А.В. Мамченко, Т.В. Кушнир, Ю.А. Дмитренко

РАВНОВЕСНАЯ СОРБЦИЯ СЕРНОЙ КИСЛОТЫ СЛАБООСНОВНЫМ ПОЛИАКРИЛОВЫМ АНИОНИТОМ

Исследована равновесная сорбция серной кислоты слабоосновным полиакриловым анионитом Purolite A845 в форме свободного основания. Доказано отсутствие образования бисульфатной формы сорбента. Обнаружена идеальность раствора резинатов при переводе анионита в солевую форму. Проведена оценка количества сильноосновных групп ионообменника.

Ключевые слова: константа равновесия, полиакриловые аниониты, серная кислота.

Введение. В практике водоподготовки слабоосновные полиакриловые аниониты успешно эксплуатируются на ТЭЦ, ТЭС, АЭС и ряде других предприятий в ОН-фильтрах первой ступени установок обессоливания воды для сорбции сильных кислот (в основном соляной и серной), полученных в процессе Н-катионирования [1 – 6]. Применение на этой стадии полиакриловых ионитов оправдано значительно меньшей "отравляемостью" таких сорбентов растворенными в воде органическими соединениями. В результате при удовлетворительной степени удаления органических веществ, что важно при поступлении очищаемой воды на фильтры последующих ступеней, значительно снижается расход реагентов для регенерации и промывки полиакриловых ионитов практически без уменьшения их рабочей обменной емкости.

Цель данной работы — исследование промышленного образца слабоосновного полиакрилового анионита Purolite A845 производства компании "Purolite International Limited". Полимерная матрица сорбента синтезирована на основе производных акриловой кислоты и дивинилбензола. В качестве обменных центров ионита выступают третичные аминогруппы, при этом в анионите существует небольшое количество сильноосновных групп четвертичного аммониевого основания [7, 8]. По данным [8], количество таких групп составляет 3 — 7% от общего числа ионообменных центров.

В [8] изучена равновесная сорбция соляной кислоты анионитом Purolite A845. Установлено, что раствор резинатов при переводе ионита из формы свободного основания в сильнодиссоциированную хлор-форму соответствует закону Рауля и, следовательно, является идеальным. Это принципиальное отличие ионообменного равновесия на слабооснов-

© А.В. МАМЧЕНКО, Т.В. КУШНИР, Ю.А. ДМИТРЕНКО, 2011

ных полиакриловых анионитах по сравнению с анионитами, синтезированными на основе сополимеров стирола и дивинилбензола, связано с высокой подвижностью ионогенных центров в трехмерной матрице полиакриловых ионообменников. Сохраняется ли такой эффект в случае сорбции серной кислоты — неизвестно. Принципиальные отличия при сорбции соляной и серной кислот могут быть вызваны, во-первых, вдвое большим зарядом сульфат-ионов, что усиливает электростатическое взаимодействие противоионов в фазе ионитов, и, во-вторых, принципиальной возможностью сорбции анионов серной кислоты как в виде сульфат-, так и бисульфат-ионов по следующим реакциям:

$$2R + H_2SO_4 = (RH)_2SO_4;$$
 (1)

$$2R + SO_4^{2-} + 2H_2O = (RH)_2SO_4 + 2HO^-;$$
 (2)

$$(RH)_{2}SO_{4} + H_{2}SO_{4} = 2(RH)HSO_{4},$$
 (3)

где R – аминогруппа ионита.

Известно [9-12], что на сильноосновных анионообменниках с четвертичными аминогруппами реакция (3) протекает даже в разбавленных растворах серной кислоты. Такой эффект положен в основу способа обессоливания воды [13-15]. Судя по данным [16], аналогичное явление может наблюдаться и на слабоосновных анионитах, поскольку обнаружено, что рабочая обменная емкость поликонденсационного анионита AH-31 существенно возрастает при увеличении доли серной кислоты в суммарном содержании кислот в H-ионированной воде.

Установить, протекает ли реакция (3) при сорбции серной кислоты на анионите Purolite A845, возможно путем сравнения полной обменной емкости сорбента (E_0), найденной по сорбции соляной и серной кислот.

Методика эксперимента. Подготовка ионита к исследованию и методика эксперимента, основанная на определении удельной сорбции серной кислоты (e, Γ -экв/к Γ) и измерении равновесной величины pH, описана в [17].

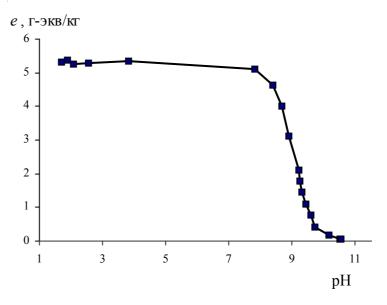

Результаты и их обсуждение. В табл. 1 представлены данные определения E_0 рабочего образца анионита. Сравнение значений E_0 при сорбции соляной [8] и серной кислот показало, что в рамках ошибки эксперимента эти величины совпадают. Таким образом, можно утверждать, что бисульфатная форма слабоосновного полиакрилового анионита Purolite A845 при равновесных концентрациях серной кислоты вплоть до 30 г-экв/м³ (максимальная концентрация кислоты в равновесных растворах в условиях эксперимента) не образуется.

Табл. 1. Результаты определения влажности (w) и полной обменной емкости (E_o) слабоосновного полиакрилового анионита Purolite A845

Анионит	Cop	бция с	серной ки	слоты	Сорбция соляной кислоты [8]				
	w, %	$\Delta(w)$	E_0 , Γ -экв/к Γ	$\Delta (E_0)$	w, %	$\Delta(w)$	E_0 , г-экв/кг	$\Delta (E_0)$	
Purolite A845	36,7	0,7		0,8	49,6	0,5	5,0	1,1	

Примечание. Величина Δ представляет собой доверительный интервал при уровне значимости 0,05.

В общем случае процесс сорбции сульфат-ионов как серной кислоты, так и сульфата натрия проходит по реакции (2), что подтверждает кривая потенциометрического титрования анионита на рис. 1, из которого видно, что сорбция начинается при рН ~ 10 . Это предполагает наличие щелочи в равновесном растворе.

Puc. 1. Кривая титрования слабоосновного полиакрилового анионита Purolite A 845 в форме свободного основания серной кислотой в координатах е от pH

Согласно закону действующих масс реакции (2) соответствует определение кажущейся константы равновесия К в виде

$$K = X_2 a_1^2 / X_1^2 a_2 a_3^2, \tag{4}$$

где a_1 и a_2 — активности гидроксид- и сульфат-ионов во внешнем растворе; a_3 — активность растворителя; X_1 — мольная доля свободного основания в ионообменниках; X_2 — мольная доля сульфат-резината.

Из (4) вытекает

$$K^* = K/K_w^2 = X_2/X_1^2 a_2 a_4^2,$$
 (5)

где K^* – эмпирическая постоянная; $K_{_{\!\!w}}$ – ионное произведение воды, равное величине $a_{_1}a_{_4}/a_{_3}$; $a_{_4}$ – активность ионов водорода во внешнем растворе.

Коэффициент активности растворителя ($\gamma H_2 O$) принимали равным единице, pH (как отрицательный логарифм активности водородных ионов) находили экспериментально. Активность сульфат-ионов рассчитывали исходя из молярной концентрации сульфата натрия в исходном растворе, щелочности (кислотности) равновесного раствора и величины коэффициента активности сульфат-ионов ($\gamma H_2 SO_4$):

$$pSO_4 = -\lg a_2 = -\lg[\gamma H_2SO_4 1/2(C_0 + C_{pk} - C_{pk})],$$
 (6)

где C_0 – исходная концентрация сульфата натрия в исходном растворе; $C_{\rm pk}$ – кислотность равновесного раствора; $C_{\rm pii}$ – щелочность равновесного раствора, г-экв/дм³. $\gamma {\rm SO}_4$ рассчитывали по [18]:

$$-\lg \gamma SO_4 = (1,017 \,\mu^{0.5})/(1 + \mu^{0.5}), \tag{7}$$

где μ — ионная сила раствора, вычисленная в данном случае следующим образом:

$$\mu = 1/2(3C_{\rm pk} - C_{\rm piii} + 3C_0). \tag{8}$$

Если выразить мольную долю сульфат-резината через степень трансформации анионита в солевую форму α , как это было сделано в [17], и затем прологарифмировать (5), можно записать уравнение

$$2pH + pSO_4 = lgK^* - lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\}.$$
 (9)

На рис. 2 представлена зависимость $2pH + pSO_4$ от $lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\}$. В области значений $lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\} > 1$ экспериментальные данные с учетом ошибки определения описываются уравнением (9), т. е. ложатся на прямую, тангенс угла наклона которой равен единице.

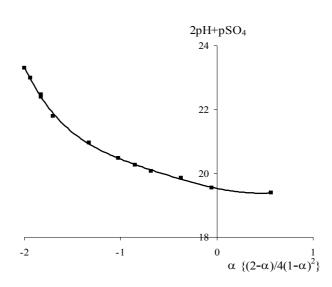


Рис. 2. Экспериментальные зависимости в координатах уравнения (9) для анионита Purolite A 845

В общем случае для описания свойств ионообменников применяют обобщенное уравнение Хендерсона-Хассельбалха, которое в случае сорбции серной кислоты по (2) имеет вид [17, 19, 20]:

$$2pH + pSO_4 = lgK^{**} - nlg\{\alpha(2-\alpha)/[4(1-\alpha)^2]\},$$
 (10)

где n — эмпирический коэффициент, указывающий на степень неидеальности раствора резинатов (в случае идеального раствора n=1); $\lg K^{**}$ — модифицированная кажущаяся константа равновесия, $\lg K^{**} = \lg K^* + (n-1) \lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\}$.

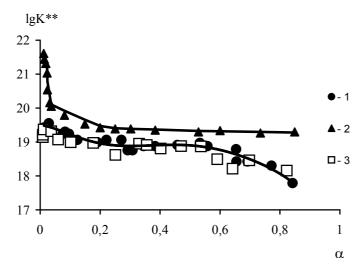

В табл. 2 представлены результаты обработки экспериментальных данных равновесной сорбции серной кислоты слабоосновными полиакриловыми анионитами по (10). Величина параметра n для ионита Purolite A845 в области значений $\lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\}>1$ в пределах достоверности определения равна единице, что соответствует идеальному раствору резинатов. В то же время из данных табл. 2 видно, что в случае равновесной сорбции серной кислоты слабоосновными анионитами, содержащими только третичные аминогруппы (Amberlite IRA-67 и Lewatit VP.OC.1072), растворы резинатов этих сорбентов неидеальны (значения n > 1). Такое различие, возможно, вызвано в (10) разной степенью сшивки полимерных цепочек, что приводит к их большей подвижности в ионите Purolite A845, а также высокой степенью диссоциации четвертичных аминогрупп, которая способствует дополнительной набухаемости матрицы анионита.

Табл. 2. Результаты анализа экспериментальных данных сорбции серной кислоты слабоосновными анионитами по (10)

Анионит	n	S(n)	$\Delta(n)$	lgK*	S(lgK*)	Δ(lgK*)	r^2
Purolite A845	0,98	0,07	0,06	19,55	0,06	0,05	0,975
Amberlite IRA-67[17]	1,44	0,04	0,02	18,66	0,05	0,02	0,982
Lewatit VP.OC.1072 [17]	1,31	0,03	0,02	18,71	0,04	0,02	0,985

Примечание. S — стандартное отклонение.

В области малых значений $\lg\{\alpha(2-\alpha)/[4(1-\alpha)^2]\}$ зафиксировано отклонение от линейной зависимости. Аналогичная картина наблюдалась в [8] при исследовании сорбции соляной кислоты анионитом. Такое отклонение от линейной зависимости связано с сорбцией кислоты на сильноосновных центрах ионита. В подтверждение этому на рис. 3 представлена зависимость $\lg K^*$ от α для анионита Purolite A845 и слабоосновных полиакриловых анионитов Amberlite IRA-67 и Lewatit VP.OC.1072, которые не содержат сильноосновных групп.

 $Puc.\ 3.\ 3$ ависимость $lg\ K^{**}\ (10)$ от степени трансформации анионита в сульфат-форму: $1-Amberlite\ IRA-67\ [17];\ 2-Lewatit\ VP.\ OC.\ 1072\ [17];\ 3-Purolite\ A\ 845$

В области малых значений α для ионита Purolite A845 наблюдалось резкое повышение lgK^{**} до величин, характерных для обмена на сильноосновных центрах.

Выводы. Для оценки количества сильноосновных групп слабоосновного полиакрилового анионита Purolite A845 на кривой зависимости $2pH + pSO_4$ от $lg\{\alpha(2-\alpha)/[4(1-\alpha)^2]\}$ (см. рис. 2) была найдена точка перегиба (равенство нулю второй производной функции). Вторая производная оказалась квадратным уравнением, при решении которого было найдено два действительных корня, один из них явно не подходил к условиям задачи. Максимальное значение α , при котором в ионите сорбция происходит в основном на сильноосновных центрах, оказалось равным 0,06 (логика оценки количества сильноосновных групп связана с предположением, что сильноосновные центры вступают в реакцию ионного обмена в первую очередь и сорбция на слабоосновных центрах в это время пренебрежительно мала). Таким образом, можно утверждать, что количество групп четвертичного аммониевого основания в ионите Purolite A845 составляло $\sim 6\%$, что соответствует аналогичному показателю для сорбции соляной кислоты [8].

Резюме. Досліджено рівноважну сорбцію сірчаної кислоти слабкоосновним поліакриловим аніонітом Purolite A845 в формі вільної основи. Встановлено відсутність сульфат-бісульфатної рівноваги на обмінних центрах іоніту. Зафіксована ідеальність розчину резинатів при переводі аніоніту в сильнодисоційовану сульфат-форму. Проведена оцінка кількості сильноосновних груп іонообмінника.

A. V. Mamchenko, T. V. Kushnir, Y. A. Dmitrenco

EQUILIBRIUM AND NON-EQUILIBRIUM SORPTION OF SULFURIC ACID BY WEAKLY BASICPOLYACRYLIC ANION EXCHANGER

Summary

Equilibrium sorption of sulfuric acid by weakly basic polyacrylic anion exchanger in free-base form Purolite A845 was investigated. It was revealed, that the sulphate-bisulphate equilibrium on exchange centres of ion exchanger is absent. It was fixed, that solution of resinates of sulphate-form of anion exchanger is regular. The amount of strongly basic groups of ion-exchanger was appreciated.

- 1. *Мамченко А.В., Вайман А.Б., Занина Г.В. и др.* // Химия и технология воды. 1997. **19**, №4. С. 406 416.
- 2. *Мамченко А.В., Вайман А.Б., Чернова Л.Г.* // Там же . 1999. **21**, №4. С. 341 355.
- 3. Вайман А.Б., Мамченко А.В., Рыжикова Н.В. и др. // Энергетика и электрификация. -1997. №4. C. 10 17.
- 4. *Кишневский В.А.* Современные методы обработки воды в энергетике. Одесса: ОГПУ, 1999. 196 с.
- 5. *Гостьков В.В., Ларин А.Б.* //Новое в рос. энергетике. -2007. -3, № 2. С. 17 23.
- 6. *Фейзиев Г.К.* Высокоэффективные методы умягчения, опреснения и обессоливания воды. М. Энергоатомиздат, 1988. 192 с.
- 7. *Purolite.* Ионообменные смолы для очистки воды. Каунас: Jurby enterprise, 1996. 77 с.
- 8. *Мамченко А.В., Савченко О.А.*// Химия и технология воды. -2004. -26, №3. -C. 260 274.
- 9. *Мамченко А.В., Александрова Л.Н., Якимова Т.И.* // Журн. физ. химии. 1995. **69**, № 6. С. 1085 1088.
- 10. Kraus K. A., Nelson F. // J. Amer. Chem. Soc. 1953. **75,** N11. P. 2768 2770
- 11. *Nelson F., Kraus K.A* // Там же. 1958. **80**, N16. P. 4156 4161.
- 12. Aderson R.E., Bauman W.C., Harrington D.K. // Ind. Eng. Chem. 1955. 47, N8. P. 1620 1623.
- 13. *Linch. M. A., Mintz M. S.*// J. Amer. Water Works Assoc. 1972. **64**, N11. P. 711 725.
- 14. *Zaban W., Fithian T., Maneval D.R.* // Ibid. 1972. **64**, N11. P. 775 750.
- 15. *Мамченко А.В.* // Химия и технология воды . 1995. 17, №5. С. 475 495.
- 16. *Справочник* химика-энергетика: В 3-х т. / Под ред. С.М. Гурвича. М.: Энергия, $1972. T. \ 1. 455 \ c.$
- 17. *Мамченко А.В., Кушнир Т.В.* // Химия и технология воды. 2007. **81**, №2. С. 327 333.
- 18. *Скорчелетти В.В.* Теоретическая электрохимия. Л.: Госхимиздат, 1963. 608 с.
- 19. *Katchalsky A., Spitnik P. //* J. Polymer Sci. 1947. **2,** N4. P. 432 446.
- 20. Солдатов В.С. // Докл. РАН. 1994. 336, №6. С. 782 785.

Ин-т коллоид. химии и химии воды им. А.В. Думанского НАН Украины, г. Киев

Поступила 29. 07. 2008

А.В. Мамченко, Т.В. Кушнир, Ю.А. Дмитренко

РАВНОВЕСНАЯ СОРБЦИЯ СЕРНОЙ КИСЛОТЫ СЛАБООСНОВНЫМ ПОЛИАКРИЛОВЫМ АНИОНИТОМ

Исследована равновесная сорбция серной кислоты слабоосновным полиакриловым анионитом Purolite A845 в форме свободного основания. Доказано отсутствие образования бисульфатной формы сорбента. Обнаружена идеальность раствора резинатов при переводе анионита в солевую форму. Проведена оценка количества сильноосновных групп ионообменника.

Ключевые слова: константа равновесия, полиакриловые аниониты, серная кислота.

Введение. В практике водоподготовки слабоосновные полиакриловые аниониты успешно эксплуатируются на ТЭЦ, ТЭС, АЭС и ряде других предприятий в ОН-фильтрах первой ступени установок обессоливания воды для сорбции сильных кислот (в основном соляной и серной), полученных в процессе Н-катионирования [1 – 6]. Применение на этой стадии полиакриловых ионитов оправдано значительно меньшей "отравляемостью" таких сорбентов растворенными в воде органическими соединениями. В результате при удовлетворительной степени удаления органических веществ, что важно при поступлении очищаемой воды на фильтры последующих ступеней, значительно снижается расход реагентов для регенерации и промывки полиакриловых ионитов практически без уменьшения их рабочей обменной емкости.

Цель данной работы — исследование промышленного образца слабоосновного полиакрилового анионита Purolite A845 производства компании "Purolite International Limited". Полимерная матрица сорбента синтезирована на основе производных акриловой кислоты и дивинилбензола. В качестве обменных центров ионита выступают третичные аминогруппы, при этом в анионите существует небольшое количество сильноосновных групп четвертичного аммониевого основания [7, 8]. По данным [8], количество таких групп составляет 3 — 7% от общего числа ионообменных центров.

В [8] изучена равновесная сорбция соляной кислоты анионитом Purolite A845. Установлено, что раствор резинатов при переводе ионита из формы свободного основания в сильнодиссоциированную хлор-форму соответствует закону Рауля и, следовательно, является идеальным. Это принципиальное отличие ионообменного равновесия на слабооснов-

© А.В. МАМЧЕНКО, Т.В. КУШНИР, Ю.А. ДМИТРЕНКО, 2011

ных полиакриловых анионитах по сравнению с анионитами, синтезированными на основе сополимеров стирола и дивинилбензола, связано с высокой подвижностью ионогенных центров в трехмерной матрице полиакриловых ионообменников. Сохраняется ли такой эффект в случае сорбции серной кислоты — неизвестно. Принципиальные отличия при сорбции соляной и серной кислот могут быть вызваны, во-первых, вдвое большим зарядом сульфат-ионов, что усиливает электростатическое взаимодействие противоионов в фазе ионитов, и, во-вторых, принципиальной возможностью сорбции анионов серной кислоты как в виде сульфат-, так и бисульфат-ионов по следующим реакциям:

$$2R + H_2SO_4 = (RH)_2SO_4;$$
 (1)

$$2R + SO_4^{2-} + 2H_2O = (RH)_2SO_4 + 2HO^-;$$
 (2)

$$(RH)_{2}SO_{4} + H_{2}SO_{4} = 2(RH)HSO_{4},$$
 (3)

где R – аминогруппа ионита.

Известно [9-12], что на сильноосновных анионообменниках с четвертичными аминогруппами реакция (3) протекает даже в разбавленных растворах серной кислоты. Такой эффект положен в основу способа обессоливания воды [13-15]. Судя по данным [16], аналогичное явление может наблюдаться и на слабоосновных анионитах, поскольку обнаружено, что рабочая обменная емкость поликонденсационного анионита AH-31 существенно возрастает при увеличении доли серной кислоты в суммарном содержании кислот в H-ионированной воде.

Установить, протекает ли реакция (3) при сорбции серной кислоты на анионите Purolite A845, возможно путем сравнения полной обменной емкости сорбента (E_0), найденной по сорбции соляной и серной кислот.

Методика эксперимента. Подготовка ионита к исследованию и методика эксперимента, основанная на определении удельной сорбции серной кислоты (e, Γ -экв/к Γ) и измерении равновесной величины pH, описана в [17].

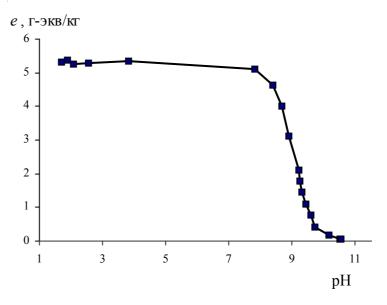

Результаты и их обсуждение. В табл. 1 представлены данные определения E_0 рабочего образца анионита. Сравнение значений E_0 при сорбции соляной [8] и серной кислот показало, что в рамках ошибки эксперимента эти величины совпадают. Таким образом, можно утверждать, что бисульфатная форма слабоосновного полиакрилового анионита Purolite A845 при равновесных концентрациях серной кислоты вплоть до 30 г-экв/м³ (максимальная концентрация кислоты в равновесных растворах в условиях эксперимента) не образуется.

Табл. 1. Результаты определения влажности (w) и полной обменной емкости (E_o) слабоосновного полиакрилового анионита Purolite A845

Анионит	Cop	бция с	серной ки	слоты	Сорбция соляной кислоты [8]				
	w, %	$\Delta(w)$	E_0 , Γ -экв/к Γ	$\Delta (E_0)$	w, %	$\Delta(w)$	E_0 , г-экв/кг	$\Delta (E_0)$	
Purolite A845	36,7	0,7		0,8	49,6	0,5	5,0	1,1	

Примечание. Величина Δ представляет собой доверительный интервал при уровне значимости 0,05.

В общем случае процесс сорбции сульфат-ионов как серной кислоты, так и сульфата натрия проходит по реакции (2), что подтверждает кривая потенциометрического титрования анионита на рис. 1, из которого видно, что сорбция начинается при рН ~ 10 . Это предполагает наличие щелочи в равновесном растворе.

Puc. 1. Кривая титрования слабоосновного полиакрилового анионита Purolite A 845 в форме свободного основания серной кислотой в координатах е от pH

Согласно закону действующих масс реакции (2) соответствует определение кажущейся константы равновесия К в виде

$$K = X_2 a_1^2 / X_1^2 a_2 a_3^2, \tag{4}$$

где a_1 и a_2 — активности гидроксид- и сульфат-ионов во внешнем растворе; a_3 — активность растворителя; X_1 — мольная доля свободного основания в ионообменниках; X_2 — мольная доля сульфат-резината.

Из (4) вытекает

$$K^* = K/K_w^2 = X_2/X_1^2 a_2 a_4^2,$$
 (5)

где K^* – эмпирическая постоянная; $K_{_{\!\!w}}$ – ионное произведение воды, равное величине $a_{_1}a_{_4}/a_{_3}$; $a_{_4}$ – активность ионов водорода во внешнем растворе.

Коэффициент активности растворителя ($\gamma H_2 O$) принимали равным единице, pH (как отрицательный логарифм активности водородных ионов) находили экспериментально. Активность сульфат-ионов рассчитывали исходя из молярной концентрации сульфата натрия в исходном растворе, щелочности (кислотности) равновесного раствора и величины коэффициента активности сульфат-ионов ($\gamma H_2 SO_4$):

$$pSO_4 = -\lg a_2 = -\lg[\gamma H_2SO_4 1/2(C_0 + C_{pk} - C_{pk})],$$
 (6)

где C_0 – исходная концентрация сульфата натрия в исходном растворе; $C_{\rm pk}$ – кислотность равновесного раствора; $C_{\rm pii}$ – щелочность равновесного раствора, г-экв/дм³. $\gamma {\rm SO}_4$ рассчитывали по [18]:

$$-\lg \gamma SO_4 = (1,017 \,\mu^{0.5})/(1 + \mu^{0.5}), \tag{7}$$

где μ — ионная сила раствора, вычисленная в данном случае следующим образом:

$$\mu = 1/2(3C_{\rm pk} - C_{\rm piii} + 3C_0). \tag{8}$$

Если выразить мольную долю сульфат-резината через степень трансформации анионита в солевую форму α , как это было сделано в [17], и затем прологарифмировать (5), можно записать уравнение

$$2pH + pSO_4 = lgK^* - lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\}.$$
 (9)

На рис. 2 представлена зависимость $2pH + pSO_4$ от $lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\}$. В области значений $lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\} > 1$ экспериментальные данные с учетом ошибки определения описываются уравнением (9), т. е. ложатся на прямую, тангенс угла наклона которой равен единице.

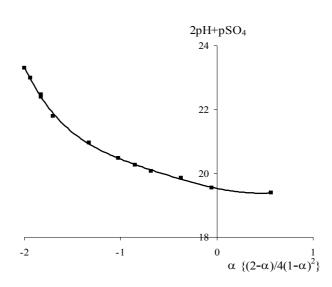


Рис. 2. Экспериментальные зависимости в координатах уравнения (9) для анионита Purolite A 845

В общем случае для описания свойств ионообменников применяют обобщенное уравнение Хендерсона-Хассельбалха, которое в случае сорбции серной кислоты по (2) имеет вид [17, 19, 20]:

$$2pH + pSO_4 = lgK^{**} - nlg\{\alpha(2-\alpha)/[4(1-\alpha)^2]\},$$
 (10)

где n — эмпирический коэффициент, указывающий на степень неидеальности раствора резинатов (в случае идеального раствора n=1); $\lg K^{**}$ — модифицированная кажущаяся константа равновесия, $\lg K^{**} = \lg K^* + (n-1) \lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\}$.

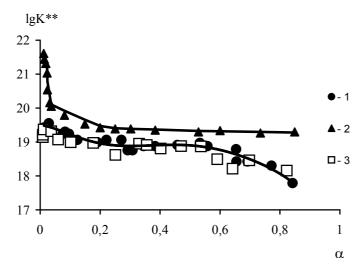

В табл. 2 представлены результаты обработки экспериментальных данных равновесной сорбции серной кислоты слабоосновными полиакриловыми анионитами по (10). Величина параметра n для ионита Purolite A845 в области значений $\lg \{\alpha(2-\alpha)/[4(1-\alpha)^2]\}>1$ в пределах достоверности определения равна единице, что соответствует идеальному раствору резинатов. В то же время из данных табл. 2 видно, что в случае равновесной сорбции серной кислоты слабоосновными анионитами, содержащими только третичные аминогруппы (Amberlite IRA-67 и Lewatit VP.OC.1072), растворы резинатов этих сорбентов неидеальны (значения n > 1). Такое различие, возможно, вызвано в (10) разной степенью сшивки полимерных цепочек, что приводит к их большей подвижности в ионите Purolite A845, а также высокой степенью диссоциации четвертичных аминогрупп, которая способствует дополнительной набухаемости матрицы анионита.

Табл. 2. Результаты анализа экспериментальных данных сорбции серной кислоты слабоосновными анионитами по (10)

Анионит	n	S(n)	$\Delta(n)$	lgK*	S(lgK*)	Δ(lgK*)	r^2
Purolite A845	0,98	0,07	0,06	19,55	0,06	0,05	0,975
Amberlite IRA-67[17]	1,44	0,04	0,02	18,66	0,05	0,02	0,982
Lewatit VP.OC.1072 [17]	1,31	0,03	0,02	18,71	0,04	0,02	0,985

Примечание. S — стандартное отклонение.

В области малых значений $\lg\{\alpha(2-\alpha)/[4(1-\alpha)^2]\}$ зафиксировано отклонение от линейной зависимости. Аналогичная картина наблюдалась в [8] при исследовании сорбции соляной кислоты анионитом. Такое отклонение от линейной зависимости связано с сорбцией кислоты на сильноосновных центрах ионита. В подтверждение этому на рис. 3 представлена зависимость $\lg K^*$ от α для анионита Purolite A845 и слабоосновных полиакриловых анионитов Amberlite IRA-67 и Lewatit VP.OC.1072, которые не содержат сильноосновных групп.

 $Puc.\ 3.\ 3$ ависимость $lg\ K^{**}\ (10)$ от степени трансформации анионита в сульфат-форму: $1-Amberlite\ IRA-67\ [17];\ 2-Lewatit\ VP.\ OC.\ 1072\ [17];\ 3-Purolite\ A\ 845$

В области малых значений α для ионита Purolite A845 наблюдалось резкое повышение lgK^{**} до величин, характерных для обмена на сильноосновных центрах.

Выводы. Для оценки количества сильноосновных групп слабоосновного полиакрилового анионита Purolite A845 на кривой зависимости $2pH + pSO_4$ от $lg\{\alpha(2-\alpha)/[4(1-\alpha)^2]\}$ (см. рис. 2) была найдена точка перегиба (равенство нулю второй производной функции). Вторая производная оказалась квадратным уравнением, при решении которого было найдено два действительных корня, один из них явно не подходил к условиям задачи. Максимальное значение α , при котором в ионите сорбция происходит в основном на сильноосновных центрах, оказалось равным 0,06 (логика оценки количества сильноосновных групп связана с предположением, что сильноосновные центры вступают в реакцию ионного обмена в первую очередь и сорбция на слабоосновных центрах в это время пренебрежительно мала). Таким образом, можно утверждать, что количество групп четвертичного аммониевого основания в ионите Purolite A845 составляло $\sim 6\%$, что соответствует аналогичному показателю для сорбции соляной кислоты [8].

Резюме. Досліджено рівноважну сорбцію сірчаної кислоти слабкоосновним поліакриловим аніонітом Purolite A845 в формі вільної основи. Встановлено відсутність сульфат-бісульфатної рівноваги на обмінних центрах іоніту. Зафіксована ідеальність розчину резинатів при переводі аніоніту в сильнодисоційовану сульфат-форму. Проведена оцінка кількості сильноосновних груп іонообмінника.

A. V. Mamchenko, T. V. Kushnir, Y. A. Dmitrenco

EQUILIBRIUM AND NON-EQUILIBRIUM SORPTION OF SULFURIC ACID BY WEAKLY BASICPOLYACRYLIC ANION EXCHANGER

Summary

Equilibrium sorption of sulfuric acid by weakly basic polyacrylic anion exchanger in free-base form Purolite A845 was investigated. It was revealed, that the sulphate-bisulphate equilibrium on exchange centres of ion exchanger is absent. It was fixed, that solution of resinates of sulphate-form of anion exchanger is regular. The amount of strongly basic groups of ion-exchanger was appreciated.

- 1. *Мамченко А.В., Вайман А.Б., Занина Г.В. и др.* // Химия и технология воды. 1997. **19**, №4. С. 406 416.
- 2. *Мамченко А.В., Вайман А.Б., Чернова Л.Г.* // Там же . 1999. **21**, №4. С. 341 355.
- 3. Вайман А.Б., Мамченко А.В., Рыжикова Н.В. и др. // Энергетика и электрификация. -1997. №4. C. 10 17.
- 4. *Кишневский В.А.* Современные методы обработки воды в энергетике. Одесса: ОГПУ, 1999. 196 с.
- 5. *Гостьков В.В., Ларин А.Б.* //Новое в рос. энергетике. -2007. -3, № 2. С. 17 23.
- 6. *Фейзиев Г.К.* Высокоэффективные методы умягчения, опреснения и обессоливания воды. М. Энергоатомиздат, 1988. 192 с.
- 7. *Purolite.* Ионообменные смолы для очистки воды. Каунас: Jurby enterprise, 1996. 77 с.
- 8. *Мамченко А.В., Савченко О.А.*// Химия и технология воды. -2004. -26, №3. -C. 260 274.
- 9. *Мамченко А.В., Александрова Л.Н., Якимова Т.И.* // Журн. физ. химии. 1995. **69**, № 6. С. 1085 1088.
- 10. Kraus K. A., Nelson F. // J. Amer. Chem. Soc. 1953. **75,** N11. P. 2768 2770
- 11. *Nelson F., Kraus K.A* // Там же. 1958. **80**, N16. P. 4156 4161.
- 12. Aderson R.E., Bauman W.C., Harrington D.K. // Ind. Eng. Chem. 1955. 47, N8. P. 1620 1623.
- 13. *Linch. M. A., Mintz M. S.*// J. Amer. Water Works Assoc. 1972. **64**, N11. P. 711 725.
- 14. *Zaban W., Fithian T., Maneval D.R.* // Ibid. 1972. **64**, N11. P. 775 750.
- 15. *Мамченко А.В.* // Химия и технология воды . 1995. 17, №5. С. 475 495.
- 16. *Справочник* химика-энергетика: В 3-х т. / Под ред. С.М. Гурвича. М.: Энергия, $1972. T. \ 1. 455 \ c.$
- 17. *Мамченко А.В., Кушнир Т.В.* // Химия и технология воды. 2007. **81**, №2. С. 327 333.
- 18. *Скорчелетти В.В.* Теоретическая электрохимия. Л.: Госхимиздат, 1963. 608 с.
- 19. *Katchalsky A., Spitnik P. //* J. Polymer Sci. 1947. **2,** N4. P. 432 446.
- 20. Солдатов В.С. // Докл. РАН. 1994. 336, №6. С. 782 785.

Ин-т коллоид. химии и химии воды им. А.В. Думанского НАН Украины, г. Киев

Поступила 29. 07. 2008