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Metonpt  uckyccrBeHHoro — uHremiekrta (MHW)  wmoryr
HCHOJIb30BAThCA I YJIYHIICHHS CHCTEM aBTOMAaTU3alllU B IPOM3BOACTBEHHBIX
npoueccax. OIHAKO NPUMEHEHHE 3THX METOJOB B IIPOMBIIUICHHOCTH HE
MOMYYWIO  IIMPOKOrO  PACHpPOCTPAHEHWs M3-3a  BBICOKOH  CTOMMOCTH
9KCIEPUMEHTOB ¢ cucreMamu UV B OOBIYHBIX NMPOU3BOICTBEHHBIX CHCTEMaX.
JInst CHIDKEHHUSI CTOMMOCTH 9KCIIEPUMEHTOB B 3TOH 00J1aCTH HaMU pa3paboTaHo
CrenMaJbHOe MHUKPOMEXaHHYECKOe O00OpYyHOBaHHE, AHAIOTMYHOE OOBIYHOMY
MEXaHMYEeCKOMY O0OpYZOBaHMIO, HO TOpa3j0 MEHBIIMX pPa3MEpoB H,
ClIeZIOBaTeNbHO, Oonee HU3KOW CTOMMOCTH. DTO 00OpYIOBaHHE MOXKET OBITh
HCHOJIb30BAHO JUISl OLEHKH PA3IMYHbIX MeTo0B MM mpocThIM M HEJOPOTrHM
croco6oM. MeTozibl, KOTOPBIE MOKA3bIBAIOT XOPOLINE PE3YNIBTAThI, MOTYT ObITH
nepeaHbl B IPOMBIIUIEHHOCTh IIYTEM COOTBETCTBYIOILIEI0 MACIITaA0MPOBaHHUS.
KpaTko ommcaHel NPOTOTHIBI MHKPOOOOPYIOBaHHS, HMEIOIMX HU3KYIO
CTOMMOCTb, U HEKOTOpBIX MeTonoB MU, koropble MOryT OBITH OLCHEHBI C
TAKMMH TIPOTOTHIIAMH.

Metoau LITY4HOTO IHTENEeKTy (101I) MOXYTb
BUKOPHCTOBYBATHCS [UISl MOJNINIICHHS CUCTEM aBTOMATH3alli y BUPOOHMYHX
nponecax. OnHaK 3aCTOCYBaHHS LMX METOAIB y NPOMMCIOBOCTI HE HaOyio
LIMPOKOTO TOLIMPEHHSI Yepe3 BUCOKY BapTICTh SKCHEPUMEHTIB 3 CHCTEMaMM
IOl y 3Bu4aiiHuX BUPOOHMYMX cucTemax. JIusl 3HMKEHHS BapTOCTi
EKCIIEPUMEHTIB y il Tamxy3i HaMu PO3pOOJICHO CriemialbHe MiKpOMEXaHidHe
o0nazHaHHSA, aHaloOriyHe 3BUYaHOMY MEXaHIYHOMY OOJaJHaHHIO, aie
HabaraTo MEHIIMX PO3MIpIB i, OTxKe, OibIn HU3bKOI BapTocTi. Lle oOnanHanHs
MOXe OyTH BHKOpPHCTaHO sl omiHkk pizaux wertoxis LI mpoctum i
HEJJOPOTHM CrocoOoM. MeTomu, siKi NOKa3yroTh XOpOIIl Pe3yJabTaTh, MOXYTh
OyTu mepenaHi B IMPOMHKCIOBICTh HUIIXOM BiAmoBimHOro MmaciuraOyBanus. [[s
KopoTko oOmnmcaHo NpPOTOTHIH MIKpOOOOPYIOBaHis, I10 MalOThb HHU3BKY
BapTicTh, Ta geskux wmeromiB I, siki MOXyTh OyTH OLIHEHI 3 TaKHMHU
[POTOTHIIAMH.

INTRODUCTION

Many Artificial Intelligence methods were proposed in the 40-60s of 20th
century. Among them very interesting approach was proposed by Canadian
researcher D.O. Hebb [1]. D.O. Hebb supposed that the neurons of human brain
form the assemblies during the learning process. Each assembly can correspond to
an object, property or concept of external world. The neurons of an assembly have
many excitatory connections, so if any part of the assembly is excited, all the other
neurons of this assembly are excited due to excitatory connections. Such behavior of
the neural assemblies permitted explanation of associative processes that occurs in
the brain. The problem was to ensure the stability of this assembly neural network.
At the first time D.O. Hebb and his progeny P. Milner could not solve it.
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In 1965 N.M. Amosov [2] proposed his interpretation of human brain
functioning. All the objects, relations, concepts, etc. were presented in his
interpretation as i-models (information models) that had the level of activity similar
to excitation level of Hebbian neural assembly. In the process of thinking the activity
of i-models was changed because i-models were connected with excitatory and
inhibitory connections. To ensure the stability of the whole network
N.M. Amosov proposed special System of Reinforcement and Inhibition (SRI) that
found the most active i-model and increased its activity level decreasing activity
level of other i-models. After short time period the activity of selected i-model
decreases due to tiredness, and SRI finds new most active i-model repeating the
process of reinforcement and inhibition. This scheme allowed creation of associative
chains that can be observed in the process of associative thinking of real mind.

N.M. Amosov continued his investigations in this area and published the results
in different books (see for example [2-8]).

In the department of Biological cybernetics of Cybernetics Institute of Academy
of Sciences of Ukraine headed by N.M. Amosov we always tried to encounter
practical applications of his investigations. We made some prototypes of mobile
robots that were controlled with “i-model” networks, we developed some special
neuro-computers for simulation of these networks and so on. However, computers
and electronics of that time were not sufficiently developed for this purpose. At
present we continue some of the works of this type in UNAM (National Autonomous
University of Mexico) using new technical possibilities.

DEVELOPMENT OF MICROMECHANICAL EQUIPMENT

The main idea of low cost micromechanical equipment manufacturing is the
following: each new micro device should be manufactured by micro machine tools
and micro assembly devices which have the sizes that are comparable to the sizes of
the work pieces to be manufactured. For example, if a new micro device contains a
shaft with diameter 0.2 mm and length 0.8 mm then this shaft is to be manufactured
with a lathe that has overall size of 4 mm x 4 mm x 4 mm. In most cases a lathe of
this size will automatically have tolerances that coincide with the specifications of
the shaft. The main errors of machine tools that originate from thermal expansions,
vibrations, elastic deformations, etc. are proportional to the machine tool sizes [9].
Therefore, if we manufacture a micro shaft with a lathe of size 250 times smaller
than the size of a conventional lathe then we can also decrease the tolerances 250
times. The low end conventional lathe of size 1000 mm % 1000 mm % 1000 mm
has tolerances of about 0.05 mm. Therefore, our micro lathe should have tolerances
of about 0.0002 mm. That is sufficient for most applications of micro shafts. A low
end conventional lathe has a low cost. Our micro lathe should have an even lower
cost due to low consumption of materials, work area and energy.

To examine the possibility of production of micro machine tools with low cost
components we have developed two prototypes of micro machine tools with the cost
of the components less than $100 [10—12]. One of these prototypes is presented in
Fig. 1.
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Fig.1. Prototype of micro machine tool

The experiments with these prototypes have proved their ability to manufacture
micro work pieces similar to the ones produced with an expensive Japanese micro
lathe. Japanese researchers turned the brass needle with diameter 0.05mm to show
the possibility of micro turning [13]. They used a micro lathe which has expensive
components with a total cost of more than a thousand dollars. We repeated their
results (Fig. 2) our with a micro machine tool which has low cost components with a
total cost of less than a hundred dollars.

Fig. 2. Brass needle with diameter of 50um and examples of work pieces manufactured with
the first micro machine tool prototype
The first one is the shaft of 0.05 mm diameter. Other two are examples
manufactured by our micro machine tool to show its possibilities. The first work
piece is a gear with a worm that can be used in micro transmissions. The second
work piece is a screw that can be used in gas filters of “micro cyclone” type.
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COMPUTER VISION SYSTEMS FOR MICROMECHANICAL APPLICATIONS

To obtain high precision in low cost microequipment we use adaptive
algorithms based on computer vision systems. The first problem that we dealt with
was the problem of micro assembly. To introduce a pin into a hole it is necessary to
place them with close tolerances. Low cost microequipment does not permit such
collocation without adaptive algorithms. A neural network image recognition system
was developed to recognize the mutual pin-hole position.

The different types of neural networks are used in industrial electronics to
investigate and built the control systems [14], to compensate the disturbance and
friction in hard disk drives [15], to diagnose the faults for interior permanent-magnet
synchronous motor drives [16], to construct and investigate an adaptive speed
controller [17].

To investigate the performance of this system we created an image database
that contains 441 images with different mutual positions of pin and hole. For this
purpose we developed the prototype [18, 19]. In our system we used one web camera
and four light sources. The shadows from the light sources (Fig. 3) permit us to
obtain the 3-D position of the pin relative to the hole. We used a neural classifier
LIRA (Limited Receptive Area) to recognize this position [20]. The input for our
neural classifier is an image that is a combination of four images of one pin-hole
position that correspond to different light sources. This image was processed and the
contours were extracted (Fig. 4). The output of the neural classifier gives the X and
Y coordinates of pin-hole position.

If the position is recognized with a precision of 0.1mm then the recognition rate
is sufficiently high: 99.5% for the X coordinate and 89.9% for the Y coordinate.

<) d)

Fig. 3. Examples of images obtained with four light sources

Another task where we used neural networks was the task of shape recognition
[21]. Low cost microequipment does not permit precise allocation of the cutters in
the CNC lathe. The errors of cutter allocation cause erroneous shapes of
manufactured work pieces. Examples of such erroneous shapes are presented in
Fig. 5.
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Fig. 4. Example of the LIRA neural classifier input image

a b
€ d

Fig. 5. Examples of initial images

Two cutters are used to manufacture the screws shown in Fig. 5. One cutter is
used for the outer diameter treatment and the other cutter is used for the thread
treatment. If the relative position of the cutters is not correct, then the thread can
have an erroneous shape (Fig. 5, a, ¢, d). It is difficult to estimate the relative
position of the cutters directly. That is why we propose to estimate the correctness of
the relative position of the cutters by the shape of the first screw that is
manufactured with the lathe. If the distance between the second cutter and the screw
axis is smaller than necessary then the shape of the thread will be as the one
presented in Fig. 5, a. If this distance is larger than necessary then the shape of the
thread will be as the one presented in Fig. 5, ¢, d. We manufactured 40 screws with
diameter 3 mm with the CNC-lathe. Ten screws were produced with the correct
position of the thread cutter (Fig. 5, »). Thirty screws were produced with erroneous
positions of the cutter. Ten of them (Fig. 5, @) had the distance between the cutter
and the screw axis 0.1 mm smaller than was necessary. Ten screws (Fig. 5, ¢) were
produced with the distance 0.1 mm larger than necessary and the remaining ten
(Fig. 5,d) were produced with the distance 0.2 mm larger than necessary. We
created an image database of these screws using a web camera mounted on an
optical microscope. Five randomly selected images from each group of screws were
used for neural classifier training and the other five were used for neural classifier
testing.

The best result in shape recognition obtained with the neural classifier PCNC
(Permutation Coding Neural Classifier) was 92.5% [21].
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The third task was the recognition of mechanically treated metal surface
textures. This problem is crucial for systems of surface quality inspection and
systems that have to recognize position and orientation of complex work pieces in
the task of assembly of micromechanical devices.

To test the LIRA neural classifier based recognition system we created a
specific image database of four texture types that correspond to metal surfaces after:
milling, polishing with sandpaper, turning with lathe and polishing with file (Fig. 6).
20 grayscale images were taken for each class.

Fig. 6. Examples of metal surfaces (columns) after: ¢ — milling, » — polishing with
sandpaper, ¢ — turning with lathe, d — polishing with file

We randomly divided these 20 images in half into the training and test sets.
It can be seen that different lighting conditions greatly affect the grayscale properties
of the images. The textures may also be arbitrarily oriented and not centered
perfectly. Metal surfaces may have minor defects and dust. All these image
properties correspond to the conditions of a real industrial environment and make the
texture recognition task more complicated. The promising recognition rate of 99.7%
was obtained in this task.

ASSEMBLY NEURAL NETWORKS

At present we are working on more sophisticated systems to control the cutting
process. We intend to analyze the potential of distributed knowledge representation
(DKR) to solve some problems of adaptive cutting with micromachine tools.

Distributed knowledge representation was proposed in the famous book of
D.O. Hebb “The Organization of Behavior. A Neuropsychological Theory” [1].
The simplest technical realization of this type of knowledge representation was made
by K. Steinbuch, D.J. Willshaw and others [22, 23]. In 1978 V. Braitenberg [24]
described mechanisms that permit the realization of DKR as a neural assembly
structure. Further development of DKR was made in the works of G. Palm [25] and
his colleagues [26]. In these works each concept is represented not by a specific
symbol (or identifier) but by a specific vector V(v,, ..., vy) which represents the
activity of neurons A(ay, ..., ay). The matrix M of connections between neurons A is
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to be created in order to obtain an associative memory. To store some concept in the
associative memory it is necessary to increase the weights of connections between
the neurons that have high activity. After this operation such neurons form a subset
of the set of all neurons. This subset is termed a neural assembly. A neural assembly
has the property to become active as a whole when its part becomes active. This
assembly corresponds to the concept to be memorized. To examine if a concept is
stored in the memory it is necessary to obtain the following product:

Vi=vM. (D

If vectors V* and ¥ are strongly correlated then vector V' is stored in
memory and if they are weakly correlated then vector 7 is not stored in the
memory. Several DKR systems that use only vectors but not the connection matrices
were developed by Plate [27, 28]. We believe that systems that use connection
matrices are more flexible and therefore we use these systems in our work.

In this work we use a binary vector J where the components of this vector are
equal to either O or 1. Another property of vector V is the following: the number of
components that are equal to 1 (unit components) is considerably smaller than the
number of components that are equal to 0 (zero components). Since sometimes this
type of vector is termed rare we term vector V as a rare binary code of the concept.
Such codes have many advantages. It was shown that the storage capacity (the
number of different vectors that can be stored in associative memory) of rare vectors
is much larger than the storage capacity of the vectors that have approximately the
same number of unit and zero components. For example, the number of vectors
stored in the Hopfield neural network is approximately 0.14N, where N is the
number of neurons. The vectors of the Hopfield neural network have approximately
equal numbers of unit and zero components. If vector V" has Log N unit components
then the storage capacity increases up to 0.5N° / Log. This is a large storage capacity
but such vectors are sensitive to the noise. To obtain more stable codes of the

concepts it is necessary to use rare binary codes that have more than Log N unit

components. We performed experiments to estimate the number of unit components
needed to assure the stable concept coding and to obtain large storage capacity.

To test the storage capacity of associative memory we performed the following
experiments. We randomly create Q neural assemblies coded in the form of the
binary vectors. Each binary vector contains N components (the size of the neural
network). m components are equal to 1 and N-m components are equal to 0, that is m
is the size of the neural assembly. We stored all these vectors in associative memory
creating the matrix M of connections between the neurons. After that we tested the
capacity of associative memory to restore stored vectors with the following vector
restoring procedure:

1) Randomly select 0.5m of unit components of initial binary vector and set
them equal to 0. Randomly select 0.5m of zero components and set them equal to 1.
These operations correspond to 50% noise.

2) Multiply this binary vector by the matrix of neuron connections M to obtain
non binary excitations of the neurons (neuron inputs).
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3) Create the binary vector of neuron outputs in the following way: select 1.1m
of the most excited neurons and set their outputs equal to 1; the outputs of the rest of
the neurons set equal to 0.

4) Repeat five times steps 2 and 3.

5) Compare the resulting binary vector with the initial binary vector. If
positions of 0.9m of unit components in the resulting binary vector coincide with the
positions of unit components in the initial binary vector, then we say that the noisy
initial binary vector is restored correctly, otherwise we say that it is not restored.

We performed experiments with different values of parameters Q and m. We
say that the experiment is successful if more than 0.9990 of initial vectors are
restored correctly.

The results of these experiments are presented in Tab. 1.

TABLE 1

The number of assemblies successfully restored from associative memory

Size of Assembly size, m
neural
network 10 20 40 80 120 160
N
6000 0 2000 6000 3500 1500 800
12000 0 24000 20000 20000 10000 6000
24000 4000 14000 80000 95000 60000 34000

In these experiments the size of the neural network was set equal to 6 000,
12 000 and 24 000 neurons. The optimal number of unit components in the binary
vector without noise (in accordance with [26]) was calculated for N = 24 000 in the as

follows: log,(24 000) =14.55,log, (12 000) =13.55, log, (6 000) =12.55. Optimal
size of noisy vectors (Tab. 1) for N =24 000 is equal to 80.

ASSEMBLY REPRESENTATION OF OBJECTS AND THEIR PROPERTIES

Each object in the assembly neural network can be represented with its own
neural assembly coded in the form of the binary vector. The interrelation between
the neural assembly and its binary code V is the following: all the components of
vector V' that correspond to the neurons that belong to the current neural assembly
are set equal to 1 while the rest of the components of vector V are set equal to 0.

For example, let a micro shaft be described with a binary vector Vgp.g, a micro
screw — with a different binary vector Vyeew. Let the length of the micro work piece
be represented with different vectors Vieng, Vimedium» Vehort and the diameter of the
micro work piece be represented by vectors Vipick, Venin- TO describe the micro object
we have to combine the name of the object with its properties. In terms of our
example, to obtain the vector Vet that corresponds to the object 1 which is a long
thin shaft we perform the following operations:

First, we calculate

*

Vobjectl =Vshatt U Vlong U Vinin )
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where V*pjectt 1S @ raw binary vector that corresponds to the object 1, U is a
bitwise disjunction of binary vectors.

Second, we perform the binding procedure [29, 30] for binary vector V*gpjccti.
Let — V*pjectt be the bitwise negation of vector V*gee: and C, be a vector C

shifted to the right by one bit with the last bit transferred to the first bit (cyclic shift).
In the set of equations (3) we present the binding procedure. To perform this
procedure we assign the value of vector V*geq1 to the new vector C, and then we
make a cyclic shift of vector C and perform bitwise conjunction (&) with negation of
vector V*qpiect1, assigning the result to vector C. We perform this operation R times
and assign the resulting vector to vector Vopjecti-

C= V*objectl;
C= ( C.J )&( - V*objectl);
(R times) 3)
C=(C)&(— V*object1)~
Vovject1 = C;

The first purpose of the binding procedure is to reduce the number of active
neurons in the neural assembly, thus increasing the computation speed. The second
purpose of this procedure is to bind the properties of the object to its name. This
property is useful for recognition of the object with its properties. There are many
different algorithms proposed for the binding procedure.

This type of representation permits us to create the measure of the property. For
example, if the shaft is neither very thick nor thin, we can form the assembly that
would consist of Am neurons that belong to the assembly “thick” and (1-1) m

neurons that belong to the assembly “thin”, where A is taken within the range (0,1).
Such representation is similar to fuzzy representation but it is not the same.

It is possible to use this method of concept representation to associate the cause
with the effect. In this case we can develop a neural network system for prediction of
behavior of a micromechanical device. This prediction can be used to avoid defects
in different processes of material treatment. In the following section we present an
example of a mechanical problem that can be solved using this prediction.

RESONANCE AVOIDANCE

Mechanical treatment of metal surfaces frequently suffers from resonant
oscillations of either work piece or cutting tool. These oscillations result in a
decrease of both surface quality and work piece precision. The resonant oscillations
appear when the rigidity of the system Machine tool — Tool — Work piece is
insufficient. In Fig. 7, a an example of the work piece that was manufactured
without resonant oscillations is presented. For comparison, an example of the work
piece that was manufactured with resonant oscillations is presented in Fig. 7, b.

Reliable prediction of resonant oscillations is crucial for optimal control of
cutting processes under resonant oscillation conditions. Many factors affect the
appearance of resonance oscillations, and this fact makes assembly neural networks
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the perfect candidate for their prediction due to the ability to associate the cause with
the effect.

a

Fig. 7. Example of the work piece and its surface: a — without resonant oscillations,
b — with resonant oscillations

CONCLUSION

Several neural network algorithms were proposed to improve automation

systems in manufacturing processes. These algorithms were tested with specific

micromechanical equipment, similar to conventional mechanical equipment, but of

much smaller sizes and therefore of lower cost. We consider this equipment a good

testbed for examination of the Al algorithms that can be used to increase the level of

automation of manufacturing processes. One of the problems we intend to examine is

the prediction of resonant oscillations in the process of turning and avoidance of

resonance vibrations using assembly neural networks.
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