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COMPARATIVE ANALYSIS OF ESTIMATION METHODS
OF THE PHYSIOLOGICAL SIGNALS VARIABILITY

Introduction. In the modern world, more attention is paid to the study of the behavior of
complexly organized medical and biological systems. The fundamental concept of synergetics
is the generalized entropy, which quantitatively characterizes the degree of the system chaot-
icness. Of special interest are studies of changes in the dynamic series chaotic parameters
generated by various biological systems.

The purpose of the article is further development and experimental research of methods
for analyzing the variability of physiological signals under external influences on the body.

Methods. Two alternative approaches of estimating the variability of dynamic series are
investigated: based on the calculation of the sample variance relative changes and entropy
estimates (in a sliding window with the specified parameters) in relation to the first window.
The theoretical and experimental dependences between the Shannon entropy and the stan-
dard deviation for a normal distribution of a random variable that generates a dynamic
series are studied. Comparison of these estimates with real and model data is carried out.

Results. To increase the sensitivity of entropy estimates to the variability of the dynamic se-
ries, it is proposed to move from a series of discrete entropy h(l) values at the | -th point, calcu-

lated by the sliding window method, to its phase portrait on the plane h(l), h(l), where h(l) is

the estimate of the first derivative h(l). For an integral assessment of the chaotic nature of

physiological signals, it is suggested to estimate the area of the convex hull of the entropy phase
portrait and the coordinates of the phase portrait gravity center X, Y. Experimental studies have
confirmed the diagnostic value of these parameters in the assessment of variability of the electro-
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cardiograms and rhythmograms indices with external influences on the body (intravenous ther-
apy, surgery and physical activity).

Conclusions. Deviations of the integral parameters of the entropy phase portrait under
the effect of external influences on the organism were detected, which open new possibilities
in the evaluation of the cardiac activity regulation in preventive and clinical medicine. These
integral parameters require further study to confirm their statistical significance in represen-
tative samples of observations.

Keywords: variability of physiological signals, entropy estimates, diagnostic criteria.

INTRODUCTION

In the modern world more attention is paid to the behavior of complexly
organized medical and biological systems [1]. For this purpose synergetic
methods are used, aimed at studying the general laws of processes in nonlinear
dynamical systems and the research of the relationship between ordered and
chaotic structures [2].

The fundamental concept of synergetics is the generalized entropy,
which quantitatively characterizes the degree of system chaoticness. In
cardiology, entropic indices are actively studied to assess the heart rhythm
chaoticness. For example, in [3-5], the relationship between entropy and
traditional heart rate parameters was studied. It was found that in healthy
people the RR-intervals entropy correlates reliably with all the main indi-
cators of heart rate variability (HRV).

Interesting results were obtained by analyzing the relationship between the
traditional HRV parameters and the sample entropy under isometric and
dynamic loads [6]. Studies have shown that in healthy volunteers the traditional
HRYV parameters react equally to both types of load, while the sample entropy
significantly changed only under isometric load. This indicates that the
vegetative control of cardiovascular reactions to isometric and dynamic loads is
different. It allows us to change the traditional view on the interaction between
the branches of the autonomic nervous system.

Changes in the chaoticness of the different dynamic series parameters,
which carry additional diagnostic value, for example, in the rhythmogram [7, §]
or the electroencephalogram [9], are of particular interest.

There are different approaches to solve such problems. The simplest way is
to estimate the entropy calculated from successive sections of the dynamic series
(windows) and compare the estimates that are normalized by the first window.
Based on such studies, it was possible to detect gender differences in the time
variation of Shannon entropy of the conditionally healthy men and women
electrocardiograms (ECG) in response to stressful effects [10].

In the process of research, another curious fact was established, which, in
the author's opinion [10], is worth a special study. It has been found that the
most stable parameter, reflecting statistically significant changes in the signal
over time, is precisely entropy, and not dispersion.

According to [11], important information about the properties of the
system carries not only by the entropy itself, but also by the nature changes
over time. In [12], a number of interesting results on the entropy method usage
were obtained for a comprehensive assessment of the risk factors dynamics for
cardiovascular diseases.
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Since mathematical methods for estimating the variability of dynamic series
are becoming increasingly popular in the solution of applied problems, it is
necessary to carry out additional studies and determine the conditions under
which the analysis of Shannon and other entropies will be more effective.

The purpose of the article is further development and experimental research
of methods for analyzing the variability of physiological signals under external
influences on the body.

TWO APPROACHES TO ESTIMATION OF DYNAMIC RANGE VARIABILITY

Let it be required to evaluate experimentally the variability of a values sequence
A=a,a,,..,a,, (D

representing the realization of some random variable X with an unknown
distribution law p(X).

This can be done if we calculate the sample variance

.1 1 LY
6 =— a——)y a. s 2
N—llﬂ(' NZ Jj )

which estimates the square of the values X deviations relative to the estimation
of mathematical expectation M{X}.

The sample variance ° can be calculated as data is accumulated using the

recursion formula, and with a minor modification such an estimate will be
unbiased and consistent [13].

The second way of calculating the variability of the sequence (1) is based on
the use of the statistical analogue of the well-known Shannon entropy expression

H== plog,p,, 3)

J=1

where p, is the frequency of entry values g,, i=1,...,N into the intervals
A, =[a;.,aj], j=L...n.
For a given n boundary a;,a; of these intervals, including those with

alternating variables a,, are determined by the relations

max g, —mina,

a; =mina, + ~(j-D, j=1..,n, €))

maxa, —mina, .

a(/*. =mina, + Jj, j=L..n. (5)

n

The greater the value H , the further the system is from the ordered state.
The maximum value Shannon's entropy reaches when all states of the system are
equally possible. It follows that the entropy (3) takes values on the interval
[0, log, n ]. For convenience, instead of (3), the normalized entropy is often used
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> p;log, p,

= <[0,1]. (6)
log, n

norm

It is easy to show [14] that the value (3) is invariant under permutations of
the series elements (1). Therefore, the Shannon entropy (3) itself, as well as
dispersion (2), characterizes only the properties of the random variable X that
generates the sequence (1), and not the variability of the sequence itself.
Therefore, it is possible to estimate the variability of a dynamic series only by
calculating (2) or (3) on individual sections of the processed sequence (1).

This can be done if you scan the observed time series with a sequence of
windows, in each of which calculate the relative increment of entropy

_Z by log Py 7

H="—"100%, [=1,...M, )
1

where p, is the frequency of occurrence of the time series values, observed on

the /-th fragment, the j-th interval A= [a;.,a;.] , j=1,..,n,and

Hy ==Y p,logp, (8)

J=1
is an entropy calculated in the first window, provided that H, #0 .

There are other entropy estimates of the dynamic series chaoticness, a
comparative analysis of which is presented in [14]. For example, it is possible to
calculate in each /-th window a modernized permutation entropy PE , which is
based on estimating the frequency of five characteristic patterns appearance
(Fig. 1).

Patterns classes are uniquely determined by the values a,, i=2,...,N -1 of
the sequence (1) as follows:

class m,, if (¢, —a, ) >h A (a,-a,,)>h,

class m,, if (a,_,—a,)>h A (a,,—a,)>h,

i+1

class m,, if (¢, —a, ,)>h v(a,, —a,)>hv (a,,—a,,)>h,
) > h,

class my, if none of the above relations holds, in which # is a given

i+l

class n,,if (a, ,—a,)>h v(a, —a,,)>h v (a_, —a,,

threshold of insensitivity to local changes in the signal.

AN A N —

] Uz Tty Uy Ts

Fig. 1. Five classes of modernized permutation entropy patterns
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Then the permutation entropy in the /-th window is calculated by the
formula
5
_Zp(njl)logp(nﬂ)
PE, =~
PE,

1

-100%, I =1,...M , ©)

in which p(n;) is the frequency of the pattern ; appearance in the /-th

window, and

PE, ==Y p(n;)log p(n;,) (10)

Jj=1
is a permutation entropy calculated in the first window, provided that PE, #0.

Similarly, one can get an idea of the dynamic series variability if one
evaluates the variances (2) on successive signal windows of length K|;:

1 1
KO_IZ(%_KZ%

]2
0] =100 %, [=1, M
G]

(11

where a, are the discrete values observed in the /-th window, and

1 K, 1 K, 2
ol = lz(a” —;Zanj (12)

o 1=l 0 i=l

is a variance estimation of the values a, observed in the first window under the

assumption that o, # 0.

Note that the procedures (7), (9) and (11) can be implemented when the
[ +1-th window is shifted by the /+1-th ratio to the K, window width or when
windows are shifted by one point (sliding window mode). It is clear that in the
latter case the amount of necessary calculations will be greater, but the graph of
changes in the calculated values will look smoother.

It is known [15] that for fixed distributions of the random variable X
generating the series (1), the entropy is related to the standard deviation (SD) o
by certain dependence. For example, if a quantity X has a continuous normal
distribution, then [16]

¢ v 1 X’
H=- X)1 X)dX =- X)|1 ——1 dX =
[ p(x)log p(x) _jwp< ){ogms = oge}

—00

loge ¢ 1
;)gze jp(X)deX =logoV2n +510ge =
G —00

= —log(x/ﬂcs)"ltr p(X)dX +
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=logov2mne =0.5log, 2ne +log, G. (13)

It follows that for a continuous normal distribution the relationship between
H and o is

H=205+log,o. (14)

For experimental verification of this relationship, model experiments were
carried out.

MODEL EXPERIMENTS

The experiments were carried out by processing the generated test sequences of
independent normally distributed quantities a,, i=1,..., N with zero mean and

6=0.1 for different values of the number of points N . Following the
recommendations of [17], to determine the boundaries (4), (5) of the intervals

A, =la;,a;], j=1,..,n the value was taken n=12.

Model experiments have shown that under N >200 the graphs of the
theoretical and experimental dependences have almost the same form (Fig. 2).

The nonlinear character of the dependences (14) leads us to the important
conclusion. With a normal distribution of the random variable X that generates
the sequence (1), even minor changes in the SD in the region of small values lead
to large changes in the Shannon entropy, whereas a change of the same percentage
in the region of large values practically does not lead to any changes in H .

It is easy to verify that the boundary of these regions determines the value of
the SD

c,~1.443, (15)

satisfying the condition 0H /0o =1.

To illustrate, let us consider the results of estimating the chaoticity of two
model signals, which are a sequence of independent normally distributed
quantities with zero mean and different values of the SD at the first and second
halves of the observations (Fig. 3).

H H
m— £ /’/——-—.
| —T | . ]
i 5 e

‘ {/ ./
i /
05 <

o 2 o 300 o5 10 15 20 25 G

a

Fig. 2. Graphs of the entropy H dependences on the SD & under normal distribution:
is the theoretical dependence (14); is the experimental dependence ( N =400 points)
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Fig. 3. Model signals with low (a) and high (b) values of SD

The first signal (Fig. 3, a) consists of two fragments of N =400 points each
with the parameters o, =0.1 and o, =0.13, respectively, and the second
signal (Fig. 3, b) consists of two fragments of points N =400 with the
parameters o, =2.70 and o,, =3.51, respectively. Thus, on the second halves
of both signals, the same increase in SD is observed in comparison with the first
half, equal to 30 %. But in this case the values of the SD on the first signal
belong to the region 6 <o,, and on the second signal — to the region ¢ >o,,

where o, is the threshold value determined by the relation (15).
Table 1 presents the results of calculating the Shannon entropy on fragments

of these series.

Thus, with the same increment in the SD (30 %), the increment of the
Shannon entropy on the second signal was lower than the first signal.

Let's make a comparative analysis of the estimating results of the dynamic
series variability using sliding windows. The model signal was a sequence of

Table 1. Results of modeling

Test signal SD, un. | SD increase Entropy, Entropy
un. increase
. . 0.1 1.90
Time series 1 30 % 20 %
0.13 2.29
2.7 493
Time series 2 30 % 2%
3.51 5.05
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M =10 fragments, each consisting of K =50 dots and generated by an
autoregressive model of the form

ay=Ma,_,, +(1-2)&_,,, k=1..K;, [=1...M, (16)

where A, (0<A,<1) is the parameter that determines the variability of the

signal on the /-th fragment, a, =0.1 is the initial value, &e N(0,6°) is a
sequence of independent normally distributed random numbers with zero
mathematical expectation and variance ¢” =3.

Thus, the entire signal contained N =500 points. The parameter values on
the A,A,,...,A,, fragments of one of the test signals are presented in Table 2,
and the graph of this signal is shown in Fig. 4.

The results of estimating the variability of the test signal using procedures
(7) and (11) with sliding windows are shown in Fig. 5.

It is easy to see that both parameters had similar trends — an increase in SD
was accompanied by an increase in entropy, and vice versa. But in the region
G >0, , the sensitivity of the entropy to the variability of the signal is almost
2 times less than the sensitivity of the SD, which agrees with the results of the
study of the theoretical relationship between these values.

Table 2. The values of the parameters X, on the test signal fragments

7\,[ 0.93 0.86 0.75 0.1 0.2 0.3 0.6 0.7 0.8 0.9

lln

WYY u.mﬂﬂiﬂvﬂiﬂﬂll “ull hl“n Al
bl IWIWI

1 101 201 301 401 i

Fig. 4. The test signal of the 10 fragments with different parameters A,
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Fig. 5. Dynamics of changes in the SD and Shannon entropy H during the processing of
the test signal

PHASE PORTRAIT OF SLIDING ENTROPY

To increase the sensitivity of entropy assessment to the variability of the
dynamic series, it is proposed to move from a series of discrete values A(/)

calculated by the sliding window method to a phase portrait of entropy on the
plane A(/), h(l), where h(l) is the estimation of the first derivative A(/) at the
[ -th point.

Despite the fact that the procedure of numerical differentiation of noisy data

refers to incorrectly posed mathematical problems, the application of special
filtration and regularization procedures [18] allowed us to obtain acceptable

estimates of the derivative A(l). As a result, it is possible to construct graphic

images of the entropy phase portrait as points on the plane A(l), h(l) .

For illustration, Fig. 6 shows examples of phase portraits of Shannon and
permutation entropies, which are constructed from the same dynamic series of
parameter P, values (symmetry of the 7 -wave in the process of recording the

electrocardiogram), which are used as an additional diagnostic sign of coronary
heart disease in the method of phasegraphy [19].
For an integral estimate of the physiological signals chaoticity, we construct

in the normalized coordinates #([), 4(I) the convex hull of the entropy phase

portrait and determine the area S of the resulting polygon, as well as the
coordinates X', Y of the phase portrait center of gravity (Fig. 7).
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Fig. 6. Phase portraits of the Shannon (a) and permutation (b) entropy of the parameter
B, on the real ECG
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Fig. 7. The phase portrait of the sliding entropy (left) and its convex hull (right)

PRACTICAL RESULTS

A serious manifestation of cardiovascular disease is sudden cardiac death, when
a patient dies almost instantaneously (from a few seconds to an hour) after the
onset of a heart attack. One of the predictors of sudden cardiac death, which has
recently gained wide popularity in clinical studies, is based on an analysis of the
so-called electrical heart alternation [20], which refers to the regular alternation
of the electrocardiogram elements characteristics.

The complexity of constructing computer algorithms for automatic detection of
the alternation effect is due to the fact that real signals with the presence and absence
of an electrical alternation are externally virtually indistinguishable (Fig. 8) [19].

At the same time, the proposed method for estimating the randomness of the
time sequence on the basis of calculating the area of the convex hull of the
entropy phase portrait makes it possible to reliably solve this problem. To test
the effectiveness of this method, test signals with different values of the T-wave
amplitudes alternation levels were generated against a background of 15 %
random distortions. Test signals were generated on the basis of the generative
model of artificial realistic forms ECG generation [21].
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Fig. 8. ECG with a random distortion (top) and 7-wave alternation (bottom)

Despite the fact that visually these signals were practically indistinguishable,
the area of the convex hull of the permutation entropy phase portrait (EPP)
decreased monotonically as the alternation of the 7T-wave increased, i.e. increasing
proportion of the regular component of amplitude variation (Table 3). At the
alternation level of 60 mcV, the area decreased by more than 30 % (from 0.89
units to 0.62 units) compared to the signal without alternation.

The proposed approach has also found practical application in assessing subtle
changes in the signal during the intravenous therapy. The research was conducted in
2016 in the State Scientific Institution "Scientific and Practical Center for Preventive
and Clinical Medicine" State Administration (SSI "SPC PCM" SA). The urgency of
this task is due to the fact that many medications, including those used in
cardiological practice, often have side effects (from 30 to 70 %) [22].

Table 4 shows the results of ECG treatment during the intravenous drip
infusion of Tivomax, Armadin and T-triomax to a patient R. at the age of 72
years old with pronounced bigeminy, which manifested itself in the regular
alternation of normal and extrasystolic heart cycles. ECG was recorded every 5
minutes during the introduction of medications. Each ECG was recorded for 150
seconds with a total duration of 2 hours.

As can be seen from the table, by the time of 12:03 (35 minutes after the start
of the medication administration) the heart rate returned to normal, there was a
sharp decrease (by 92 %) of the SDNN parameter, the traditional index of heart
rate variability. At this point in time, the area S,, of the permutation entropy

phase portrait of the RR-intervals has decreased by 44 % from the initial value.

It should be noted that after the normalization of the rhythm during the
further administration of medications, the parameter SDNN remained
practically unchanged, while the area S,, continued to decrease smoothly

(Fig. 9). Since, as already noted, the Shannon entropy (unlike the SD)
characterizes not the magnitude of the spread, but the variety of the processed
sequence, such a gradual change in the parameter S,, after restoration of the

heart rhythm, that carries information on subtle changes in the heart rhythm,
may have additional diagnostic value, which requires further study.

It is also clear that monitoring the ECG during the drip administration of
drugs allows you to control the absence of undesirable changes in parameters
caused by individual drug intolerance.
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Table 3. Areas of EPP convex hulls with a 7-wave alternation

T-wave amplitude alternation level, mcV

0 15 30 60

| | | SININP i
] 5 A [ ] .. A
. [ [ L] L
/NN I N L
§=0.89 un. §=0.76 un. S§=0.64 un. §=0.62un.
% < |
SRR
-20 /
.\N.._._
-40 .-----"‘"-..
\ P
60 \ Rhythm normalization
R e e ] e el |2
-80 —
\ |SDNN
[ __-_..-
-100
1 2 3 4 5 6 7 8

Fig. 9. Dynamics of changes in the integral heart rate parameters in the process
of drip administration

To illustrate such possibilities, Table 5 shows the dynamics of changes in
the ECG parameters of patient 1. 76 years old in the process of drip
administration of Panangin and Mexicor medications. During the entire period of
administration, the median ECG cycle in the time domain and in the phase plane
remained practically unchanged, and the values of the T -wave symmetry
parameter were within the physiological norm: , =0.653+0.014 units. Stable

was the area of the EPP convex hull parameter B,: S;; =0.7431+0.016 units,

which gave the reason for the doctors to continue treatment without changing the
dosage of the medications.
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Table 4. Dynamics of ECG parameters during patient R. dropper

Rec?rdlng ECG fragment RR-intervals EPP Srr, un. SDNN,
time ms
11:35 ) 0.995 | sis

A
11:47 ) l\ \l} 083 | 510
i /
N
12:03 1 : // 0.751 | 27
NS
o ~—
, N
12:12 ) < ) |o6s2| 30
0. //
12:32 I\ ' /) 0.644 | 22
005 N1
12:37 MR 0.619 | 33
\ 1
A
. =
12:47 ST oser | 27
021 /
= N
13:02 ) / 0.555 | 41
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Table 5. ECG parameters dynamics for drip administration of potassium medications

The EPP convex hull of
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Interesting results were obtained in the study of subtle ECG changes by
estimating the area of the convex hull of the permutation entropy phase portrait
in patients whith coronary heart disease that underwent coronary artery bypass
surgery (CABG).

Since such an operation is most often performed in the open heart with the
use of an artificial circulation device, the ECG was recorded before and after
surgery (Table 6).

On the first day after the operation, the EPP [, parameter decreased by

5 %, and on the 7-th day after the operation its value reached S, =0.595, which

is 24 % lower than before surgery. The patient successfully passed the
rehabilitation period and was discharged a week after the operation.

Of particular interest is the study of subtle ECG changes directly in the
process of coronary stenting, which is more sparing surgical treatment for the
patient, which, unlike CABG, does not require cardiac arrest. The results of such
a study, obtained with the stenting of the anterior interventricular branch of the
right coronary artery to patient I. 50 years old with the diagnosis of
postinfarction cardiosclerosis, are presented in Table 7.
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Table 6. Dynamics of integral ECG parameters of a 55 years old patient before and after

CABG
Before CABG 1 day 6 day
125 125 125
058 __\ 0.8 039 \
07 07 07 —
. »
0.47 0.47 0.47
021 ~ 021 0.21 \
N
0,08 ~ 0.05 0.0 \/
005 017 033 061 08 105 005 017 033 061 083 105 005 017 039 061 083 1.05
Syr = 0.783 units Spr = 0.751 units Spr = 0.595 units

It can be seen from the table that the area of the Shannon entropy phase
portrait of the f, parameter increases during the whole procedure by 27 %, and

on the next day after the operation by 33 %. The symmetry of the T -wave also
increases during the entire operation, reaching 42 % when the blood flow of the
anterior interventricular branch of the right coronary artery is restored. On the
first day after stenting, the value of the symmetry index decreased to a
physiological norm of 3, =0.67 units.

Similar results were observed when examining ECG changes during the
installation of several stents (in the circumflex branch and in the anterior
interventricular branch of the coronary artery) to a 74 years old patient
diagnosed with stenosing coronary artery atherosclerosis (Table 8).

In this case, during the operation, the symmetry index of the 7 -wave was
practically unchanged and was within the limits of the physiological norm:
B, =0,641£0,09 units. At the same time, the area of the phase portrait of the

permutation entropy increased throughout the procedure, reaching 45 % by the
end of the operation, and the control measurement for the following day showed
a decrease in 3, EPP by 35 %.

We also note that during the operation a gradual decrease in the integral
parameter Y, (the center of gravity of the EPP along the y-axis) by the end of the

operation reached 20 % of the initial value. This indicates that in this patient
decreased average level entropy in the course of operations, which most likely
indicated a lower level of adaptive capacity of the organism than a younger
patient.

The detected fact made it possible to put forward the hypothesis that
important additional diagnostic information in assessing the reserve capabilities
of the cardiovascular system can provide an analysis of the ECG phase portrait
during exercise. We present the first results aimed at studying such possibilities.
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Table 7. Dynamics of changes in EPP parameter during stenting

Phase The convex hull of a 3, EPP Integral parameters
=
0. Spr =0.613 un;
T T
. 0.7 ( XBT =0.537 un.;
Baseline o .

TTINE

005 017 0339 061 0.83 1.05

YBT =0.528 un.;
B, =0.65 un.

Spr =0.633 un;

]
Introduction of o7 ™ X pr = 0443 un,;
stent delivery 0sr \ . >

catheter Yir=0514un;

;’Z‘ o By =0.95 un.
0 Spr =0.632un;
Balloon 07 <f \ Xy =0.501 un;
inflating ot = ¥, =0.506 un;

B;=0.97 un.

Restoration of

0.
the blood flow |1 B\
of the anterior 0.7
interventricular ver / . \
branch of the ‘
right coronary 021
artery e | —

005 017 03% 061 083 105

Spr =0.645 un;

Xy =0.529 un;;

Y, =0.548 un,;
B, =0.92 un.

nitrates 04

Introduction of (\ . \

| g

5
005 017 033 061 083 105

S

Sgr =0.776 un;

Xpr = 0485 un;

Y, =0.604 un,;
B, =0.77 un.

1 day after
stenting 04

I~

5
005 017 039 061 083 105

Spr =0.521 un;
Xy =0.535 un;;
Y,;=0.53 un,;
B, =10.67 un.
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Table 8. Dynamics of changes in EPP parameters during stenting

Th hull of
# Stage ¢ convex hull ofa Integral parameters
EPP
1.2
0! Sgr =0.557 un;
07 < . > Xpr =0.503 un;
0 Baseline
0.47 \ YBT =0.743 un.;
021 \/ BT =0.713 un.
-D‘ﬂ':D_DE 017 039 061 083 105
1.2
0. == SM =0.597 un.;
Introduction 07 . X pr = 0.56 un.;
1 of the introdu- 047 »
cer YBT =0.632 un.;
o N B, =0.644 un.
VD‘HVED 05 017 035 061 083 105
12
o / Sgr =0.755 un;
) Reintroduction | / . ' Xpr =0.568 un.;
of introducer 047 \ J YBT =0.608 un.;
0.21 B, =0.68 un.
4 !
’ 005 017 039 061 083 1.05
e
Pain in the ’ \\ Sgr = 0.81 un;
sternum, the 07 XBT =0.511 un;
3 | introduction of / .
an iso-mic Y Z Yor=0.597 un;
spray 021 ] B, =0.526 un.
VD‘HFD‘DS 017 039 061 083 1,05
=
0.
N Spr =0.529 un;
0.7.
X.,.=0.527 un;
4 1 day z}fter oo < ° ) BT
stenting YBT =0.597 un.;
0.21
\/ B, =0.732 un.
VD‘HVED 05 017 039 061 08 105

Table 9 shows the results obtained when testing a conditionally healthy 55
years old volunteer on a treadmill. During testing, the speed of the tape reached
2.7 km/h, and the angle of inclination gradually increased to 10 %, which in the
second stage ensured the metabolic equivalent MET = 4.6. After that, the tested
person rested for 10 minutes.
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Table 9. Dynamics of changes in integral parameters for a
treadmill test

The convex hull of a
# Stage MET RR-intervals EPP Integral parameters

. Spr =0.593 un.;

0.7 ( 7 XRR =0.51 un.,

0 Baseline 1 .

047 YRR =0.616 un.;
0,214 A e SDNN =135 ms

005 037 03% 061 083 105

AT T Spr =0.837 un,;
. 3 min )3 v { N \ X,, =0.494 un.;
stress . 04 \ I YRR =0.583 un.;
. \ [ SDNN =99 ms
VD.HVED 05 017 03% 061 08 105
=
’ P N S.x =0.888un;
, | 6min 35 v ( } X, =0.481 un.;
stress ‘ o \ = / Yo =0.512un;
oA \ / SDNN =90 ms
I:)n—ED 05 017 03% 061 08 105
.
" Sex =0.989 un.;
3 9 min 46 v X =0.5un;
stress ’ 047 Yir =0.12un;
oz . SDNN =18 ms
° "-D‘DE 017 039 061 083 105
Iy
! \ Spx =0.79 un.;
4 3 min ) o \ X =0.518 un.;
rest o E ] Yer =0.446un,;
o2 SDNN =94 ms
D‘ﬂfD 05 017 03% 061 08 105
1.2
0.
> Spr =0.667 un.;
0.7.
5 6 min > Xy =0.478 un,;
- 0.47
rest \ s Y, =0.398 un.;
TN SDNN =89 ms

0.05
005 017 033 061 083 105
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In the process of increasing the load, the SDNN parameter decreased by
86 %, which agrees with the known data on the increase in the sympathetic part
of the autonomic nervous system under load. Simultaneously with the decrease
in heart rate variability, the integral parameter S,, characterizing the area of the

convex hull of the permutation entropy phase portrait increased by 66 %. Recall
that, unlike SDNN, this parameter characterizes not the degree of dispersion,
but the variety of RR -intervals.

It is clear that load tests using treadmill and veloergometer can be used only
in medical conditions. Such tools are of little use for testing in the field, in
sports, in the workplace, etc. This requires not only portable ECG measurement
tools, but also simple methods that allow to obtain operational test results in a
convenient and understandable form.

In this regard, it is of interest to evaluate the possibilities of the proposed
approach when performing simplified methods for assessing the adaptive
capacity of a person under stress, in particular, the famous Martine-Kushelevsky
test. To perform such studies, it is sufficient to estimate the EPP parameters in
three states: before the stress, after performing 20 deep sit-ups in 30 seconds and
during restitution period after 3 min rest.

During the studies, ECG treatment was performed on 30 healthy volunteers
at the age of 20,6 £1 year. For illustration, Table 10 shows the results obtained
with the testing of volunteer M. 20 years old.

As follows from the data given at the height of the load, the SDNN

parameter (SD of the RR -intervals) decreased by 18 %, while the S,, area
increased by 12 %. There were also characteristic changes in the integral
parameters X, and Y, : the EPP center of gravity shifted to the left by 24 % of

the initial value and rose by 34 %.

Table 10. Dynamics of EPP RR-intervals of a healthy volunteer M.

Before stress Stress Restitution

1.25

1.25 1.25

0.99

— | X
S | TR | TR )
\ DT AR

o 0.21 L 0.21 <

-0.05 -0.05
005 017 039 061 083 105 -0.05 017 03% 061 083 105

-0.05
-005 017 03% 061 083 105

Spz =0.65un; Spe =0.729 un.; Ser =0.662 un.;
Xz =0.497 un.; X e =0.408 un.; Xy =038 un;
Ypp =0.501 un.; Y, =0.695 un.; Yoo =0.671un.;
SDNN =69 ms SDNN =54 ms SDNN =95 ms
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A similar reaction to the load was demonstrated by 12 other volunteers. This
result shows once again that the SDNN and S,, parameters from different

perspectives characterize the variability of the heart rthythm: the first parameter
characterizes only the magnitude of the RR -intervals spread, and the second
parameter characterizes the variety of their values.

CONCLUSIONS

The article considers various approaches to the assessment of heart rate
variability and other parameters of a single-channel ECG under the effect of
external influences on the body (intravenous therapy, surgery and physical
activity). A comparative analysis of two approaches to the variability estimation
is carried out: based on the dispersion analysis and the Shannon entropy
calculated from successive sections of the same discrete signal.

To increase the Shannon entropy sensitivity to an estimation of a variety of
an investigated parameter in the course of its observation, it is proposed to
construct an entropy phase portrait calculated in a sliding window and to
estimate the area of its convex hull and the coordinates of the gravity center in
the phase plane.

Characteristic changes in these integral parameters are established when the
effect of electrical alternation of the heart is detected, as well as during physical
exertion (treadmill and Martine-Kushelevsky test), with drip administration of
medications and in operative treatment of cardiovascular pathologies (coronary
artery bypass surgery and stenting).

It can be assumed that the detected facts of changes in the values of the
proposed integral indicators of the entropy phase portrait, including the S,,

parameter, indicate the search for the most economical way of regulating cardiac
activity. Of course, such a hypothesis requires further study and evaluation of
the statistical reliability of the observed differences in representative samples of
observations, which can lay the basis for new diagnostic criteria in preventive
and clinical cardiology.
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CPABHMTEJIBHBI AHAJIN3 METOOB OLIEHKU
U3MEHUYNBOCTU ®U3NOJIOIT' MYECKNUX CUT'HAJIOB

Bseoenue. B coBpeMeHHOM Mupe Bce 0oJIbliiee BHUMAHHUE YAEIACTCS M3YUYCHUIO NOBEICHUS
CJIOKHOOPIaHM30BAHHBIX CHUCTEM, K KOTOPBIM B IIEPBYIO OYEPENb OTHOCITCS MEIUKO-
Ouosornueckue cucreMbl. DyHIaMEeHTaIbHOE TIOHATHE CUHEPTeTHKH — 0000IIeHHas SHTPO-
WS, KOTOpas KOIMYECTBEHHO XapaKTepH3yeT CTENeHb XAOTHYHOCTH cHcTeMbl. OcoObrit
UHTEpEC MPEJCTABIAIOT UCCIEI0BAHUSA U3MEHEHUH IMoKa3aTeslell XaoTUYHOCTH AMHAMHYeC-
KUX PSAZI0B, IIOPOXKIAEMBIX PA3IMYHBIMU OMOJOIMYECKUMU CUCTEMAMH.

Lenv cmamvu — panbHellIee pa3BUTHE U SKCIIEPUMEHTAIBHOE UCCIIEOBAaHUE MaTe-
MaTHYeCKHX METOJOB OIIEHKH M3MEHUYHBOCTU (DH3MOIOTMYECKHX CHTHAJIOB IPH BHENIHHX
BO3/IEHICTBUSIX HA OPTaHU3M.

Memooul. WccnenobaHsl 1Ba albTEPHATUBHBIX MOAXOJAA OLEHKH M3MEHUUBOCTU IH-
HAMHUYECKHX PAAOB: HA OCHOBE BBIYMCIICHHUS OTHOCUTENBHBIX M3MEHEHUH BHIOOPOUHOHN IHC-
HEPCUU M SHTPONUIHBIX OLEHOK (B CKONB3ALIEM OKHE C 3aJaHHBIMU I1apaMeTpaMH) IO OT-
HOILCHUIO K IepBOMY (OHOpHOMY) OKHY. M3ydeHa TeopeTHdeckas M SKCIEpPUMEHTalIbHAs
3aBUCHMOCTU MEXJy LIEHHOHOBCKOH 3HTponMell U cpeJHEKBaJpaTHYECKUM OTKIOHEHUEM
IpU HOPMAJIBHOM pAacCHpeieIeHUU CIy4allHONH BEJIMYMHBI, MOPOXKAAIOIIEH JAMHAMUYECKHH
psn. IIpoBeneHo cpaBHEHUE yKa3aHHBIX OLICHOK Ha PeallbHbIX U MOJEIbHBIX JAHHBIX.

Pezynomamul. 115 IOBBIIEHUS] 4yBCTBUTEIBHOCTH SHTPOIUIHBIX OLIEHOK K M3MEH-
YUBOCTH AMHAMUYECKOIO psja HpeanaraeTcs IepeiTu oT psga JUCKPETHBIX 3HAUEHHH DHT-

pormu A(l) B [ -it TouKe, BHIYMCIIEHHOI METOZIOM CKONB3AIIEr0 OKHa, K e (a30BOMY TOpPT-

pery na mockoctu /(l),h(l), rae h(l) — ouenka nepoii mponsBoxuoit A(l). Jlns unTerpa-

JILHOW OIEHKH XaOTUYHOCTH (PH3HOJOTUYECKHX CHTHAJOB MPEIIOKEHO OLEHHTH IUIONIAIb
BBIITYKJION 000109KH (pa30BOTO MOPTpPETa PHTPONMU M KOOPAWHATHI IIEHTpa TshKecTH X ,Y
¢azoBoro moprpera. JKCIEPUMEHTAIbHBIE UCCIECIOBAHUS MOATBEPIUIN AUATHOCTUUECKYIO
LIEHHOCTh YKa3aHHBIX ITOKa3aTesell Mpu OlleHKe H3MEHUYHMBOCTH I1apaMeTPOB AJIEKTPOKAPANO-
rpaMM U PUTMOTPAaMM TPH BHEIIHHX BO3/ICHCTBUSAX HA OPraHU3M (BBEICHUE JIEKAPCTBEHHBIX
MPEernapaToB, OIIEPaTHBHOE BMEIIATEILCTBO U (PU3NUECKast HATPY3Ka).

Bri6oovi. OOHapyxeHHBIE OTKIIOHSHHUS] HHTETPaJIbHBIX MTOKa3aTelel (pa3oBoro moprpera
SHTPOIHUH TI0/ I€HCTBHEM BHEIIHUX BO3ICHCTBHIA Ha OPraHU3M OTKPBIBAIOT HOBBIE BO3MOXK-
HOCTH B OLIEHKE PETYISAILIH CEPACTHON AEATEIBHOCTH B MPO(PMIAKTHYECKOH U KIMHUYECKOM
MEIUIMHE W TPeOYIOT NalbHEHWIIero M3y4eHUs IUIsl MOATBEPIKICHUS HX CTaTHCTHYECKON
3HaYMMOCTH Ha PENPE3CHTATHBHBIX BEIOOpKAX HAOIIOICHHIH.

Knwuegvie cnoea: usmenuusocms ¢u3uw102uuecxux CUCHA086, 3Hmp01’luIZHbl€ OY€eHKU, ouae-
Hocmu4eckue kpumepuu.
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TIOPIBHSJIBHUI AHAJII3 METO/IB OLIIHIOBAHH S
MIHJIMBOCTI ®IBIOJOTITYHUX CUT'HAJIIB

Po3rastHyTO pi3HI MiAXOAM 10 OIIHKH MIiHJIUBOCTI CEpPIICBOrO PUTMY Ta IHIIMX TOKA3HUKIB
onno kaHanbHoi EKI' mix fi€lo 30BHIIIHIX BIUIMBIB Ha OpraHi3M. 3allpOIIOHOBAHO HOBHMH
MiAXIJ 10 OLIHIOBaHHS MIHIWUBOCTI (Di310JIOTIYHUX CHTHAJIB HAa OCHOBI BH3HAYEHHS IUIOIII
onykJoi 000J0HKH (ha30BOro MmopTpera KoB3HOI eHTporii. HaBegeHo pe3ynpTaTH 3acTocy-
BaHHS 3allPOITOHOBAHOTO MiIXOIy 10 OOPOOJIEHHS MOJENBHHUX Ta PEATbHUX JNAHUX, 30KpeMa
JUIL BUSBIEHHA e(EeKTy eNeKTpUYHOI anbTepHalii cepus, a TakoX aHali3y MHaHHX,
3apeeCcTpOBaHUX 33 YMOB (I3MYHOTO HaBaHTaXeHHs (TpeaMmin 1 mpoba MapriHa-
KymieneBcbkoro), KpalUIMHHOTO BBEIEHHS JIIKAPCBKUX MpemapaTiB 1 ONepaTHBHOIO
JIKYBaHHS CEPIEBO-CYAHMHHHX MATOJOTiH (A0PTOKOPOHAPHE IIYHTYBAHHS Ta CTEHTYBAHHS).

Knwuosi cnosa: minausicmo (Qizionociunux cueHanie, enmponiini OYiHKU, OiA2HOCMUYHI
Kpumepii.
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