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Paccmotrpenst 3ama4a 00ydeHNsT HEHPOCETEBBIX MOJENIEH s
HUACHTU(UKAIMNA HEONPEAEICHHBIX HEIWHEHHBIX CHUCTEM B CTOXACTHYECKOH
cpenie | 3a/a4a aJanTHBHOIO YIPABICHUS TMHEHHBIM MHOTOMEPHBIM 00bEKTOM
0e3 maMATH C MPOM3BOJBHBIM MATPUYHBIM KOX(P(UIIMEHTOM YCHICHHS MHPHU
HaJIMYUK HEPeryISpPHBIX OTPaHWYEHHBIX BO3MYIICHHH, YPOBHH KOTOPBIX
anpHOpPH HEW3BECTHBI. Y CTAHOBJICHBI JIOCTATOYHBIE YCIOBUSI CXOIUMOCTH
anroputMa OOY4YeHHSI HEMPOHHBIX CETe W aCHMITOTUYECKHE CBOWCTBA
aNropuTMa aJaNTHBHOTO YIPABICHUSI MHOTOMEPHBIM 00beKTOM. [lomyueHHbIe
PE3yIbTaTHI SIBIAIOTCS (YHAAMEHTATBHBIMH.

Kniouegvie cnoea: HeWpOHHAs! CETh, TPAJUEHTHBIN alNrOpUTM
00y4eHus,, CXOOUMOCTh, MHOTOMEpHBI OOBEKT 0e3 NaMATH, AITOPUTM
aJaNTHBHOTO YNIPABJICHUS, OTPAHHUIEHHOCTh CUTHAJIOB.

PosrnsinyTo 3amady HaBUaHHS HEMPOMEPEKHUX MOJENEH i
inenTudikamii HEBU3HAYCHHUX HEMIHIHHMX CHCTEM Y CTOXaCTUYHOMY
CepelOBHIIl Ta 3ajady aJalNTHBHOTO KEPyBaHHS JTiHIHHAM OaraTOBUMipHHM
00'exkToM Oe3 maM'siTi 3 AOBUIBHUM MATPUYHUM KOS(Ili€HTOM MiJCHUICHHS 3a
HAsIBHOCTI HEPETYISIPHUX OOMEXEHHUX 30ypeHb, PiBHI SKHX ampiopi HeBimgomi.
BcraHoBiieHO 1OCTAaTHI yMOBH 301KHOCTI aNrOpuTMy HAaBYAHHS HEHPOHHHX
MEpexX, a TaKoXK aCHMOTOTHYHI BJIACTHBOCTI aITOPUTMY aJalTHBHOTO
KepyBaHHs ~ OararoBumipHuM  ob'ektom.  Ogepkani  pe3ynpTatd €
(hyHIaMEHTaTbHUMU.

Kniouosi cnosa: neiipoHHa Mepexa, TPAIi€HTHHN alrOpUTM
HaBYaHHS, 30DKHICTh, OaraToBUMIpHiii 00'ekr 0e3 mam'iTi, aIropuT™M
aJalTUBHOTO KePYBaHHS, OOME)KESHICTh CUTHAIIIB.

INTRODUCTION

Since the appearance of the fundamental works [1, 2], substantial progress has
been achieved during past decades in the area of identification and learning
automatic systems. This research direction remains actual up to now because of its
importance from both theoretical and practical points of view. In last time, new
results for designing adaptive identification and control systems have been derived
by the Ukrainian researchers including one of the authors and summarized in the
books [3, 4].

Over the past years, interest has been increasing toward the use of multilayer
neural networks as adjustable models for the adaptive identification of nonlinearly
parameterized dynamic systems [5—8]. Several learning methods for updating the
weights of neural networks have been advanced in literature. Most of these
methods rely on the gradient concept [8]. Although this concept has been
successfully used in many empirical studies, there are very few fundamental results
dealing with the convergence of gradient algorithms for learning neural networks.
One of these results is based on utilizing the Lyapunov stability theory [6, 9].
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The asymptotic behaviour of online adaptive gradient algorithms for the
network learning has been studied by many authors. In particular, White [10]
investigated the convergence of the learning process for the so-called feedforward
network models with single hidden layer by using the stochastic approximation
theory. The convergence results have been derived in [11-17] among many others
provided that input signals have a probabilistic nature. In their stochastic approach,
the learning rate goes to zero as the learning process tends to infinity.
Unfortunately, this gives that the learning goes faster in the beginning and slows
down in the late stage.

The convergence analysis of learning algorithm with deterministic (non-
stochastic) nature has been given in [18-23]. In contrast to the stochastic approach,
several of these results allow employing a constant learning rate [20, 24]. However,
they assume that learning set must be finite whereas in online identification
schemes, this set is theoretically infinite. To the best of author’s knowledge, there
are no general results in literature concerning the global convergence properties of
training procedures with a fixed learning rate applicable to the case of infinite
learning set.

The distinguishing feature of multi-layer neural networks is that they describe
some nonlinearly parameterized models needed to be identified. This leads to
difficulties in deriving their convergence properties for a general case. To avoid
these difficulties in non-stochastic case, the assumption that similar nonlinear
functions need to be convex (concave) is introduced in [25]. However, such an
assumption is not appropriate for neural network’s description of nonlinearity.

A popular approach to analyze the asymptotic behavior of online gradient
algorithms in stochastic case is based on the Martingale convergence theory [26].
This approach has been exploited in [27] to derive some local convergence in
stochastic framework for standard online gradient algorithms with the constant
learning rate used for updating the parameters (weights) of neural networks
models.

It is well known that the design of an adaptive or of other advanced control
systems requires a model that gives an accurate description of the plant to be
controlled. Within the so-called generalized inverse model-based approach, a new
perfect controller has recently been devised in [28] to stabilize an arbitrary multi-
input multi-output memoryless plant whose are assumed to be known. To cope
with an uncertain multivariable plant having the nonsingular matrix gain, the
standard adaptive control algorithms can directly be exploited in adjusting its
inverse model [29, item 4.2.3°]. See also [4, subsect. 4.2]. However, they are quite
not admissible if this matrix gain becomes singular as it is noted in the textbook
[30, item 5.2.3].

Recently, a new adaptive control method to dealing with the possibly singular
matrix gain of the linear multivariable plant in the presence of non-stochastic upper
bounded disturbance has been advanced in [31].

This paper is an extension of recent results of [27, 31] related to the adaptation
and learning algorithms in certain classes of the identification and control systems
using the gradient concept. Specifically, the purpose of the paper is to establish the
global convergence conditions of the standard gradient online learning algorithm in
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the two-layer neural network model by utilizing the probabilistic asymptotic
analysis. Also, it is required to derive the convergent adaptive control algorithm
guaranteeing the boundedness of the signals in the closed-loop system which
contains the multivariable memoryless plant with an arbitrary matrix gain in the
presence of unmeasurable disturbances whose bounds are unknown.

STATEMENT OF THE PROBLEMS

Two different but close problems related to the adaptation and learning
algorithms above mentioned are stated and solved.

The problem of analyzing the asymptotic properties of the online gradient
learning algorithm in the neural network model. Let

y(n) =F(x(n)) (D
be the nonlinear equation describing a complex system to be identified. In this
equation, y(n)eIR and x(n)e IRV are the scalar output and the so-called state
vector, respectively, available for the measurement at each nth time instant
(n=12,..), and F': RY > IR represents some unknown nonlinear mapping.
(Note that x(n) may include the current inputs of this system and possibly its past
inputs and also outputs; see [1, subsect. 5.15].) Without loss of generality, one
supposes that the nonlinearity

y=F(x) ()

is the continuous and smooth function on a bounded but infinite set X < IRY
(diam X < 0).

To approximate (2) by a suitable nonlinearly parameterized function, the two-
layer neural network model containing M (M >1) neurons in its hidden layer is

employed. The inputs to the each jth neuron of this layer at the time instant »n are
the components of x(n). Its output signal at the nth time instant is specified as

N
yP ) = c{b}l) + Y wiy, (n)} j=l..,M, 3)
i=1

where x;(n) denotes the ith component of x(n), and wl(jl) and bgl) are the weight

coefficients and the bias of this jth neuron, respectively. o(-) denotes the so-called

activation function defined usually as the sigmoid functions

1
O T expi) @
or
o(s) = tanh (s). 5)
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There is only one neuron in the output (second) layer, whose inputs are the
outputs of the hidden layer’s neurons. The output signal of second layer, y(z) (n),

at the time instant # is determined by

M
YD) = XwPy P )+, (6)
j=1
where wl(z), ey w](é) are the weights of this neuron and »? is its bias.

Since o(:)s defined by (4) and (5) are nonlinear, it follows from (3), (6) that

y(z) (n) is the nonlinear function depending on x(n—1) and also on the

(M (N +2)+1) -dimensional parameter vector

1 1 1 1 1 1)
W=l B0 D

(7

WD) O,

To emphasize this fact, define the output signal of the neural network in the
form

¥ (n) = NN(x(n), w) (8)

x IRM(N+2)+1

using the notation NN: RV — IR. Taking into account that the

neural network plays the role of a model of (1), rewrite (8) as follows:

Ymod (1) = NN(x(n), w). )
Now, define the variable
e=F(x)—NN(x, w) (10)

representing the discrepancy between the nonlinearity (2) and its neural network’s
model for a fixed w. Due to (1), it yields the current model error

e(n) = y(n) = NN(x(n), w) (11)
which can be measured at the nth time instant. Further, introduce the usual
quadratic loss function

O(x, W) =[F (x) = NN(x, w)T*. (12)

To do an adaptation of the neural network model to the uncertain system (1),
the standard online gradient learning algorithm

w(n) =w(n=1) -n(m)V,,O(x(n), w(n - 1)) (13)
taken, for example, from [1, 8] is utilized. In this algorithm, V ,Q(x(n), w(n—1))
denotes the gradient of Q(x,w) with respect to w at w=w((n—-1) for given
x=x(n), and n(n) is the learning rate (step size) of (13). Thus, (3), (6), (8) and

(13) together with (9) and (12) describe the learning system necessary for the
adaptive identification of (1). Suppose {x(n)} is a sequence of vectors appearing

randomly in accordance with some probability density function p(x) such that
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J.Xp(x) dx=1.

Furthermore, p(x) has the following properties:

P{x(n)e X'}:= -[X’ p(x)dx>0

for any subset X' < X whose dimension is N, and

P{x(n)e X"} := -[X” p(x)dx=0

if dim X" <N, where P{} denotes the probability of corresponding random
event.
Additionally, it is assumed that p(x) represents a continuous function which

may become zero only at some isolated points on X.
Now, introduce the performance index

J(w) = E{Q(x, w)} (14)

which evaluates the quality of learning process with Q(x, w) given in (12). In this

expression,
E{O(x, w)}:=[  [F(x)=NN(x, W)’ p(x)dx

denotes the expectation of Q(x, w) with respect to the random xs.

The following problem is here stated. It is required to derive the conditions
under which {w(n)} caused by the learning algorithm (13) will converge in the

sense that
J(w(n)) —>inf J(w) as n— o (15)
w

almost sure (a.s.) for any initial w(0), where J(w(n)) is determined by (14) for
w=w(n).
The problem of designing the adaptive control system which contains the

linear memoryless plant with arbitrary matrix gain. Now, consider the linear
multivariable memoryless plant described by

Y, =Bu,+v,, (16)

where y, =[yf,l),..., yle )" is the N-dimensional output vector to be measured at

nth time instant, u, = [ufll),..., ule 7 is the N-dimensional vector of unmeasurable
disturbances and

By by
B=| ... ... .. (17)
le “ee bNN
is an arbitrary N x N matrix gain.

It is assumed that the elements of the matrix B in (17) are all unknown.
However, there are some interval estimates

by <by <bi, ik=1,...,N (18)
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with the known upper and lower bounds. This implies that B in (16) may be ill-
conditioned or even singular, in general. Hence its rank satisfies
rank B < N.

Suppose {vfli )} ely, where (¢, denotes the space of all bounded scalar
sequences {x,} having the norm ||x||Oo = sup |x,|<o. Thus,
0<n<o
v |<g; <o Vi=L...,N, (19)
where &; s are constant. We assume that they are unknown, and it is essential.

Let yO:[yO(l),...,yO(N " denote the desired output vector whose
components satisfy
| 0O 44+ )2 | 0,

The problem is to design an adaptive controller of the form

0
Up+l :Un(“na)’nay )> (20)

to be able to guarantee the boundedness of all signals in the closed-loop system
(16), (20), i.e.,

limsup (|| u,, |+ y, |l) <o (2D

n—»o0

provided that the assumptions (18) and (19) hold. In the expression (20),

U,: RY xIRY xIRY - RV represents a time-varying linear operator defined

later.
MAIN RESULTS

The convergence conditions for the learning algorithm in neural network
model. The global stochastic convergence analysis of the gradient learning
algorithm (13) (for an arbitrary w(0)) is based on employing the fundamental

convergence conditions established in the following Key Technical Lemma which
is the slightly reformulated Theorem 3 of [32].

Key Technical Lemma. Let V(w) be the so-called Lyapunov function to be
satisfy the following properties:

V(w)=0 if weW™ and V(w)>0 if we W™, (22)
and
[VV(W) =Vl < L[w' =w"| (23)
with the Lipschitz constant L > 0. Define the scalar variable

H(w) =V, V (w) V,, E{O(x, w)} 24)
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and denote
H,(w):=V,,V (w(m)) V,, E{O(x, w(n))}.

Suppose:
() H,(w)=0,V(wn—1)), 6 >0,
(if) E{IV, 00, wm) [P} < T, (w(n)),
1,20.
Introduce the additional variable
v =n(n)®, - Ln(n)t,/2). (25)
Then the algorithm (13) vyields lim, ¥, =0 as. provided that
E{w(0)} < and

0<v,<l, (26)
2V =0, (27)
n=0
1.e., the limit
lim V, =0
will be achieved with probability 1. ]

Related result followed from the Theorem 3’ of [32] is.
Corollary. Under the conditions of the Key Technical Lemma, if

0, =0=const and 1, =7t=const, and n(n)=n=const, then y, — 50 as.
n—» 0

provided that
0<n<2(0-¢)/Lt (0<e<0) (29)
is satisfied. ]

Consider, first, the case when F(x) can exactly be approximated by a neural

network representation for all x € X' implying
F(x)=NN(x, w"). (30)

In this case called in [8, p. 304] as the ideal case, we have J(w*)=0 (by
virtue of (12), (14)).

Now, we are able to present the first convergence result summarized in the
theorem below.

Theorem 1. Suppose the assumption (30) holds. Then the gradient algorithm
(13) with a constant learning rate, n(n)=m, will converge with probability 1 (in

the sense that /,, ———0 a.s.) and
n—>0
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lim, ,,e(n)=0 as. (31)

for any initial w(0) chosen randomly so that E{Q(x, w(0))} <o if the conditions
(29) with 8 and t specified by

o i I VuEOC WP

32
ewt EQ0G )} (32)
_ E{||V,,00,w) [}
T EO( ) 33)
are satisfied.
Proof. Set
V(w) = E{O(x,w)}. (34)

Then condition (22) and (23) can be shown to be valid. This indicates that
V' (w) of the form (34) may be taken as the Lyapunov function. By virtue of (24)
such a choice of V(w) gives H(w)=|V,E{O(x, w)}||2. Putting 6, =0 and
1, =1 with 0 and t determined by (32) and (33), respectively, one can conclude
that the conditions (i), (i1) of the Key Technical Lemma are satisfied. Applying its
Corollary it proves that lim,_, ., ¥, = 0 with probability 1.

Due to the definition (34) of V' (w) together with the assumption (30), result

(31) follows. ]
Now, consider general case, where F(x) cannot exactly be approximated by

NN(x, w) (as in (30)). Obviously, in this case, inf Q(x, w*) #0, and the choice of
w

a constant learning rate, n(n) =", is not appropriate [8].

The convergence results are established in the follow theorem.
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Theorem 2. Subject to the conditions

(a) Yn(n)=co, (b) S n(n) <o, (35)

n=0 n=0
the gradient algorithm (13) yields
lim E{Q(x,w(n))}=inf E{Q(x, w))} a.s.
n—»o0 w

provided that © > 0 with O determined by (32).
Proof. Setting

Vi = E{Q(x,w(n))} - irvlvf E{O(x,w)}
it can show that the requirements (22) and (23) will be satisfied: ¥(w*)=0, and
V(w)>0 for w=w". Since E{||V,,O(x, w) ||}2 >0 for w=w", it follows that
condition (ii) of the Key Technical Lemma assumes t,, — 0 as w(n) = w".
Suppose (ii) is not satisfied. Then, there is a finite T such that
E{|V,,0(x, w)|[}* <1,V (w(n)) with T, <T < o0, (36)

Since 1, is assumed to be finite, there exists a finite 7 such that requirement
(27) will be satisfied for all sufficiently large n > ny provided that (i) takes place
with 6, >0 >0 and E{w(ng)} <o and the condition (b) of (35) is satisfied (due to
the fact that (b) means n(n) - 0 as n— ).

Further, if the assumption t,, <T < oo holds then the series

> 1,0, with 6, >6>0

n=ng
diverges whereas the series
o0
- Y In(n)t,/2
n=ng

converges (because of the validity of (a)). This gives that (27) takes also place.
Since 6 >0, all the conditions of Key Technical Lemma are satisfied for

n>ng. By this Lemma, lim, ,,V, =0 a.s. Therefore, Ty ® with

probability 1. But this contradicts the assumption that 1, <T<ow (see (30)).

Hence, this assumption is false. This fact proves the validity of result given in
theorem. [ |
Remark 1. Setting

0, = || V., E{O(, w(m)} | > [E{O(x, w(n))}
1, = E{| V,,000 w(n) |1} E{QCx, w(n))}
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it can be concluded that, under the condition of the Theorem 2, the following
features are observed: 6, >0>0, 1, <t<o forall .

Remark 2. The conditions established in the theorem 1 and 2 are sufficient to
guarantee the global convergence of (13) (for any w(0)) with probability 1 both in

ideal and non-ideal cases. Under these conditions, the requirement (15) in which
J(w(n)) = E{Q(x,w(n))}

will obviously be satisfied (final result). Again, the essential feature of this result is
that these convergence properties can be achieved without adding penalty term to

O(x,w(n)), asin[17].
Of course, the calculation of 6 and T for choosing the suitable constant
learning rate, T,according to (32), (33) seems to be hard. Meanwhile,  may be

replaced by the time-varying m(n) satisfying the requirements (29) if necessary.
Note that they are usual in the stochastic learning theory [1].

Adaptive control of the plant (16) with an arbitrary B. Basic idea is the
transaction from the adaptive identification of the true plant having the singular
transfer matrix B to the adaptive identification of a fictitious plant with the
nonsingular transfer matrix of the form

B=B+3l, (37)
where / denotes the identity matrix and §, is a fixed quantity.
Although B as well as B remain unknown, the requirement
detB # 0 (38)

can always be satisfied by the suitable choice of 3, in (37). In fact, each ith
eigenvalue A;(B) of B lies in one of the N closed regions of the complex z-plane

consisting of all the GerSgorin discs [33, p. 146]

N

k#i

Since, at least, one of the eigenvalues A;(B) is equal to zero (due to the

singularity of B), by virtue of (8) there are the numbers

(0 3 " >

B =ty = Xlbul, B =i+ Xlbicl, (40)
k=1 k=1
k#i k#i
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such that if
[ by | +...+ by |#0 (41)

then either [_S(i ) <0 but B(i) >0 or [_S(i ) <0 but B(i) > 0. These numbers define the

intersection points of the ith GerSgorin disc with the real axis of the complex z-

plane as show in Figs 1 and 2, left. In both cases, E(i) [_3(0 <0 if (11) is satisfied

because [_S(i) and B(i) cannot have the same sign.

Im ﬁ Im
z-plane z-plane
/ /7“ Re Re
a b
: Svorin di : 182 1<3"
Fig. 1. The GerSgorin discs for N=2 in the case '=
Im # Im
z-plane z-plane

®
o

: i : 37 1</
Fig. 2. The GerSgorin discs for N=2 in the case =

Denote

(V)

p=minB",... g™}, Br=maxip,....p" ) (42)

and consider the following cases: (a) |B|<| [_3 l (b) [Bl>] [_3 | (The case when
IBl=| [_3 | can be combined with any two cases.) In order to go to the transfer matrix

B of the fictitious plant having the form (37) in the case (a), it is sufficient to shift
the GerSgorin disc (39) right taking

50>18) )
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as shown in Fig. 1, right. In the case (b), the discs (39) need to be shifted left
according to

8o <—IBl. (44)

See Fig. 1, right. In both cases, the nonsingularity of B is guaranteed.
Nevertheless, the conditions (43) and (44) cannot be satisfied, as yet. In fact, the
numbers [ and B given by the expressions (42) depend of EU) and E(i)s defined
by (40). But they are unknown because b;;s are all unknown.

To choose a number 3, satisfying (38), we propose the following actions.

Define

. N 7
B =p. — > max{|by || bi |},

Zmin =1 e (45)
ki

0z 3 -

Bmax ::bii+lgz=:1max{|l_)ik |>|bik|}> (46)
k+#i

minimizing and maximizing the right side of (40) for E(i) and E(i), respectively in
bir €[y bik -

Now, introduce such quantities:

e minRD (N)
Emin - mln{Emin"”’Emin}’

2 e () @7
Bl'I'IElX = maX{BmaX"“’BmaX}'
Then &, has to satisfy the conditions
89>—B_. for |B . |<IB gl
_ _ (48)
80 < Pax for |Emin |> B ax |-

It can be clarified that if (48) together with (45)—(47) will be satisfied then the
condition (38) will without fail be ensured.

After determining the number (3) we able to proceed to the consideration of

the fictitious plant. Since the input variables ulD ule )

0 ees
vfll),..., vle ) of both true plant and fictitious plant are the same, this feature allows

and the disturbances

to describe our fictitious plant by the equation
Y, = Buy, +v,, (49)

(1) ~(N) r

similar to (1). In this equation, v, =[y,",..., v, denotes the output vector of

the fictitious plant.
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It is interesting that the components of , can be measured while the

components of v, in (49) remain unmeasurable. In fact, substituting (37) into (49)

due to (16) we produce
;n =V + 80ty (50)

It is seen from (50) that ¥, can always be found indirectly having u, and y,

to be measured.
Now, our problem reduces to the problem of adaptive control applicable to the

fictitious plant (49) with the unknown transfer matrix B in the presence of arbitrary

bounded disturbances vﬁ}),...,vf}) whose bounds, ¢;s, are also unknown. As in

[4, item 4.2.3], the adaptive control law is designed in the from
U1 =ty + By €, (51)

where instead of the current estimate B, of B is exploited where as the error
vector

0
=Y —Vn
is replaced by

& ="~ (52)
with y, given by the expression (50).

The adaptive identification algorithm used to determine the estimates En may

be taken as

WS @,®, 8521

FO 50 _y
S

Vu,signe, D, i=1... N, (53)
which is similar to that in [4, item 4.2.3]. In this algorithm, the following notations
are introduced l;,gi)T:[l;ﬂ(n),...,l;iN(n)], Vu, =u, —u,_;.

B 0 if |e| <%,
f(e, &)= _ , (54)

| e|—€ otherwise

represents the dead-zone function depending on

&, =v3) —p vy, (55)

which is the ith component of Z: :[Z:(l),...,Z: v )]T , and on the past estimate
e

n—1

of the unknown £ found at the previous (n-1)th step. yg) is the coefficient
chosen as

O0<y' <y,<y"<2 (56)
to ensure det En =0.

The algorithm for estimating gg)s is specified by

© L.S. Zhiteckii, S.A. Nikolaienko, K.Yu. Solovchuk, 2015
ISSN 0452-9910. Ku6epHeTuka u BbI4ucJI. TexHuka. 2015. Boim. 181 59



0 0 7@, e9)

s(i)zg ,
T v,

i=1...,N. (57)
Remark 3. The dead-zone function f'(e,€) depicted in Fig. 3 differs from the

dead-zone function utilized in the standard adaptation algorithms similar to (53) in
that it is nonnegative and also its size is time-varying variable determined by the
past estimate of the unknown bound on the disturbance.

4

f )

- 0 & e

Fig. 3. The dead-zone function of the form (54)

The asymptotic properties of the adaptive control algorithm designed above
are established in the following theorem.

Theorem 3. Let the assumptions (18), (19) and (41) be valid. Consider the
adaptive feedback control system containing the plant (16), the controller (51), (52)

together with the adaptation algorithm (53) to (57). Put sg) =0 forall i=1,...,N

and choose any initial estimate By =B,+5,/ from the conditions by <by(0) <bif.
Then:
(i)  the sequence {En} = El, §2> ..., caused by (53)—(56) converges,

ie., lim B, = B,;
n—>0

(i) the sequence {sg)} = sg), sfi),... caused by (57) is nondecreasing
and is convergent, i.e.,

lim {£Dy=¢), i=1,...,N;
n—»0
(iii) the requirement (21) is satisfied.
Proof. The validity of (i) and (ii) follows immediately from the results which
can be found in [4, subsect. 4.2]. It is based on exploiting the fact that

vOw=rPm+vOm),
with
PO =150 50 12 and Oy =126 -5 |,

where 5@ = [b

i1se+ s

Ez‘N ]T , 1s the Lyapunov function of the algorithm (53) to (57).
The proof of (iii) is based on the boundedness property for {)7,(11 )} established
in [4, subsect. 4.2]. Due to this property it can be written
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limsup || 3, [I< . (58)

n—0

Substituting (49) into (58) gives
lim sup (Eun +v,) <. (59)
n—»o0
Since {v,}el,x---xl,, and B is nonsingular from (59) it can be
| ——
N
concluded that {u,}e ¢ x---x{. By virtue of the boundedness of {v,} it yields
N
the boundedness of {y,}. Finally, this fact proves the validity of (iii). ]

CONCLUSIONS

The Lyapunov function approach is the suitable tool for analyzing the
asymptotic behavior both of the gradient learning algorithm in the neural network
identification systems and of the adaptive gradient algorithm in the certain closed-
loop control systems.

Using the approach above mentioned, the two groups of global sufficient
conditions which guarantee that the online gradient learning algorithm in neural
network model for the identification of uncertain nonlinear systems acting in the
stochastic environment will converge with probability 1. The first group of these
conditions define the requirements under which this algorithm will be convergent
a.s. with a constant learning rate. Such an asymptotic property holds in the ideal
case where the nonlinearity to be identified can exactly be described by a neural
network model. The second group of convergence conditions shows that this
property can also be achieved in non-ideal case. Note that adding a penalty term to
the current error function is indeed not necessary to guarantee this property.

It is established that in a worst case where the matrix gain of multivariable
plant to be controlled is unknown and may be singular, and the bounds on the
arbitrary unmeasurable disturbances remain unknown, the convergence of the
gradient adaptation algorithm and the boundedness of all signals in the adaptive
closed-loop system can be guaranteed.
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Systems of the National Academy of Science of Ukraine and Ministry of Education and
Sciences of Ukraine, Kiev, Ukraine

Introduction. The paper deals with studying the asymptotical properties of
the standard discrete-time gradient online learning algorithm in the two-layer
neural network model of the uncertain nonlinear system to be identified. Also, the
design of the discrete-time adaptive closed-loop system containing the linear
multivariable memoryless plant with possibly singular but unknown matrix gain in
the presence of unmeasurable bounded disturbances having the unknown bounds
are addressed in this paper. It is assumed that the learning process in the neural
network model is implemented in the stochastic environment whereas the
adaptation of the plant model in the control system is based on the non-stochastic
description of the external environment.

The purpose of the paper is to establish the global convergence conditions of
the gradient online learning algorithm in the neural network model by utilizing the
probabilistic asymptotic analysis and to derive the convergent adaptive control
algorithm guaranteeing the boundedness of the signals in the closed-loop system
which contains the multivariable memoryless plant with an arbitrary matrix gain in
the presence of unmeasurable disturbances whose bounds are unknown.

Results. The Lyapunov function approach as the suitable tool for analyzing
the asymptotic behavior both of the gradient learning algorithm in the neural
network identification systems and of the adaptive gradient algorithm in the certain
closed-loop control systems is utilized. Within this approach, the two groups of
global sufficient conditions guaranteeing the convergence of the online gradient
learning algorithm in neural network model with probability 1 are obtained. The
first group of these conditions defines the requirements under which this algorithm
will be convergent almost sure with a constant learning rate. Such an asymptotic
property holds in the ideal case where the nonlinearity to be identified can exactly
be described by a neural network model. The second group of convergence
conditions shows that this property can also be achieved in non-ideal case. It turns
out that adding a penalty term to the current error function is indeed not necessary
to guarantee this property. It is established that in a worst case where the matrix
gain of multivariable plant is unknown and may be singular, and the bounds on the
arbitrary unmeasurable disturbances remain unknown, the convergence of the
gradient adaptation algorithm and the boundedness of all signals in the adaptive
closed-loop system can be ensured.

Conclusions. In order to guarantee the global convergence of the online
learning algorithm in the neural network identification system with probability 1,

© L.S. Zhiteckii, S.A. Nikolaienko, K.Yu. Solovchuk, 2015
ISSN 0452-9910. Ku6epHeTuka u BbI4ucJI. TexHuka. 2015. Boim. 181 63



the certain conditions should be satisfied. Also the boundedness of all signals in the
closed-loop adaptive control system containing the multivariable memoryless plant
whose matrix gain is unknown and possibly singular can be achieved even if the
bounds on the unmeasurable disturbances are unknown.

Keywords: neural network, gradient learning algorithm, convergence,
multivariable memoryless plant, adaptive control algorithm, boundedness of the
signals.
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