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DISCRETE-TIME STEADY-STATE CONTROL OF INTERCONNECTED
SYSTEMS BASED ON PSEUDOINVERSION CONGEPT

Introduction. The problem of controlling interconnected systems subjected to arbitrary un-
measurable disturbances remains actual up to now. It is important problem from both theo-
retical and practical points of view. During the last decades, the internal model control prin-
ciple becomes popular among other methods dealing with an improvement of the control
system. A perspective modification of the internal model control principle is the so-called
model inverse approach. Unfortunately, the inverse model approach is quite unacceptable if
the systems to be controlled are square but singular or if they are nonsquare. It turned out
that the so-called pseudoinverse (generalized inverse) model approach can be exploited to
cope with the noninevitability of singular square and also nonsquare system.

The purpose of the paper is to generalize the results obtained by the authors in their
last works which are related to the asymptotic properties of the pseudoinverse model-based
method for designing an efficient steady-state control of interconnected systems with uncer-
tainties and arbitrary bounded disturbances and also to present some new results.

Results. In this paper, the main effort is focused on analyzing the asymptotic properties
of the closed-loop systems containing the pseudoinverse model-based controllers. In the
framework of the pseudoinversion concept, new theoretical results related to the asymptotic
behavior of these systems are obtained. Namely, in the case of nonsingular gain matrices
with known elements, the upper bounds on the ultimate norms of output and control input
vectors are found. Next, in the case of nonsquare gain matrices whose elements are also
known, the asymptotic behavior of the feedback control systems designed on the basis of
pseudoinverse approach are studied. Further, the sufficient conditions guaranteeing the
boundedness of the output and control input signals for the linear and certain class of
nonlinear interconnected systems in the presence of uncertainties are derived.
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Conclusion. It has been established that the pseudoinverse model-based concept can be
used as a unified concept to deal with the steady-state regulation of the linear interconnected
discrete-time systems and of some classes of nonlinear interconnected systems with possible
uncertainties in the presence of arbitrary unmeasured but bounded disturbances.

Keywords: discrete time, feedback, pseudoinversion, interconnected systems, optimality,
stability, uncertainty.

INTRODUCTION

The problem of controlling interconnected systems subjected to arbitrary un-
measurable disturbances stated several decades ago in the work [1] remains ac-
tual up to now [2, 3]. It is important problem from both theoretical and practical
points of view [4, 5]. During the last decades, the internal model control princi-
ple becomes popular among other methods dealing with an improvement of the
control system. Based on this method, interconnected control problem was first
approached in [6]. A perspective modification of the internal model control prin-
ciple is the so-called model inverse approach. The perfect output control per-
formance is an important interconnected control problem closely related to in-
verse systems. Since the pioneering work [7], the problem of inversion of linear
time-invariant interconnected systems has attracted an attention of several re-
searches. See [8—11]. Recently, a significant progress in this research area has
been achieved in [2, 3, 12]. Most of these works except [3, 12] dealt with con-
tinuous-time interconnected systems.

An inverse model approach to ensuring perfect steady-state regulation in
linear discrete-time interconnected systems was first advanced in [13] and inde-
pendently in [14]. Similar discrete-time counterpart of interconnected process
control systems containing the table inverse model was proposed in [15]. The
steady-state control of linear interconnected system discussed in [11] in the
framework of the problem of minimal inversion, has also been studied in the
paper [16] dealing with nonlinear discrete-time interconnected control systems.
Unfortunately, the inverse model approach is quite unacceptable if the systems
to be controlled are square but singular or if they are nonsquare. Several re-
searches whose works are cited in [17] observed that the inverse model-based
controller may be also not admissible for designing some process control sys-
tems which contain ill-conditioned plants since they may become (almost) non-
invertible in the presence of an uncertainty.

It turned out that the so-called pseudoinverse (generalized inverse) model
approach first proposed in the paper [10] can be exploited to cope with the non-
inevitability of nonsquare system. Recently, this approach was extended in
[18-20] for controlling a wide class of discrete-time interconnected systems.

The purpose of the paper is to generalize the results obtained by the au-
thors in their last works which are related to the asymptotic properties of the
pseudoinverse model-based method for designing an efficient steady-state con-
trol of interconnected systems with uncertainties and arbitrary bounded distur-
bances and also to present some new results.
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THE DESCRIPTION OF CONTROL SYSTEM AND PROBLEM STATEMENT

Basic assumptions. Suppose the plant to be regulated is a nonlinear intercon-
nected time-invariant system whose static characteristic is

y=o(u) (1)

where y=[y",..,»"™]  denotes the m-dimensional output vector,
u=[u",...u"”] denotes the r-dimensional input (control) vector, and

¢o(-): R” — R" represents some nonlinear vector-valued function given by

o) =[¢" W),....0" W)]". )

Consider a class of systems in which the number of inputs is not more than
the number of outputs:

r<m.

The following assumption with respect to the nonlinearity @(z) will be re-
quired.
Assumption 1. The components ¢ (x),...,¢" (1) of ¢(u) in (2) are all

D u”,

the continuously differentiable functions of the variables "

In order to implement the discrete-time control, the signals
yO(0),...,y"™ (¢) given in the continuous time ¢ need to be sampled with a
sampling period 7, to yield the sequences {y"’(nT,)}, whereas the control

signals are of zero-order sampled-hold type, i.e.,

u(i)(t)zu(i)(nTo) for nTy <t <(m+DT,, i=1...,r.

Assumption 2. As in [14] and [16], suppose that the sampling period 7, is
large enough so that the transient stage caused by stepwise changes of inputs
u(?),...,u"” (¢) at each (n—1)th time instant ¢ = (n—1)7, may practically be
completed during the time interval [(n—1)T}, nT}). In view of (1), this narra-

tive description of the discrete-time steady-state control gives that the steady
state of this interconnected system can be mathematically modeled by the first-
order nonlinear difference equation

yn = (P(un—]) (3)
similar to that in [16], if any disturbances are absent. In this equation, the notations
v, =y(nT}) and u, :=u(nT) are introduced (for the simplicity of exposition).

In practical applications, the outputs " (¢),..., y"(¢) are usually influ-

enced by certain classes of persistent external disturbances d (¢),...,d "™ (¢),
respectively. Then, instead of (3), another equation
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yn = (p(un—l) + dn—l (4)

with the disturbance vector d, =[d",...,d"™]" as a steady-state model of

system will be further considered. Now, the following assumption about {d,} is
introduced.
Assumption 3. The components of d, are upper bounded in modulus by an

g forall n=12,..., ie,
|d" |<e, <o (i=1,...,m). (5)

Let y =[y",..., y""7 (»"” =const) be some vector defining the de-

sired output vector (a given set-point). The following assumption with respect to
this vector is made.

Assumption 4. y" is not the m-dimensional zero-vector 0, :=[0,...,0]",

ie., || y*|# 0 implying that
|y [+ ™ 0. (6)

Regulation strategy using pseudoinverse model-based control ap-
proach. Let

UV pOn
B, = :
(ml) (mr)
A

be a fixed m x r matrix chosen further by the designer to deal with some linear
model of (1). Define the so-called pseudoinverse (generalized inverse) »xm

matrix B] = (B) specified as
+ _ 12 T 2 -1 pT
B, _ISEE(BOBO—FS 1) B,, 7
where /,, denotes the identity N x N matrix. (Note that the limit (7) exist for
any B,eR™ [21].)

According to [19], [20] the control law utilizing the pseudoinverse model-
based control strategy to regulate y, around y° is given by

u,=u,  +Bje (8)

n n—1 0%n>

where e, represents the output error vector at nth time instant ¢ = n1; specified

as
enzy*_yn’ (9)
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The equations (8), (9) describe the some linear interconnected controller of
the integral action. Namely, to implement the control law (8), one needs the
discrete integrator whose output is

u, = Au, (10)
k=1
where
Aun :B(;ren' (11)

Due to (11) together with (10), this controller plays the role of an I-type in-
terconnected discrete-time controller with a matrix gain B, (Fig. 1).

Regulation problems. To formulate the goals of the regulation, we before
need the following definition.

Definition 1 [22]. The closed-loop control system containing the plant de-
scribed by (4) and the feedback (8), (9) is said to be BIBS (bounded-input
bounded-state) stable if there exist some nonnegative numbers C,, C,, C, such that

hmsup” yn ” < Cu Sup ” un ” + Cd Sup ” dn ||a

n—ow n=0 n=0 (12)

limsup|ju, < C, sup|ly, |+ C,suplld, |

n—»0 n=0 (13)
are satisfied.
Now, introduce the performance index
J:=limsup||e, | (14)
n—>»0

evaluating the asymptotic behavior of the control system (4), (8), (9). Then, one
of the following control objectives may be stated [22].

iController T T A o
1

1 I

1 |

1 % . ! i
1 Generalized Inverse Discrete | |
Integrator | |

I

Fig. 1. Configuration of the regulation system (4), (9), (10), (11)
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e The optimization: it is required to minimize J defined by (14) in the sense that

limsupl||e, || = l{rulnf}‘ (15)

n—0

must be achieved.
¢ Quasi-optimization: it is necessary to minimize an upper bound of J given
in the inequality

limsup||e, || < J. (16)

n—>0

e Stability (robust stability): the closed-loop system (4), (8), (9) must be
stable (in the sense of Definition 1) by suitable choice of B, .

LINEAR CASE

Regulation without parameter uncertainty. In the linear case, @(u) in (1) is
defined as @(u) = Bu, where B=(b"") represents some numerical m x r

matrix with the elements »'”’ whose rank satisfies 1 < rank B < r. In this case,
the equation (4) becomes

yn = Bun—l + dn—l' (17)

Let » =m and rank B =r. Clearly, it implies that B is non-singular. Then

the inverse matrix B~' exists and B* = B™'. Assume that there is no parameter
uncertainty, i.e., B is known a priori. We can derive immediately the inverse-
model based control law

u,=u, +Be, (18)

followed from (8) after setting B, = B.

It turns out the control law above guarantees the optimality of the closed-
loop system (17), (18), (9) (in the sense of (15)). This fact is established in the
theorem below.

Theorem 1 [22]. Let the plant to be regulated be described by (17). Sup-
pose B is the known non-singular square matrix (det B # 0). Then, the control-
ler (18), (9) when applied to (17) achieves the regulation objective (15). Fur-
thermore, subject to Assumptions 4, it yields

limsup| w, [|<|[ B™ ||| y" | +11 B™ || sup || d, [|< oo,

n—o 0<n<oo

JS Sup ” dn _dn—l ||<OO

0<n<o

(19)

Sor any initial || u, || < .
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Corollary. Under the conditions of Theorem 1, in the terms of the Euclidean
norm || -, the asymptotic properties of the controller (18), (9) are given by

timsup|w, [l, <[| B~ [l 1| " ll, +11 B I, &,
n—>0

' 20

limsup|e, ||, <2¢ 20)

n—0

1/2

OO and e=[g] +...+e 1"

with || " [,=[1y™ [P +...+ |y
Proof. Immediate from (19) together with (5) and from the definition of »" tak-
ing into account the definitions of the Euclidean vector and matrix norms [23].0
Let B be a known nonsquare matrix (7 < m). In this case, instead of (18),

u,=u, +Be, (21)

n—1
is chosen as the control law. The equation (21) together with (9) describes the
pseudoinverse model-based controller.

The following result can be shown to be valid.

Theorem 2 [20]. The controller (21), (9) applied to (17) leads to a stable
closed-loop system (in the sense of Definition 1). Moreover, subject to Assump-
tion 4, it gives that quasi-optimality property of the form (16) is ensured with the

minimal J such that

timsup|| u, —u¢ ||, <[\ 1, = B*BI|, | u, —u* |, +] B |l, e< o,

n—0

limsup||e, [, <|| Z, = BB" |, (I " Il, +&) +2e< oo,

Hn—>00

(22)

Remark 1. Note that if » = m and det B # 0 yielding B" = B™', then the

inequalities (22) finally leads to (20), respectively.

Regulation in the presence of parameter uncertainty. Consider the
steady-state model of the plant given in the form (17) with an arbitrary nonzero
matrix B=(b""). Assume that »'”’s are unknown but the bounds, 5, b\" of

the intervals
B <pW <pD (i=1,...,m;j=1,...,7) (23)
to which they belong are known. Additionally, let
0<bDp < oo, (24)

min ~ max

Denote by = the set of possible Bs whose elements, b satisfy
b e [, bV 1. This means that

min > ~'max

E={(07): D <BD <D i=1,.m, j=1,..., 7). (25)
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Further, choose a matrix B, from the set = provided det B, =0 if this set

contains at least one singular matrix B. Thus,

BO <D <p® (=1, m =1, 7)
has to be met.
The sufficient condition guaranteeing the boundedness of {y,} and {u,} is

established in the following theorem.

Theorem 3. Consider the feedback system (17), (8), (9). Let the require-
ments (23), (24) hold and the requirements on the choice of B, above mentioned
be met. Assume that the equilibrium state of the feedback system (17), (8), (9)

defined by the pair (u°, y°) which is the solution of the equation
B{Bu‘ =By

together with y° = Bu® exists. Introduce the matrix A = B, — B. If the condi-

tion

g<l1 (26)
with
q=, max [lBAll (27)

is satisfied, then the closed-loop control system containing the plant (17) and the
pseudoinverse model-based controller

un:un—1+B(;r(y*_yn) (28)

will be the robust BIBS stable. Moreover, subject to Assumption 3, this control-
ler makes it possible to achieve

limsup|| u, —u*[l, <A=q)" | 1, =By By |, llug —u’ |l +e A=) | By [,<x,

n—0

limsupl|e, |, <[ 7, = B,By |I, [ll e, [l +2&]+2e (1- )" < 0.

n—>»0

(29)

Proof. Due to space limitation, details are omitted. o
By virtue of (12), (13), the condition (26) together with the expression (27)

guarantee the boundedness of {y,} and {u,} as n — oo (according to (29)).
Note that this condition can simply be verified by setting
q=max,, ..z | ByAl, and by using the linear programming technique
(]| ||, denotes here the 1-norm of arbitrary matrix P; the definition of || P ||,

can be found in [23]).
A numerical example and simulation. To illustrate the robust stability
properties derived from Theorem 3, a numerical example was considered setting

r=m=2 and ZE ={":04<p" <14, -1.2<p"™ <05, 0.8<p? <2.8,
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-2.7<b® <-0.7} Such set was chosen to ensure the singularity of some Bs
belonging to =. In this example,

09 -0.85
B, =
1.8 -1.70
was put. Such a choice of B, gives B, € 2 and det B, = 0. Using the formula

(D,

+_
0

72/613  144/613
-68/613 —-136/613

was found. By exploiting the linear programming technique, it was established
that ¢ =max,; , .= || B;A|,~0,572 <1. Thus, requirement (26) together
with (27) will be satisfied.

Next, taking b"" =0.878, »"? =-0.864, H*" =1.082, b** =—-1.096
under which B = (b"") will satisfy B € Z, a simulation experiment with the

closed-loop control system described by (17), (8), (9) was conducted. In this
M

n

experiment, d'", d” were simulated as the pseudo-random variables within

[-0.07,0.07]. The components of " were chosen as follows:

« 04 if0<n<50, o [0.6 if 0<n<50,
= an =
0.2 1f50<n<100 0.8 1f 50 <n<100.

Results of the simulation experiment are depicted in Figs. 2 and 3.

0.30 035 040
!

T T T T T T
0 20 40 60 80 100

Fig. 2. The norm of control input vector

ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Ku6. u Bbru. Texs. 2017. Ne 3 (189) 37



L.S. Zhiteckii, K.Yu. Solovchuk

0.8
|

0.6
I

0.4

T T T T T T
0 20 40 60 80 100

Fig. 3. The norms of output vector (solid line) and of set-point vector (dashed line)

We observe that system behavior is successful while B and B, are different.

REGULATION OF UNKNOWN NONLINEAR SYSTEM

Case 1. Now, consider the nonlinear interconnected system described by (4).
Recalling Assumption 1 and denoting 57 (u) = 09" (1)/0u'”, introduce the
matrix

Bw) ... ")

B(u) = : (30)
B w) ... b (u)

which represents the m x 7 Jacobian matrix whose elements 5’ (1) play a role

of some “dynamical” gains from the jth input, u"/ ) to the ith output, y(i) for

each fixed u € R". Next, the following two additional assumptions regarding
the nonlinearity ¢(u) will be required.
Assumption 5. b’ (u)s in (30) do not change its sign and remain uni-

formly bounded for all # from R” according to (24) and to
b <bPw)<p? . (i=1,...,m;j=1,..,7). (31)

max 2

—

Assumption 6. In case 1 to be studied, = represents the set of matrices
having the full rank: rank B=r.
Under these assumptions we first choose a B, € Z and design again the

pseudoinverse model-based controller of the form (28). The asymptotic proper-
ties of this controller are formulated in the theorem below.

Theorem 4 [19]. Consider the feedback control system described by (4),
(28). Let the equilibrium state defined by

Byou’)=Byy, y =ou’)
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exist. Suppose that Assumptions 1 and 3 to 6 are valid. Then this system will be
robust BIBS stable for any nonlinearity ©(u) satisfying (31) together with (24)
if the requirement (26) in which

”

g = max max_ z
<

I<k<r  seps 539145

m

Zﬁgkj)a(ji)

J=1

, (32)

where 8 = p¥ -, 8 =bD b\ is met. Furthermore,

min max

limsup|lu, ||, <(1-¢)" || By |, max{e,,....€,}
n—»0
will take place, where || x ||, denotes the o -norm of a vector x.

As in the linear case before studied, the condition (26) but with ¢ given by
(32) can be verified via the linear programming tool.
Case 2. In this case, instead of Assumptions 1, 5 and 6, another assumption

with respect to ¢@(u) is introduced.
Assumption 7. The nonlinearity (1) can be represented as the sum

o(u) = Bu + g(u), (33)

in which B = (b'”) is a numerical m x r matrix and g(u) is a nonlinear vec-
tor-valued function satisfying

sup || g(u) | < C <= G

ueR”

with some C.
Due to the expression (33) given in Assumption 7, the system equation be-
comes

yn :Bun—l+g(uiz—l)+dn—l' (35)

As in the linear case with unknown B, it is assumed that B € =, where =
is given by (25). Similarity to this case, we choose B, € = so that det B, =0 if

r = m and there is at least a singular matrix BeZE. Next, the pseudoinverse
model-based controller of the form (28) is designed to regulate the plant (35).

The following theorem establishes stability results of the closed-loop system
(35), (28).

Theorem 5. Under the conditions of Theorem 3 added by Assumption 7, the
closed-loop system containing the controller (28) and the plant (35) will be ro-
bust BIBS stable.

Proof. Proceeds along the lines of the proof of Theorem 3 after replacing

Sup0£n<oo ” dn ” <o by Sup0§n<oo ” dn ” +C<®' o

Remark 2. In contrast with [19], it is not required that ¢ (), ..., "™ (u)
in (2) to be smooth functions of u.
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Remark 3. Note that g(#) may not be the Lipcshitz function, i.e.,
&) —g@) | <Lfju'—u"|| Vu',u"eR" (0<L <o)

is not necessary. However, due to (34) it has to be bounded as || u ||— oo.

Comment. Contrary to the case 1, the set = may contain singular Bs and it
is essential.

CONCLUSION

In this paper, the main effort has been focused on analyzing the asymptotic
properties of the closed-loop systems containing the pseudoinverse model-based
controllers. We have established that the pseudoinverse model-based concept
can be used as a unified concept to deal with the steady-state regulation of the
linear interconnected discrete-time systems and of some classes of nonlinear
interconnected systems with possible uncertainties in the presence of arbitrary
unmeasured but bounded disturbances. In the framework of this concept, new
theoretical results related to the asymptotic behavior of these systems have been
presented.
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