY
£ (4, y5 )= minmax f(x, y) for all ue(>x"<>x;) (40)
xeX yeY

are inconsistent. It follows from Lemma 6 that equality (37) is valid when
conditions

SO7, ") =/ (x3,y") = maxmin £ (x, ), (41)
yeY xeX
f(x1,v) < maxmin f(x, y) for all v e(y < V' <), (42)
yeY xeX
f(x5,v) < maxmin f(x, y) for all v e(>y* <> ;) (43)
yeY xeX

are inconsistent. So, the proof of Theorem 1 is reduced to the proof that
equality (37) is valid when conditions (38)—(43) are consistent.
Let points x;, x, € X, x* e(x; <> x,) and points y, y5 €Y exist that satisfy

conditions (38)—(40) and let points yy, y, €7, el ¥ <> »p) and points xf ,
x5 €X exist that satisfy conditions (41)~(43). As before, let us denote
X =(xjox")cX, X, =(-x"ox)cX,
Ni=(n oy el Hh=(-) on)cl,
XYX =[X 1 x 1 HO T x (01 € 02)] 01X x (12 }],
YXY =[x }x V1O o x2)x (7 Ul < Y]
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Due to (39) and (40)

[ (%, )2 min max £ () for all (x, y) €[Xyx {31 J]ULX3 x {0}],

ueX veY

due to (38) and concavity of f on Y

f(x, )2 min max £ (u,v) for all (x, ) €[{x"}x ()] < »2)],

ueX veyY

that results in
f(x, ¥) 2 min max f(u,v) for all (x,y) e XYX. (44)
ueX veY
Similarly, it follows from (41)—~(43) and convexity of f on x € X that
f(x,y) <max min f(u,v) for all (x,y)eYXY. (45)
veY ueX

Due to Lemma 7 the sets XYX and YXY have a non-empty intersection. Due
to (44) and (45) any point (x')") € XYX N YXY satisfies inequalities

min max f(x, y) < f (x"y") < max min f(x, y)

xeX yeY yeY xe
that due to (1) results in min max f (x, y) = max min f(x, ). [ ]
xeX yeY yeY xeX
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M.I. Hlae3inrep

TEOPEMA IIPO MIHIMAKC (I)YHKEIIFI HA JEKAPTOBOMY JOBYTKY
PO3TANTYKEHUX JJAMAHUX JITHIN

Anoranisi. JloBeneHo TeopeMy NHpo MiHIMAakc I crienudigHOro kiacy (yHKIiH, BH3HAUYSHUX
HE HA OMyKJIMX MiAMHOXHHAX JIHIHHOTO MpPOCTOpY, a Ha JIaMaHMX JiHIAX Yy JiHIHHOMY mpo-
cTopi. IcHyBaHHS CiATTOBOI TOUKHM JUIsl TakuX (YHKIH He BHIUTHBAE GE31OCEPENHBO 3 KIACHIHOL
TEOpEeMH IIPO MiHIMakc i MmoTpedye IHAMBIAyaJIbHOTO aHai3y, IO TPYHTYETHCS Ha CHIJIBHOMY
BUKOPUCTAaHHI METOJIIB OMYKJIOr0 aHalizy Ta Teopii rpadiB. Y cTaTTi BUKOHAHO CaMOJIOCTAaTHIH
aHaii3 3amadi. Bona mictute y cobi Bce, IO MOTPIOHO A SICHOTO PO3YMIHHS 1 JIOBEAEHHS
OCHOBHOTO pe3yNbTaTy 0Oe3 3alydeHHs MOHATh, [0 BHXOAATH 3a MEXI CTaHAapTHOI MareMaTHd-
HOi ocBiTH imkeHepiB. CTaTTIO aJpecoBaHO IOCHITHWUKAM, SIKi BHKOPHCTYIOTH METOIU
onTUMi3amii y NMPUKIAAHIA MeXaHilli, eJeKTPOTEeXHili Ta IHIINX NPHKIAJHAX HayKax, a TaKoX
MaTeMaTHKaM-BHKJIalayaM OITyKJIOTO aHali3y Ta METOIIB ONTUMi3amii I iHKeHepiB.

KawuoBi cioBa: MiHIMakc, CiliyioBa TOYKa, OMYKIMH aHANi3, ONTHMI3allis, pPO3raayKeHa Jiama-
Ha JTiHis.
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