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Методы искусственного интеллекта (ИИ) могут 
использоваться для улучшения систем автоматизации в производственных 
процессах. Однако применение этих методов в промышленности не 
получило широкого распространения из-за высокой стоимости 
экспериментов с системами ИИ в обычных производственных системах. 
Для снижения стоимости экспериментов в этой области нами разработано 
специальное микромеханическое оборудование, аналогичное обычному 
механическому оборудованию, но гораздо меньших размеров и, 
следовательно, более низкой стоимости. Это оборудование может быть 
использовано для оценки различных методов ИИ простым и недорогим 
способом. Методы, которые показывают хорошие результаты, могут быть 
переданы в промышленность путем соответствующего масштабирования. 
Кратко описаны прототипы микрооборудования, имеющих низкую 
стоимость, и некоторых методов ИИ, которые могут быть оценены с 
такими прототипами.  

Методи штучного інтелекту (ШІ) можуть 
використовуватися для поліпшення систем автоматизації у виробничих 
процесах. Однак застосування цих методів у промисловості не набуло 
широкого поширення через високу вартість експериментів з системами 
ШІ у звичайних виробничих системах. Для зниження вартості 
експериментів у цій галузі нами розроблено спеціальне мікромеханічне 
обладнання, аналогічне звичайному механічному обладнанню, але 
набагато менших розмірів і, отже, більш низької вартості. Це обладнання 
може бути використано для оцінки різних методів ШІ простим і 
недорогим способом. Методи, які показують хороші результати, можуть 
бути передані в промисловість шляхом відповідного масштабування. Ця 
Коротко описано прототипи мікрооборудованія, що мають низьку 
вартість, та деяких методів ШІ, які можуть бути оцінені з такими 
прототипами. 

 
INTRODUCTION 

 
Many Artificial Intelligence methods were proposed in the 40–60s of 20th 

century. Among them very interesting approach was proposed by Canadian 
researcher D.O. Hebb [1]. D.O. Hebb supposed that the neurons of human brain 
form the assemblies during the learning process. Each assembly can correspond to 
an object, property or concept of external world. The neurons of an assembly have 
many excitatory connections, so if any part of the assembly is excited, all the other 
neurons of this assembly are excited due to excitatory connections. Such behavior of 
the neural assemblies permitted explanation of associative processes that occurs in 
the brain. The problem was to ensure the stability of this assembly neural network. 
At the first time D.O. Hebb and his progeny P. Milner could not solve it.  
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In 1965 N.M. Amosov [2] proposed his interpretation of human brain 
functioning. All the objects, relations, concepts, etc. were presented in his 
interpretation as i-models (information models) that had the level of activity similar 
to excitation level of Hebbian neural assembly. In the process of thinking the activity 
of i-models was changed because i-models were connected with excitatory and 
inhibitory connections. To ensure the stability of the whole network 
N.M. Amosov proposed special System of Reinforcement and Inhibition (SRI) that 
found the most active i-model and increased its activity level decreasing activity 
level of other i-models. After short time period the activity of selected i-model 
decreases due to tiredness, and SRI finds new most active i-model repeating the 
process of reinforcement and inhibition. This scheme allowed creation of associative 
chains that can be observed in the process of associative thinking of real mind. 

N.M. Amosov continued his investigations in this area and published the results 
in different books (see for example [2–8]). 

In the department of Biological cybernetics of Cybernetics Institute of Academy 
of Sciences of Ukraine headed by N.M. Amosov we always tried to encounter 
practical applications of his investigations. We made some prototypes of mobile 
robots that were controlled with “i-model” networks, we developed some special 
neuro-computers for simulation of these networks and so on. However, computers 
and electronics of that time were not sufficiently developed for this purpose. At 
present we continue some of the works of this type in UNAM (National Autonomous 
University of Mexico) using new technical possibilities. 

 
DEVELOPMENT OF MICROMECHANICAL EQUIPMENT 

 
The main idea of low cost micromechanical equipment manufacturing is the 

following: each new micro device should be manufactured by micro machine tools 
and micro assembly devices which have the sizes that are comparable to the sizes of 
the work pieces to be manufactured. For example, if a new micro device contains a 
shaft with diameter 0.2 mm and length 0.8 mm then this shaft is to be manufactured 
with a lathe that has overall size of 4 mm × 4 mm × 4 mm. In most cases a lathe of 
this size will automatically have tolerances that coincide with the specifications of 
the shaft. The main errors of machine tools that originate from thermal expansions, 
vibrations, elastic deformations, etc. are proportional to the machine tool sizes [9]. 
Therefore, if we manufacture a micro shaft with a lathe of size 250 times smaller 
than the size of a conventional lathe then we can also decrease the tolerances 250 
times. The low end conventional lathe of size 1000 mm × 1000 mm × 1000 mm 
has tolerances of about 0.05 mm. Therefore, our micro lathe should have tolerances 
of about 0.0002 mm. That is sufficient for most applications of micro shafts. A low 
end conventional lathe has a low cost. Our micro lathe should have an even lower 
cost due to low consumption of materials, work area and energy. 

To examine the possibility of production of micro machine tools with low cost 
components we have developed two prototypes of micro machine tools with the cost 
of the components less than $100 [10–12]. One of these prototypes is presented in 
Fig. 1. 
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Fig.1. Prototype of micro machine tool 

The experiments with these prototypes have proved their ability to manufacture 
micro work pieces similar to the ones produced with an expensive Japanese micro 
lathe. Japanese researchers turned the brass needle with diameter 0.05mm to show 
the possibility of micro turning [13]. They used a micro lathe which has expensive 
components with a total cost of more than a thousand dollars. We repeated their 
results (Fig. 2) our with a micro machine tool which has low cost components with a 
total cost of less than a hundred dollars. 

   

Fig. 2. Brass needle with diameter of 50µm and examples of work pieces manufactured with 
the first micro machine tool prototype 

The first one is the shaft of 0.05 mm diameter. Other two are examples 
manufactured by our micro machine tool to show its possibilities. The first work 
piece is a gear with a worm that can be used in micro transmissions. The second 
work piece is a screw that can be used in gas filters of “micro cyclone” type. 
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COMPUTER VISION SYSTEMS FOR MICROMECHANICAL APPLICATIONS 
 
To obtain high precision in low cost microequipment we use adaptive 

algorithms based on computer vision systems. The first problem that we dealt with 
was the problem of micro assembly. To introduce a pin into a hole it is necessary to 
place them with close tolerances. Low cost microequipment does not permit such 
collocation without adaptive algorithms. A neural network image recognition system 
was developed to recognize the mutual pin-hole position.  

The different types of neural networks are used in industrial electronics to 
investigate and built the control systems [14], to compensate the disturbance and 
friction in hard disk drives [15], to diagnose the faults for interior permanent-magnet 
synchronous motor drives [16], to construct and investigate an adaptive speed 
controller [17].   

To investigate the performance of this system we created an image database 
that contains 441 images with different mutual positions of pin and hole. For this 
purpose we developed the prototype [18, 19]. In our system we used one web camera 
and four light sources. The shadows from the light sources (Fig. 3) permit us to 
obtain the 3-D position of the pin relative to the hole. We used a neural classifier 
LIRA (Limited Receptive Area) to recognize this position [20]. The input for our 
neural classifier is an image that is a combination of four images of one pin-hole 
position that correspond to different light sources. This image was processed and the 
contours were extracted (Fig. 4). The output of the neural classifier gives the X and 
Y coordinates of pin-hole position. 

If the position is recognized with a precision of 0.1mm then the recognition rate 
is sufficiently high: 99.5% for the X coordinate and 89.9% for the Y coordinate. 

  
a)           b) 

    
c)            d) 

Fig. 3. Examples of images obtained with four light sources 

Another task where we used neural networks was the task of shape recognition 
[21]. Low cost microequipment does not permit precise allocation of the cutters in 
the CNC lathe. The errors of cutter allocation cause erroneous shapes of 
manufactured work pieces. Examples of such erroneous shapes are presented in 
Fig. 5. 
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Fig. 4. Example of the LIRA neural classifier input image 

 
Fig. 5. Examples of initial images 

Two cutters are used to manufacture the screws shown in Fig. 5. One cutter is 
used for the outer diameter treatment and the other cutter is used for the thread 
treatment. If the relative position of the cutters is not correct, then the thread can 
have an erroneous shape (Fig. 5, a, c, d). It is difficult to estimate the relative 
position of the cutters directly. That is why we propose to estimate the correctness of 
the relative position of the cutters by the shape of the first screw that is 
manufactured with the lathe. If the distance between the second cutter and the screw 
axis is smaller than necessary then the shape of the thread will be as the one 
presented in Fig. 5, a. If this distance is larger than necessary then the shape of the 
thread will be as the one presented in Fig. 5, c, d. We manufactured 40 screws with 
diameter 3 mm with the CNC-lathe. Ten screws were produced with the correct 
position of the thread cutter (Fig. 5, b). Thirty screws were produced with erroneous 
positions of the cutter. Ten of them (Fig. 5, a) had the distance between the cutter 
and the screw axis 0.1 mm smaller than was necessary. Ten screws (Fig. 5, c) were 
produced with the distance 0.1 mm larger than necessary and the remaining ten 
(Fig. 5, d) were produced with the distance 0.2 mm larger than necessary. We 
created an image database of these screws using a web camera mounted on an 
optical microscope. Five randomly selected images from each group of screws were 
used for neural classifier training and the other five were used for neural classifier 
testing. 

The best result in shape recognition obtained with the neural classifier PCNC 
(Permutation Coding Neural Classifier) was 92.5% [21]. 
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The third task was the recognition of mechanically treated metal surface 
textures. This problem is crucial for systems of surface quality inspection and 
systems that have to recognize position and orientation of complex work pieces in 
the task of assembly of micromechanical devices.  

To test the LIRA neural classifier based recognition system we created a 
specific image database of four texture types that correspond to metal surfaces after: 
milling, polishing with sandpaper, turning with lathe and polishing with file (Fig. 6). 
20 grayscale images were taken for each class.  

 
Fig. 6. Examples of metal surfaces (columns) after: a — milling, b — polishing with 

sandpaper, c — turning with lathe, d — polishing with file 

We randomly divided these 20 images in half into the training and test sets. 
It can be seen that different lighting conditions greatly affect the grayscale properties 
of the images. The textures may also be arbitrarily oriented and not centered 
perfectly. Metal surfaces may have minor defects and dust. All these image 
properties correspond to the conditions of a real industrial environment and make the 
texture recognition task more complicated. The promising recognition rate of 99.7% 
was obtained in this task.   

 
ASSEMBLY NEURAL NETWORKS 

 
At present we are working on more sophisticated systems to control the cutting 

process. We intend to analyze the potential of distributed knowledge representation 
(DKR) to solve some problems of adaptive cutting with micromachine tools. 

Distributed knowledge representation was proposed in the famous book of 
D.O. Hebb “The Organization of Behavior. A Neuropsychological Theory” [1]. 
The simplest technical realization of this type of knowledge representation was made 
by K. Steinbuch, D.J. Willshaw and others [22, 23]. In 1978 V. Braitenberg [24] 
described mechanisms that permit the realization of DKR as a neural assembly 
structure. Further development of DKR was made in the works of G. Palm [25] and 
his colleagues [26]. In these works each concept is represented not by a specific 
symbol (or identifier) but by a specific vector V(ν1, …, νN) which represents the 
activity of neurons A(a1, …, aN). The matrix M of connections between neurons A is 
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to be created in order to obtain an associative memory. To store some concept in the 
associative memory it is necessary to increase the weights of connections between 
the neurons that have high activity. After this operation such neurons form a subset 
of the set of all neurons. This subset is termed a neural assembly. A neural assembly 
has the property to become active as a whole when its part becomes active. This 
assembly corresponds to the concept to be memorized. To examine if a concept is 
stored in the memory it is necessary to obtain the following product: 

MVV   * = . (1) 

If vectors  V *  and  V are strongly correlated then vector  V is stored in 
memory and if they are weakly correlated then vector  V is not stored in the 
memory. Several DKR systems that use only vectors but not the connection matrices 
were developed by Plate [27, 28]. We believe that systems that use connection 
matrices are more flexible and therefore we use these systems in our work. 

In this work we use a binary vector V where the components of this vector are 
equal to either 0 or 1. Another property of vector V is the following: the number of 
components that are equal to 1 (unit components) is considerably smaller than the 
number of components that are equal to 0 (zero components). Since sometimes this 
type of vector is termed rare we term vector V as a rare binary code of the concept. 
Such codes have many advantages. It was shown that the storage capacity (the 
number of different vectors that can be stored in associative memory) of rare vectors 
is much larger than the storage capacity of the vectors that have approximately the 
same number of unit and zero components. For example, the number of vectors 
stored in the Hopfield neural network is approximately 0.14N, where N is the 
number of neurons. The vectors of the Hopfield neural network have approximately 
equal numbers of unit and zero components. If vector V has Log N unit components 
then the storage capacity increases up to 0.5N2 / Log. This is a large storage capacity 
but such vectors are sensitive to the noise. To obtain more stable codes of the 
concepts it is necessary to use rare binary codes that have more than Log N unit 
components. We performed experiments to estimate the number of unit components 
needed to assure the stable concept coding and to obtain large storage capacity.  

To test the storage capacity of associative memory we performed the following 
experiments. We randomly create Q neural assemblies coded in the form of the 
binary vectors. Each binary vector contains N components (the size of the neural 
network). m components are equal to 1 and N-m components are equal to 0, that is m 
is the size of the neural assembly. We stored all these vectors in associative memory 
creating the matrix M of connections between the neurons. After that we tested the 
capacity of associative memory to restore stored vectors with the following vector 
restoring procedure: 

1) Randomly select 0.5m of unit components of initial binary vector and set 
them equal to 0. Randomly select 0.5m of zero components and set them equal to 1. 
These operations correspond to 50% noise. 

2) Multiply this binary vector by the matrix of neuron connections M to obtain 
non binary excitations of the neurons (neuron inputs).  
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3) Create the binary vector of neuron outputs in the following way: select 1.1m 
of the most excited neurons and set their outputs equal to 1; the outputs of the rest of 
the neurons set equal to 0. 

4) Repeat five times steps 2 and 3. 
5) Compare the resulting binary vector with the initial binary vector. If 

positions of 0.9m of unit components in the resulting binary vector coincide with the 
positions of unit components in the initial binary vector, then we say that the noisy 
initial binary vector is restored correctly, otherwise we say that it is not restored. 

We performed experiments with different values of parameters Q and m. We 
say that the experiment is successful if more than 0.999Q of initial vectors are 
restored correctly. 

The results of these experiments are presented in Tab. 1. 

TABLE 1 

The number of assemblies successfully restored from associative memory 

Assembly size, m Size of 
neural 

network 
N 

10 20 40 80 120 160 

6000 0 2000 6000 3500 1500 800 

12000 0 24000 20000 20000 10000 6000 
24000 4000 14000 80000 95000 60000 34000 

In these experiments the size of the neural network was set equal to 6 000, 
12 000 and 24 000 neurons. The optimal number of unit components in the binary 
vector without noise (in accordance with [26]) was calculated for N = 24 000 in the as 
follows: .55.12)0006(log,55.13)00012(log,55.14)00024(log 222 ===  Optimal 
size of noisy vectors (Tab. 1) for N = 24 000 is equal to 80. 

 
ASSEMBLY REPRESENTATION OF OBJECTS AND THEIR PROPERTIES 

 
Each object in the assembly neural network can be represented with its own 

neural assembly coded in the form of the binary vector. The interrelation between 
the neural assembly and its binary code V is the following: all the components of 
vector V that correspond to the neurons that belong to the current neural assembly 
are set equal to 1 while the rest of the components of vector V are set equal to 0. 

For example, let a micro shaft be described with a binary vector Vshaft, a micro 
screw — with a different binary vector Vscrew. Let the length of the micro work piece 
be represented with different vectors Vlong, Vmedium, Vshort and the diameter of the 
micro work piece be represented by vectors Vthick, Vthin. To describe the micro object 
we have to combine the name of the object with its properties. In terms of our 
example, to obtain the vector Vobject1 that corresponds to the object 1 which is a long 
thin shaft we perform the following operations: 

First, we calculate 

     thinlongshaft
*
object1 VVVV UU=  (2) 
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where V*object1 is a raw binary vector that corresponds to the object 1, U  is a 
bitwise disjunction of binary vectors.  

Second, we perform the binding procedure [29, 30] for binary vector V*object1. 
Let ¬ V*object1 be the bitwise negation of vector V*object1 and ↵C  be a vector C 
shifted to the right by one bit with the last bit transferred to the first bit (cyclic shift). 
In the set of equations (3) we present the binding procedure. To perform this 
procedure we assign the value of vector V*object1 to the new vector C, and then we 
make a cyclic shift of vector C and perform bitwise conjunction (&) with negation of 
vector V*object1, assigning the result to vector C. We perform this operation R times 
and assign the resulting vector to vector Vobject1.  

C = V*
object1; 

C = ( ↵C )&( ¬ V*
object1), 

…                                                 (R times) 
C = ( ↵C )&( ¬ V*

object1). 
Vobject1 = C; 

(3) 

The first purpose of the binding procedure is to reduce the number of active 
neurons in the neural assembly, thus increasing the computation speed. The second 
purpose of this procedure is to bind the properties of the object to its name. This 
property is useful for recognition of the object with its properties. There are many 
different algorithms proposed for the binding procedure.  

This type of representation permits us to create the measure of the property. For 
example, if the shaft is neither very thick nor thin, we can form the assembly that 
would consist of mλ  neurons that belong to the assembly “thick” and m)1( λ−  
neurons that belong to the assembly “thin”, where λ  is taken within the range (0,1). 
Such representation is similar to fuzzy representation but it is not the same. 

It is possible to use this method of concept representation to associate the cause 
with the effect. In this case we can develop a neural network system for prediction of 
behavior of a micromechanical device. This prediction can be used to avoid defects 
in different processes of material treatment. In the following section we present an 
example of a mechanical problem that can be solved using this prediction. 

 
RESONANCE AVOIDANCE 
 

Mechanical treatment of metal surfaces frequently suffers from resonant 
oscillations of either work piece or cutting tool. These oscillations result in a 
decrease of both surface quality and work piece precision. The resonant oscillations 
appear when the rigidity of the system Machine tool — Tool — Work piece is 
insufficient. In Fig. 7, a an example of the work piece that was manufactured 
without resonant oscillations is presented. For comparison, an example of the work 
piece that was manufactured with resonant oscillations is presented in Fig. 7, b.  

Reliable prediction of resonant oscillations is crucial for optimal control of 
cutting processes under resonant oscillation conditions. Many factors affect the 
appearance of resonance oscillations, and this fact makes assembly neural networks 
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the perfect candidate for their prediction due to the ability to associate the cause with 
the effect. 

 
Fig. 7. Example of the work piece and its surface: a — without resonant oscillations, 

b — with resonant oscillations 
 

CONCLUSION 
 
Several neural network algorithms were proposed to improve automation 

systems in manufacturing processes. These algorithms were tested with specific 
micromechanical equipment, similar to conventional mechanical equipment, but of 
much smaller sizes and therefore of lower cost. We consider this equipment a good 
testbed for examination of the AI algorithms that can be used to increase the level of 
automation of manufacturing processes. One of the problems we intend to examine is 
the prediction of resonant oscillations in the process of turning and avoidance of 
resonance vibrations using assembly neural networks.  

This work was supported in part by projects PAPIIT IN 110510-3, IN 119610. 
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