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DISCRETE-TIME STEADY-STATE CONTROL OF INTERCONNECTED 
SYSTEMS BASED ON PSEUDOINVERSION CONCEPT  
  

Introduction. The problem of controlling interconnected systems subjected to arbitrary un-
measurable disturbances remains actual up to now. It is important problem from both theo-
retical and practical points of view. During the last decades, the internal model control prin-
ciple becomes popular among other methods dealing with an improvement of the control 
system. A perspective modification of the internal model control principle is the so-called 
model inverse approach. Unfortunately, the inverse model approach is quite unacceptable if 
the systems to be controlled are square but singular or if they are nonsquare. It turned out 
that the so-called pseudoinverse (generalized inverse) model approach can be exploited to 
cope with the noninevitability of singular square and also nonsquare system. 

The purpose of the paper is to generalize the results obtained by the authors in their 
last works which are related to the asymptotic properties of the pseudoinverse model-based 
method for designing an efficient steady-state control of interconnected systems with uncer-
tainties and arbitrary bounded disturbances and also to present some new results. 

Results. In this paper, the main effort is focused on analyzing the asymptotic properties 
of the closed-loop systems containing the pseudoinverse model-based controllers. In the 
framework of the pseudoinversion concept, new theoretical results related to the asymptotic 
behavior of these systems are obtained. Namely, in the case of nonsingular gain matrices 
with known elements, the upper bounds on the ultimate norms of output and control input 
vectors are found. Next, in the case of nonsquare gain matrices whose elements are also 
known, the asymptotic behavior of the feedback control systems designed on the basis of 
pseudoinverse approach are studied. Further, the sufficient conditions guaranteeing the 
boundedness of the output and control input signals for the linear and certain class of 
nonlinear interconnected systems in the presence of uncertainties are derived. 

 L.S. ZHITECKII, K.Yu. SOLOVCHUK, 2017 
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Conclusion. It has been established that the pseudoinverse model-based concept can be 
used as a unified concept to deal with the steady-state regulation of the linear interconnected 
discrete-time systems and of some classes of nonlinear interconnected systems with possible 
uncertainties in the presence of arbitrary unmeasured but bounded disturbances. 

Keywords: discrete time, feedback, pseudoinversion, interconnected systems, optimality, 
stability, uncertainty. 

INTRODUCTION 

The problem of controlling interconnected systems subjected to arbitrary un-
measurable disturbances stated several decades ago in the work [1] remains ac-
tual up to now [2, 3]. It is important problem from both theoretical and practical 
points of view [4, 5]. During the last decades, the internal model control princi-
ple becomes popular among other methods dealing with an improvement of the 
control system. Based on this method, interconnected control problem was first 
approached in [6]. A perspective modification of the internal model control prin-
ciple is the so-called model inverse approach. The perfect output control per-
formance is an important interconnected control problem closely related to in-
verse systems. Since the pioneering work [7], the problem of inversion of linear 
time-invariant interconnected systems has attracted an attention of several re-
searches. See [8–11]. Recently, a significant progress in this research area has 
been achieved in [2, 3, 12]. Most of these works except [3, 12] dealt with con-
tinuous-time interconnected systems. 

An inverse model approach to ensuring perfect steady-state regulation in 
linear discrete-time interconnected systems was first advanced in [13] and inde-
pendently in [14]. Similar discrete-time counterpart of interconnected process 
control systems containing the table inverse model was proposed in [15]. The 
steady-state control of linear interconnected system discussed in [11] in the 
framework of the problem of minimal inversion, has also been studied in the 
paper [16] dealing with nonlinear discrete-time interconnected control systems. 
Unfortunately, the inverse model approach is quite unacceptable if the systems 
to be controlled are square but singular or if they are nonsquare. Several re-
searches whose works are cited in [17] observed that the inverse model-based 
controller may be also not admissible for designing some process control sys-
tems which contain ill-conditioned plants since they may become (almost) non-
invertible in the presence of an uncertainty. 

It turned out that the so-called pseudoinverse (generalized inverse) model 
approach first proposed in the paper [10] can be exploited to cope with the non-
inevitability of nonsquare system. Recently, this approach was extended in 
[18–20] for controlling a wide class of discrete-time interconnected systems. 

The purpose of the paper is to generalize the results obtained by the au-
thors in their last works which are related to the asymptotic properties of the 
pseudoinverse model-based method for designing an efficient steady-state con-
trol of interconnected systems with uncertainties and arbitrary bounded distur-
bances and also to present some new results. 
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THE DESCRIPTION OF CONTROL SYSTEM AND PROBLEM STATEMENT 

Basic assumptions. Suppose the plant to be regulated is a nonlinear intercon-
nected time-invariant system whose static characteristic is 

y = )(uϕ  (1) 

where Tmyyy ],...,[ )()1(=  denotes the m-dimensional output vector, 
Truuu ],...,[ )()1(=  denotes the r-dimensional input (control) vector, and 

mr RR →⋅ϕ :)(  represents some nonlinear vector-valued function given by 

.)](),...,([)( )()1( Tm uuu ϕϕ=ϕ  (2) 

Consider a class of systems in which the number of inputs is not more than 
the number of outputs: 

.r m≤  

The following assumption with respect to the nonlinearity )(uϕ  will be re-
quired. 

Assumption 1. The components )(),...,( )()1( uu mϕϕ  of )(uϕ  in (2) are all 

the continuously differentiable functions of the variables .,..., )()1( ruu  
In order to implement the discrete-time control, the signals 

)(),...,( )()1( tyty m  given in the continuous time t  need to be sampled with a 

sampling period 0T  to yield the sequences )},({ 0
)( nTy i  whereas the control 

signals are of zero-order sampled-hold type, i.e.,  

)()( 0
)()( nTutu ii =  for ,)1( 00 TntnT +<≤  .,,1 ri …=  

Assumption 2. As in [14] and [16], suppose that the sampling period 0T  is 
large enough so that the transient stage caused by stepwise changes of inputs 

)(),...,( )()1( tutu r  at each (n–1)th time instant 0)1( Tnt −=  may practically be 

completed during the time interval ).,)1[( 00 nTTn −  In view of (1), this narra-
tive description of the discrete-time steady-state control gives that the steady 
state of this interconnected system can be mathematically modeled by the first-
order nonlinear difference equation 

)( 1−ϕ= nn uy  (3) 

similar to that in [16], if any disturbances are absent. In this equation, the notations 
)(: 0nTyyn =  and )(: 0nTuun =  are introduced (for the simplicity of exposition). 

In practical applications, the outputs )(),...,( )()1( tyty m  are usually influ-

enced by certain classes of persistent external disturbances ),(),...,( )()1( tdtd m  
respectively. Then, instead of (3), another equation 
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11)( −− +ϕ= nnn duy  (4) 

with the disturbance vector Tm
nnn ddd ],...,[: )()1(=  as a steady-state model of 

system will be further considered. Now, the following assumption about }{ nd  is 
introduced. 

Assumption 3. The components of nd  are upper bounded in modulus by an 

iε  for all ,,2,1 …=n  i.e., 

∞<ε≤ i
i

nd || )(  ).,,1( mi …=  (5) 

Let Tmyyy ],,[: )*()1*(* …=  )const( )*( ≡iy  be some vector defining the de-
sired output vector (a given set-point). The following assumption with respect to 
this vector is made. 

Assumption 4. ∗y  is not the m-dimensional zero-vector ,]0,...,0[:0 T
m =  

i.e., 0|||| ≠∗y  implying that  

.0|||| )()1( ≠++ ∗∗ myy …  (6) 

Regulation strategy using pseudoinverse model-based control ap-
proach. Let 

















=
)(

0
)1(

0

)1(
0

)11(
0

0
mrm

r

bb

bb
B

…
M

…
 

be a fixed rm×  matrix chosen further by the designer to deal with some linear 
model of (1). Define the so-called pseudoinverse (generalized inverse) mr ×  
matrix )( )(

00
ijB β=+  specified as 

,)(lim 0
12

0000
T

r
T BIBBB −

→δ

+ δ+=  (7) 

where NI  denotes the identity NN ×  matrix. (Note that the limit (7) exist for 
any 0

m rB ×∈R  [21].) 
According to [19], [20] the control law utilizing the pseudoinverse model-

based control strategy to regulate ny  around ∗y  is given by 

,01 nnn eBuu +
− +=  (8) 

where ne  represents the output error vector at nth time instant 0nTt =  specified 
as 

,nn yye −= ∗  (9) 
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The equations (8), (9) describe the some linear interconnected controller of 
the integral action. Namely, to implement the control law (8), one needs the 
discrete integrator whose output is 

,
1

∑
=

∆=
n

k
kn uu  (10) 

where 

.0 nn eBu +=∆  (11) 

Due to (11) together with (10), this controller plays the role of an I-type in-
terconnected discrete-time controller with a matrix gain +

0B  (Fig. 1). 
Regulation problems. To formulate the goals of the regulation, we before 

need the following definition. 
Definition 1 [22]. The closed-loop control system containing the plant de-

scribed by (4) and the feedback (8), (9) is said to be BIBS (bounded-input 
bounded-state) stable if there exist some nonnegative numbers Cu, Cy, Cd such that 

,||||sup||||sup||||suplim
00

n
n

dn
n

un
n

dCuCy
≥≥∞→

+≤  (12) 

||||sup||||sup||||suplim
00

n
n

dn
n

yn
n

dCyCu
≥≥∞→

+≤  (13) 

are satisfied. 
Now, introduce the performance index 

||||suplim: n
n

eJ
∞→

=  (14) 

evaluating the asymptotic behavior of the control system (4), (8), (9). Then, one 
of the following control objectives may be stated [22]. 

 
Fig. 1. Configuration of the regulation system (4), (9), (10), (11) 
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• The optimization: it is required to minimize J defined by (14) in the sense that  

}{
inf||||suplim

nun
n

e =
∞→  

(15) 

must be achieved. 
• Quasi-optimization: it is necessary to minimize an upper bound of J given 

in the inequality  

.||||suplim Jen
n

≤
∞→  

(16) 

• Stability (robust stability): the closed-loop system (4), (8), (9) must be 
stable (in the sense of Definition 1) by suitable choice of 0B . 

LINEAR CASE 

Regulation without parameter uncertainty. In the linear case, )(uϕ  in (1) is 

defined as ,)( Buu =ϕ  where )( )(ijbB =  represents some numerical rm ×  

matrix with the elements )(ijb  whose rank satisfies .rank1 rB ≤≤  In this case, 
the equation (4) becomes 

.11 −− += nnn dBuy  (17) 

Let mr =  and .rank rB =  Clearly, it implies that B is non-singular. Then 

the inverse matrix 1−B  exists and .1−+ = BB  Assume that there is no parameter 
uncertainty, i.e., B is known a priori. We can derive immediately the inverse-
model based control law 

,1
1 nnn eBuu −

− +=  (18) 

followed from (8) after setting .0 BB =  
It turns out the control law above guarantees the optimality of the closed-

loop system (17), (18), (9) (in the sense of (15)). This fact is established in the 
theorem below. 

Theorem 1 [22]. Let the plant to be regulated be described by (17). Sup-
pose B is the known non-singular square matrix ).0(det ≠B  Then, the control-
ler (18), (9) when applied to (17) achieves the regulation objective (15). Fur-
thermore, subject to Assumptions 4, it yields 

∞<−≤

∞<+≤

−
∞<≤

∞<≤

−−

∞→

||||sup

,||||sup||||||||||||||||suplim

1
0

0

1*1

nn
n

n
n

n
n

ddJ

dByBu
 (19) 

for any initial .|||| 0 ∞<u  
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Corollary. Under the conditions of Theorem 1, in the terms of the Euclidean 
norm ,|||| 2⋅  the asymptotic properties of the controller (18), (9) are given by 

ε≤

ε+≤

∞→

−−

∞→

2||||suplim

,||||||||||||||||suplim

2

2
1

2
*

2
1

2

n
n

n
n

e

ByBu
 (20) 

with 2/12)*(2)1*(
2

* ]|||[||||| Myyy ++= …  and .][ 2/122
1 mε++ε=ε …  

Proof. Immediate from (19) together with (5) and from the definition of *y  tak-
ing into account the definitions of the Euclidean vector and matrix norms [23].□ 

Let B be a known nonsquare matrix ).( mr <  In this case, instead of (18),  

nnn eBuu +
− += 1  (21) 

is chosen as the control law. The equation (21) together with (9) describes the 
pseudoinverse model-based controller.  

The following result can be shown to be valid.  
Theorem 2 [20]. The controller (21), (9) applied to (17) leads to a stable 

closed-loop system (in the sense of Definition 1). Moreover, subject to Assump-
tion 4, it gives that quasi-optimality property of the form (16) is ensured with the 
minimal J  such that  

.2)||(||||||||||suplim

,||||||||||||||||suplim

2
*

22

22022

∞<ε+ε+−≤

∞<ε+−−≤−

+

∞→

++

∞→

yBBIe

BuuBBIuu

mn
n

e
r

e
n

n  (22) 

Remark 1. Note that if r = m and 0det ≠B  yielding ,1−+ = BB  then the 
inequalities (22) finally leads to (20), respectively. 

Regulation in the presence of parameter uncertainty. Consider the 
steady-state model of the plant given in the form (17) with an arbitrary nonzero 
matrix ( )( ).ijB b=  Assume that ( )sijb  are unknown but the bounds, ( ) ( )

min max,ij ijb b  of 
the intervals 

),,1;,,1()(
max

)()(
min rjmibbb ijijij …… ==≤≤  (23) 

to which they belong are known. Additionally, let 

.0 )(
max

)(
min ∞<< ijij bb  (24) 

Denote by Ξ  the set of possible ˆsB  whose elements, ( )ˆ ijb  satisfy 
( ) ( ) ( )

min max
ˆ [ , ].ij ij ijb b b∈  This means that 

( ) ( ) ( ) ( )
min max

ˆ{( ) : 1, , , 1, , }.ij ij ij ijb b b b i m j rΞ = ≤ ≤ = =… …  (25) 
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Further, choose a matrix B0 from the set Ξ  provided 0det 0 =B  if this set 

contains at least one singular matrix ˆ.B  Thus, 

),,1;,,1()(
max

)(
0

)(
min rjmibbb ijijij …… ==≤≤  

has to be met. 
The sufficient condition guaranteeing the boundedness of }{ ny  and }{ nu  is 

established in the following theorem. 
Theorem 3. Consider the feedback system (17), (8), (9). Let the require-

ments (23), (24) hold and the requirements on the choice of B0 above mentioned 
be met. Assume that the equilibrium state of the feedback system (17), (8), (9) 
defined by the pair ),( ee yu  which is the solution of the equation 

*
00 yBBuB e ++ =  

together with ee Buy =  exists. Introduce the matrix .0 BB −=∆  If the condi-
tion 

1<q  (26) 

with  

||||max 0)(: 0

∆= +

Ξ∈∆−∆
Bq

B
 (27) 

is satisfied, then the closed-loop control system containing the plant (17) and the 
pseudoinverse model-based controller 

)( *
01 nnn yyBuu −+= +

−  (28) 

will be the robust BIBS stable. Moreover, subject to Assumption 3, this control-
ler makes it possible to achieve 

.)1(2]2||[||||||||||suplim

,||||)1(||||||||)1(||||suplim

1
202002

20
1

20200
1

2

∞<−ε+ε+−≤

∞<−ε+−−−≤−

−+

∞→

+−+−

∞→

qeBBIe

BquuBBIquu

mn
n

e
r

e
n

n  (29) 

Proof. Due to space limitation, details are omitted.□ 
By virtue of (12), (13), the condition (26) together with the expression (27) 

guarantee the boundedness of }{ ny  and }{ nu  as ∞→n  (according to (29)). 
Note that this condition can simply be verified by setting 

10)(: ||||max
0

∆= +
Ξ∈∆−∆ Bq B  and by using the linear programming technique 

( 1|||| P  denotes here the 1-norm of arbitrary matrix P; the definition of 1|||| P  
can be found in [23]).  

A numerical example and simulation. To illustrate the robust stability 
properties derived from Theorem 3, a numerical example was considered setting 

2== mr  and ( ) (11) (12) (21){ : 0.4 1.4, 1.2 0.5, 0.8 2.8,ijb b b bΞ = ≤ ≤ − ≤ ≤ − ≤ ≤  
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(22)2.7 0.7}b− ≤ ≤ −  Such set was chosen to ensure the singularity of some ˆsB  
belonging to .Ξ  In this example, 









−
−

=
70.18.1
85.09.0

0B  

was put. Such a choice of 0B  gives Ξ∈0B  and .0det 0 =B  Using the formula 
(7), 









−−

=+

613/136613/68
613/144613/72

0B  

was found. By exploiting the linear programming technique, it was established 
that .1572,0||||max 10)(: 0

<≈∆= +
Ξ∈∆−∆ Bq B  Thus, requirement (26) together 

with (27) will be satisfied. 
Next, taking ,878.0)11( =b  ,864.0)12( −=b  ,082.1)21( =b  096.1)22( −=b  

under which )( )(ijbB =  will satisfy ,Ξ∈B  a simulation experiment with the 
closed-loop control system described by (17), (8), (9) was conducted. In this 
experiment, )2()1( , nn dd  were simulated as the pseudo-random variables within 

].07.0,07.0[−  The components of *y  were chosen as follows: 

*(1) *(2)0.4 if 0 50, 0.6 if 0 50,
and

0.2 if 50 100 0.8 if 50 100.
n n

y y
n n

≤ ≤ ≤ ≤ 
= = < ≤ < ≤ 

 

Results of the simulation experiment are depicted in Figs. 2 and 3.  
 

 
Fig. 2. The norm of control input vector 
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Fig. 3. The norms of output vector (solid line) and of set-point vector (dashed line)  

We observe that system behavior is successful while B and B0 are different. 

REGULATION OF UNKNOWN NONLINEAR SYSTEM 

Case 1. Now, consider the nonlinear interconnected system described by (4). 
Recalling Assumption 1 and denoting ,/)(:)( )()()( jiij uuub ∂ϕ∂=  introduce the 
matrix 

















=
)()(

)()(
)(

)()1(

)1()11(

ubub

ubub
uB

mrm

r

…
M

…
 (30) 

which represents the rm ×  Jacobian matrix whose elements )()( ub ij  play a role 
of some “dynamical” gains from the jth input, )( ju  to the ith output, )(iy  for 
each fixed .ru R∈  Next, the following two additional assumptions regarding 
the nonlinearity )(uϕ  will be required. 

Assumption 5. s)()( ub ij  in (30) do not change its sign and remain uni-
formly bounded for all u  from rR  according to (24) and to 

).,,1;,,1(,)( )(
max

)()(
min rjmibubb ijijij …… ==≤≤  (31) 

Assumption 6. In case 1 to be studied, Ξ  represents the set of matrices 
having the full rank: ˆrank .B r=  

Under these assumptions we first choose a Ξ∈0B  and design again the 
pseudoinverse model-based controller of the form (28). The asymptotic proper-
ties of this controller are formulated in the theorem below. 

Theorem 4 [19]. Consider the feedback control system described by (4), 
(28). Let the equilibrium state defined by 

)(,)( *
00

eee uyyBuB ϕ==ϕ ++  
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exist. Suppose that Assumptions 1 and 3 to 6 are valid. Then this system will be 
robust BIBS stable for any nonlinearity )(uϕ  satisfying (31) together with (24) 
if the requirement (26) in which  

,maxmax
1 1

)()(
0

],[1 )()()(
∑ ∑

= =δδ∈δ≤≤
δβ=

r

i

m

j

jikj

rk ijijij
q  (32) 

where )(
0

)(
max

)()(
0

)(
min

)( , ijijijijijij bbbb −=δ−=δ  is met. Furthermore,  

},,max{||||)1(||||suplim 110
1

mn
n

Bqu εε−≤ +−
∞

∞→
…  

will take place, where ∞|||| x  denotes the ∞ -norm of a vector x. 
As in the linear case before studied, the condition (26) but with q given by 

(32) can be verified via the linear programming tool. 
Case 2. In this case, instead of Assumptions 1, 5 and 6, another assumption 

with respect to )(uϕ  is introduced. 
Assumption 7. The nonlinearity )(uϕ  can be represented as the sum  

),()( ugBuu +=ϕ  (33) 

in which )( )(ijbB =  is a numerical rm ×  matrix and )(ug  is a nonlinear vec-
tor-valued function satisfying  

∞<≤
∈

Cug
ru

||)(||sup
R

 (34) 

with some C. 
Due to the expression (33) given in Assumption 7, the system equation be-

comes 

.)( 111 −−− ++= nnnn dugBuy  (35) 

As in the linear case with unknown B, it is assumed that ,Ξ∈B  where Ξ  
is given by (25). Similarity to this case, we choose Ξ∈0B  so that 0det 0 =B  if 

r = m and there is at least a singular matrix ˆ .B ∈Ξ  Next, the pseudoinverse 
model-based controller of the form (28) is designed to regulate the plant (35). 

The following theorem establishes stability results of the closed-loop system 
(35), (28). 

Theorem 5. Under the conditions of Theorem 3 added by Assumption 7, the 
closed-loop system containing the controller (28) and the plant (35) will be ro-
bust BIBS stable. 

Proof. Proceeds along the lines of the proof of Theorem 3 after replacing 
∞<∞<≤ ||||sup0 nn d  by .||||sup0 ∞<+∞<≤ Cdnn  □ 

Remark 2. In contrast with [19], it is not required that )(,),( )()1( uu mϕϕ …  
in (2) to be smooth functions of u. 
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Remark 3. Note that )(ug  may not be the Lipcshitz function, i.e.,  

|| ( ) ( ) || || || , (0 )rg u g u L u u u u L′ ′′ ′ ′′ ′ ′′− ≤ − ∀ ∈ < < ∞R  

is not necessary. However, due to (34) it has to be bounded as .|||| ∞→u  
Comment. Contrary to the case 1, the set Ξ  may contain singular ˆsB  and it 

is essential. 

CONCLUSION  

In this paper, the main effort has been focused on analyzing the asymptotic 
properties of the closed-loop systems containing the pseudoinverse model-based 
controllers. We have established that the pseudoinverse model-based concept 
can be used as a unified concept to deal with the steady-state regulation of the 
linear interconnected discrete-time systems and of some classes of nonlinear 
interconnected systems with possible uncertainties in the presence of arbitrary 
unmeasured but bounded disturbances. In the framework of this concept, new 
theoretical results related to the asymptotic behavior of these systems have been 
presented.  
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ДИСКРЕТНЕ КЕРУВАННЯ УСТАЛЕНИМИ СТАНАМИ 
БАГАТОЗВ’ЯЗНИХ СИСТЕМ НА ОСНОВІ 
КОНЦЕПЦІЇ ПСЕВДООБЕРНЕННЯ 

Розглянуто концепцію псевдообернення як деяку уніфіковану концепцію керування 
усталеними станами багатозв'язних систем за наявності невимірюваних обмежених 
збурень з повною і неповною інформацією про параметри лінійної номінальної моделі, 
за якою будується зворотний зв'язок. Припускається, що ранг матриці коефіцієнтів 
підсилення цієї моделі може бути довільним. Встановлено достатні умови граничної 
обмеженості всіх сигналів у замкнених системах керування, що реалізують запропоно-
вану концепцію. Наведено результати моделювання. 

Ключові слова: дискретний час, зворотний зв'язок, псевдообернення, багатозв'язні 
системи, оптимальність, стійкість, невизначеність. 
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ДИСКРЕТНОЕ УПРАВЛЕНИЕ УСТАНОВИВШИМИСЯ 
СОСТОЯНИЯМИ МНОГОСВЯЗНЫХ СИСТЕМ НА ОСНОВЕ 
КОНЦЕПЦИИ ПСЕВДООБРАЩЕНИЯ  

Рассмотрена концепция псевдообращения как некоторая унифицированная концепция 
управления установившимися состояниями многосвязных систем при наличии неизме-
ряемых ограниченных возмущений с полной и неполной информацией о параметрах 
линейной номинальной модели, по которой строится обратная связь. Предполагается, 
что ранг матрицы коэффициентов усиления этой модели может быть произвольным. 
Установлены достаточные условия предельной ограниченности всех сигналов в за-
мкнутых системах управления, реализующих предлагаемую концепцию. Приведены 
результаты моделирования. 

Ключевые слова: дискретное время, обратная связь, псевдообращение, многосвязные 
системы, оптимальность, устойчивость, неопределенность. 


