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MAXIMUM MATCHING IN WEIGHTED BIPARTITE GRAPHS

Introduction. The most important algorithms for bipartite graphs maximum matching are
observed. These algorithms either find maximum matching in non-weighted bipartite

graph (e.g. Hopcroft and Karp’s algorithm — O( m\/; )) or choose among all match-
ings with maximum size one having maximal cost (e.g. Edmonds and Karp’s algorithm-

o( mn+n? logn)). Provided that, in praxis new target settings and algorithms for

finding maximum matching in bipartite graphs are also desirable.

The purpose of the article is to consider a new task setting and algorithms for max-
imum matching in weighted bipartite graphs as well as using these algorithms in finger-
print recognition.

Methods. Modified versions of finding maximum matching M in graph by searching
and augmentation of M-augmenting paths are used.

Results. Weighted bipartite graph G =(V,E ) with a cost function ce: E — {01},

that associates each edge with one of two possible values (e.g. 0 or 1) is considered.
Maximum matching in the graph in new setting consists in finding among all matchings
containing maximum number of edges with weight 1, one having maximal cardinality. Two

algorithms with complexity O( m\/; ) being modified versions of the Hopcroft-Karp algo-

rithm are proposed. Examples of using these algorithms for removing gaps of lines and
finding true correspondence of minutiae in fingerprint recognition are considered.

Conclusions. Proposed algorithms find maximum matching in input bipartite graph
among all matchings having maximal cardinality in given subset of this graph edges.
Using of proposed algorithms leads to increasing processing speed and reliability of
fingerprint recognition.
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INTRODUCTION

Some recognition tasks are reduced to maximum matching in bipartite graphs. Let
G =(V,E) be an input bipartite graph, maximum matching in this graph is a set
M < E of maximum size such that no two edges in M have a common vertex.
Algorithms [2-5] for finding maximum matching in non-weighted bipartite
graphs are based on searching M- augmenting paths in these graphs. Algorithm
of Kuhn [2] has complexity O(mn) and consists of O(n) phases hereinafter

m,n are numbers of graph edges and vertices. Kim and Chwa’s algorithm [3] is
similar to [2], but the search for shortest M - augmenting paths is performed in

parallel with complexity O(nlognloglogn) using o’/ logn) processors.

Hopcroft and Karp’s algorithm [5] has lesser complexity O( miln ) in compari-

son with [2], because in each phase it searches for all disjoint shortest M - aug-
menting paths. When the bipartite graph is dense, an algorithm [4] with com-

plexity O( n'3 m/ logn) may be preferable to use. The maximum matching

problem in bipartite graphs can be reduced also to a maximum flow problem in

graphs that can be solved in O( mln ) time using Dinic's algorithm [6].
Algorithms [7-11] for finding maximum matching in weighted bipartite

graphs choose among all maximum matchings one having maximum cost, i.e.
maximum sum of matching edges weights. Therewith Kuhn’s algorithm [7-9]

has complexity O( mn? ) and Edmonds and Karp’s algorithm [10] has complex-

ity O(mn+n®logn) using Fibonacci heap [11].

The purpose of the article is to consider a new task setting and algorithms
for maximum matching in weighted bipartite graphs as well as usage of these
algorithms in fingerprints recognition. Below target settings of maximum match-
ing in bipartite graphs, two algorithms for maximum matching in weighted bi-
partite graphs in new setting and examples of usage these algorithms in finger-
prints recognition are considered.

TARGET SETTINGS OF MAXIMUM MATCHING IN BIPARTITE GRAPHS

Before target settings consideration let us introduce the main definitions.

Definition1. A bipartite graph G =(V =V1UV2,E) is a graph whose verti-
ces can be divided into two disjoint sets ¥'1 and V2 such that every edge con-
nects a vertex in V1 to vertex in V2.

Definition2. A graph G is weighted if cost function ce: E — R is defined,
that associates each edge with a real value.

Definition3. A subset M — E is called a matching in graph G if no vertex
is incident to more than one edge in M .

Definition4. A matching of maximum cardinality is called a maximum matching.

Definition5. A vertex in graph G is called M -free if it is incident with no
edgein M.

Definition6. An M -augmenting path in G is a path whose original and terminal
vertices are both M -free and whose edges are alternatively in £\M and M .
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Definition7. Problem 1 — find one maximum matching in graph G .

Definition8. Problem 2 — among all maximum matchings, choose one hav-
ing maximum cost.

Definition9. Problem 3 — among all matchings having maximum cost,
choose one having maximum cardinality.

In this paper three target settings of maximum matching searching in bipar-
tite graphs are considered, the first two of which are known. The first setting
(probleml) consists in finding maximum matching M in non-weighted graph
that can be done by finding all M -augmenting paths in this graph. After finding
the next M -augmenting path p new matching with size | M |+1 is formed by
excluding from previous matching all even edges and adding all odd edges in p,
that means symmetric difference operation of sets Mand p: M =M @ p. Not
finding next M - augmenting path means finding of maximum matching because
Berge’s theorem [1] says that matching M in graph G is maximum, if and only
if G contains no M -augmenting path.

Kuhn’s algorithm [2] for finding maximum matching M in non-weighted
graph checks for each M -free (free) vertex velV1 whether there is
M -augmenting path in graph that originates in this vertex and increases size of
matching if such path exists. This algorithm consists of O(n) phases, in each of
which only one M -augmenting path is searched and augmented. Therefore, the
algorithm has complexity O(mn) . Hopcroft and Karp’s algorithm [5] in each
phase finds all M -augmenting shortest paths, performs lesser number of phases
(O\/; ) in comparison with [2] and as a result has lesser complexity O( mln ).

The second setting (problem?) is due to the fact that some maximum match-
ings can be in graph and it is necessary to find among these matchings one hav-
ing maximum cost. The third setting (problem3) is a new one and, in some
sense, opposite to the second setting — it is necessary to find among all match-
ings having maximum cost one that is maximum in cardinality.

In this paper two algorithms for problem3 solution are proposed in the case
when weight of each edge takes only one of two values, for example 0 and 1. Let
MA be matchings in graph G, having maximal number of edges with weight
that equals to 1. Proposed algorithms find in set MA those matching having
maximum cardinality.

TWO ALGORITHMS FOR MAXIMUM MATCHING IN BIPARTITE GRAPH

Let ce: E— {01} be a cost function that associates each edge (v; eV1v, €V2)
in bipartite graph G =(V,E) with value that equals to 0 or 1. For example, cost
function can be defined as ce(v),vy)=cv(vi)vev(vy)(vi,vo)eE  or
ce(vi,vy )=cv(vy ) Aev(vy ) (vy,vo ) € E , if given cost function cv:V —{0,1} that
associates each vertex with weight 0 or 1. Edge having weight that equals to 1 can
be called basic or preferable. Stated above problem3 using such cost function ce
is equivalent to following: find among all matchings having maximum number of

basic edges one being maximum in cardinality. Let us consider two algorithms for
solving this task. The first algorithm consists of the following five phases.
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1. Subgraph G1c G is detected which consists of basic edges and vertices
incident to these edges.

2. Searching of maximum matching M1 in subgraph Gl using Hopcroft
and Karp’s algorithm [5] is carried out.

3. Subgraph G2 < G is formed by deletion in graph G matching M1 and
all edges having common vertex with at least one edge from this matching.

4. Searching of maximum matching M2 in subgraph G2 is carried out.

5. Searching of maximum matching M3 in graph G is carried out with
fulfillment of the following two conditions: 1) before searching M3 =M1UM?2
and 2) only those M 3 - augmenting paths are searched and augmented, which do
not reduce number of basic edges ee M 3.

Three following statements are valid.

Statementl. Number of basic edges in any maximum matching M in graph
G does not exceed size of matching M1.

Statement2. Conjunction of matchings M1c Gl and M2c G2 is also
matching and | M1|+|M2| does not exceed size of maximum matching M in
graph G .

Statement3. Size of output matching M3 equals to size of maximum match-
ing M in graph G if there is no M3 -augmenting path that decreases number
of basic edges in M3 in final phase of the algorithm.

Let us consider an example of the algorithm work in bipartite graph that
consists of ten vertices and ten edges, six basic edges of which are marked by
cross marks (Fig. 1, a). In the first phase of the algorithm subgraph Gl G is
constructed (Fig. 1, b) that consists of six basic edges and eight vertices incident
to these edges. After the first two phases of the algorithm [5] in this subgraph
matchings that consist respectively of three (Fig. 1, b) and four (Fig. 1, ¢) edges
(shown by thick lines in Fig. 1) are received. Graph G2 in this example is emp-
ty, that is why matchings M1 (Fig. 1, ¢) and M3 (Fig. 1, d) are the same.

Fig. 1. Input graph G (a), matchings in graph G1 after the first (b) and the second
(c) phases, matching M 3 in graph G as result of the algorithm (d)
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The second algorithm is modified version of Hopcroft and Karp’s algo-
rithm. The algorithm begins with empty matching A and in turn increases this
matching in each of the next phases. In the next i-th phase all M -augmenting
vertex-disjoint paths having the length that equals to i are searched. These paths
in preference increase and at least do not reduce number of basic edges in M .
After finding next M -augmenting path p operation M =M @ p is carried
out which increases | M | and changes set of basic edges M1c M if path p
contains these edges. The algorithm’s structure is presented below.

Input. Bipartite graph G =(V,E), cost function ce: E —{0,1}, subset of
basic edges {ec E|ce(e)=1}c E, matching M= 0, set of M -augmenting
paths P=0.

Output. Matching M < E that contains maximum number of basic edges.

Repeate. Find (A, P,,..., P, ), where P,i=12,..,k is a set of all vertex-disjoint
M -augmenting paths, such that each path pe P has length i and carrying out
M = M @ p increases or at least not decreases number of basic edges in matching M .

P=(RUP,U..P)

M=M®®P

Until P=0.

Let us consider the implementation of the algorithm in more detail. Let H
be layered directed acyclic graph; L; — set of vertices in i -th layer in graph H ;
t — number of final layer in H ; in(w),w € H— number of input edges in ver-

tex w; nmax =M | — size of matching M ; ny(p),n, ( p)— numbers of basic
edges in path pe H, thereafter covered and not covered by matching M ;
dif (p)=n(p)—ny(p) — weight of path p; mdif(w)we H— maximal
weight of paths terminated in vertex w.

Each phase of the algorithm consists of the following two parts: breadth-
first (BFS) and depth-first search (DFS). Breadth-first search constructs graph
H in which vertices of input graph G are located in layers. Therewith initial
layer contains only free vertices v e V1. All the following layers are formed by
alternate adding either vertices ve V2, connected with vertices of preceding
layer by edges e¢ M , or vertices ve V1, connected with vertices of preceding
layer by edges ee M . In the process of BFS unlike [5] values mdif(w)we H

are defined using dynamic programming. Graph / construction is carried out
up to one of the following conditions is valid: either next layer contains free
vertex v e V2 or is empty (stopping of algorithm).

Let us consider an example of the algorithm work in input bipartite graph all
ten edges of which are basic (Fig. 2, a). Matching consisting of three edges is re-
ceived after the first phase of the algorithm work (Fig. 2, b). Four-layer graph H ,
constructed in the second phase, is presented in Fig. 2,c in which graph vertices
are numerated (1-10), free vertices are shown by circles and other vertices
(i.e. covered by matching) — by black spheres. The edges in graph / that belong
to M - augmenting paths are shown by thick lines (Fig. 2, c). In result of the sec-
ond phase maximum matching consisting of five edges is received (Fig. 2, d).
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DFS finds all vertex-disjoint paths in graph H which have length ¢ and do
not reduce the number of basic edges in matching M . Searching of each path
starts in free vertex u of the last layer given mdif (u) >=0 and propagates per
edges to non-used during DFS vertices in the preceding layer. Ending this search
in free vertex of initial layer means that M -augmenting path is traced and will
be thereafter augmented.

In the example, presented in Fig. 2, graph G has only basic edges and all
paths in graph A terminated in free vertices six or seven have the same weight
dif (p) =1 (Fig. 2, c¢). There are four such paths but only two of them have no

common vertices and are augmented.

. 8 1 6
g 2

;
é_ E%m 3

a b c d

Fig. 2. Input graph G (a), matching (three edges) afterwards the first phase of

algorithm (b), four-layered graph H in the second phase (c) and maximum
matching (d) after two phases

d e

Fig. 3. Input graph G (a), matching (three edges) afterwards the first
phase of algorithm (b), graph H in the second phase (c), output match-
ing (d) as the result of the second phase and seven-layered graph H in
the third phase (e), that contains no M -augmenting paths
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In the next example presented in Fig. 3 only six edges in graph G are basic.
There are four paths in the second phase (Fig. 3, ¢) having free vertices in termi-
nal points (4-10-3-7, 4-8-1-7, 4-9-2-6 and 5-10-3-7) and path (4-10-3-7) has
maximal weight that equals to 1. Other three ways (with weights 0, -1, 0) have
common vertices with this path and therefore are not used. There is only one
path in graph H in the next (third) phase having free terminal vertex (Fig. 3, e).
The weight of this path is equal to -2 and it is not used because its augmentation
will decrease number of basic edges in matching. Graph / in this phase has
seven layers because the next eighth layer is empty. Output result of algorithm’s
work is the matching that consists of four edges (Fig. 3, d).

The algorithm may be expressed in the following pseudocode.

Repeate
t=0; BFS;
if (> 0)DFS;
Until >0
BFS - Constructing graph / by breadth-first search:
1. Add to L, all free vertices from V1. Let i=nmax=0,
mdif (w)=0|we Ly;
2. Form next layers of graph H until recurrent layer either is empty or con-
tains free vertices ueV?2:
Repeate
for (all vertices ue ;)
for (all vertices w adjacent to u using unmatched edges)
if (no layer containing w)
add w to L;,;; let mdif (w)=mdif (u), in(w)=1;
elseif (we L)
let mdif (w) = max(mdif (w),mdif (u )+ ce(u,w)),
infw)=in(w)+1;
if (L,,; contains free vertex and mdif (u)>=0)let t=i+1;
else if (L, is empty) ¢t =—¢;
else
for (all vertices ue L, ;)
for (all vertices w adjacent to # using matched
edges)
if (no layer containing w)
add w to L;,,; let
mdif (w)=mdif (u)—1;
mdif (w) = max(mdif (w),mdif (u)—ce(u,w));
let i=i+2;
Until (¢+=0)
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DFS -searching and augmentation of M/ -augmenting paths in graph H :

for (all free vertices u € L, , ordered by value mdif (u))

+1°
if (there is path p from u e L, | mdif (u) >0 to one of free vertices we L)
delete each vertex v and its outgoing edges in p . Under deletion each edge
(v,vout) let in(vout)=in(vout)—1 (if in(vout )= 0, delete vout and its outgo-
ing edges). Delete from M all edges e € p and add other edges e ¢ M from this

path. Let nmax = nmax+1.

The algorithm finds matching M in graph G that contains maximum num-
ber of basic edges. This matching is maximum if in final phase there are no
M -augmenting paths augmentation of which reduces number of basic edges

in M . Proposed algorithms have complexity O( mn).

MAXIMUM MATCHING IN FINGERPRINT RECOGNITION

Algorithms for comparing fingerprints based on detection and matching of mi-
nutiae (papillary lines ends and bifurcations) are considered to be still the best,
with the highest matching capability. Using these algorithms a simple rigid
transformation (translating, rotating and scaling) is searched at first to align the
input fingerprint Q with the template fingerprint 7', each represented by its

minutiae pattern. After aligning similarity measure or binary decision of whether
two fingerprint images are from the same finger or not must be determined and
returned. In two roughly aligned images every two minutiae (¢ Q,peT) may

be considered as matched (corresponding with one another) only if their distance
(location and angle) is in tolerance box under known transformation. Not only
pairs but often overlapped groups of closely located minutiae occur, that is why
finding true minutia matching usually is not a simple task. In [12, 13] matching
is searched using rather simple locally optimal algorithm, which may not so
often find true matching of minutiae because of its locality. In [14] Ford-
Fulkerson algorithm for finding optimal global matching is used provided by T.
Cormen et.al. [15]. This algorithm finds the maximum flow in non weighted
bipartite graph with complexity O(nm ), vertices veV1 (veV2) of which cor-

respond to minutiae in the first (second) image and each edge — to pair of verti-
ces closely spaced after aligning (registration). In [16] finding of minutiae
matching is based on searching of matching with minimal cost in weighted bi-
partite graph using algorithm [17] with complexity O(n®). Algorithms [14, 16]
have worse complexity in comparison with [5] that restricts their using in praxis.
Another possible drawback of algorithms [12—14] is that they do not use validity
data of minutiae which may be formed in process of their detection in finger-
prints. In the issue spurious minutiae, having the same influence as true minu-
tiae, may lead to errors in recognition.

One of challenges for [12-14, 16] and other minutiae-based algoritms consists
in missing and spurious minutiae in fingerprint images. To reduce effect of these
minutiae we propose to classify minutiae in two types (reliable and doubtful) and
use weighted bipartite graph G=(QUT,E) with cost function ce: E — {01},
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where O and T are sets of minutiae in input /5 and template [/ images.

Therewith weight of edge e(q € Q,p eT) equals to 1 (reliable edge) if the follow-
ing two conditions are satisfied: 1) minutiae corresponding to vertex ¢ is considered
to be reliable, because it is detected using comparatively rigorous rules and 2) dis-
tance (coordinates and angle) of minutiae ¢ and p after aligning is in certain toler-
ance box. Minutiae in template image 7' are considered as reliable.

Maximum matching M o7 in bipartite graph can be searched using one of

two proposed algorithms. Similarity (matching) degree of two compared images
(0—100%) can be defined as follows:

sim(1g, It )=100(kney +ney )/ n, (1)

where coefficient 1<k <2; nej,ne, are numbers of edges in My, having weight

1 and 0; » is total number of minutiae in intersection region of these two images.
In Fig. 4 an example of closely spaced minutiae set in images [ (four

points) and 77 (two points) after registration is shown: reliable (doubtful) minu-
tiae are marked by circls (squares) and their angles are shown by arrows.
All these minutiae fall into the same tolerance box shown in Fig. 4 by big circle.
That is why every two minutiae in this set can be matched but the task is to find
optimal matching. Similarity degree of this minutiae set defined by (1) takes the
following values depending on choosing minutiae matched pairs: 66% (two pairs
of matched reliable minutiae: (¢,,p;).(q3.p2)), 50% ((q;,p1).(92,p2)) and
33% ((qq,p1).(94,p>)). Therewith maximal similarity (66%) corresponds to

preferential matching of reliable minutiae using proposed algorithms. In general
tolerance boxes for reliable and doubtful minutiae may have different size.
Searching maximal similarity degree depending on reliability of matched minu-
tiae seems to be positive feature in comparison with [12—14, 16].

Fig. 4. An example of closely spaced minutiae after registration in two
compared fingerprint images I, (four points g) and Ir (two points p)
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The second example corresponds to removing of noise gaps in lines and
curves in vectorized image, in particular fingerprint image. Vectorized image
represents graph vertices of which correspond to ends and crossings of lines and
edges — to line or curve segments in image.  Errors in gaps removing lead to
spurious minutiae and hereupon to errors in fingerprints recognition. Task of
gaps removing can be reduced to searching of maximum matching in weighted
bipartite graph vertices of which correspond to ends of lines in image. Each edge
in this graph connects two vertices if distance (location and angle) of corre-
sponding end points is in certain tolerance box b . Therewith edge has weight
that equals to 1 (basic edge) if distance of corresponding end points is in toler-
ance box, size of which is essentially smaller than size of b and equals to 0 oth-
erwise. Searching of maximum matching in this graph can be carried out using
one of proposed above algorithms.

Examples indicate that using of the proposed algorithms leads to increasing proc-
essing speed and reliability of fingerprint recognition. Testing software for fingerprints
recognition using developed algorithms will be the next step of research.

CONCLUSIONS

New setting for finding maximum matching in bipartite graph which set of edges
is splitted into two subsets is proposed: find maximum matching in this graph
among all matchings having maximum cardinality in one of these subsets. Two
algorithms for searching maximum matching in this setting are also proposed,
which are based on using Hopcroft and Karp’s algorithm and have complexity

o( mln ). These algorithms can be modified by splitting set of edges in bipartite

graph more than in two subsets. Preliminary analysis indicates that most likely
using of proposed algorithms leads to the increasing processing speed and reli-
ability of fingerprint recognition.
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HA 3BAXXEHOMY JIBOJAOJIBHOMY I'PA®OBI

Bcmyn. Po3risiHyTO  HaiiBiIOMIII alTOPUTMH HOIIYKY HaWOUIBIIOr0 MapoCIOIydeHHs Ha
JIBOJIOJIBHOMY Tpad)oBi, siIKi a00 BHKOHYIOTH IMOIIYK HAWOIIBIIOr0 MapOCHOIyUYCHHS Ha He-
3BaKCHOMY [[BOJIOJIbHOMY rpa)oBi, a00 BHOMPAIOTH i3 MHOXXHMHHU HAHOITBIINX MApOCIOJy-
YeHb O/IHE, sSIKe Mae HaiOUTbIIy cymMy BariB pedep. Lli alropuT™Mu akKTHBHO BXKHBAIOTHCS TIPH
PO3B’SI3aHHI PI3HUX ONTHMI3alliHUX 3ajady, aje Ha MPAKTULI € TaKoX MoTpeda B iHIIMX
NIOCTaHOBKAX 1 allrOpUTMax MOILIYKY HaHOUIBIIOr0 APOCIIONYYEHHS Ha JIBOJIOJIBHUX rpadax.

Mema ctatTi — pO3MIIIHYTH HOBI NOCTAHOBKH 3aBIaHHS 1010 3HAXOJKCHHS HaHO11b-
IIIOT0 [TAPOCIIONYYEHHS Ha 3BaXKEHOMY ABOJIOJIBHOMY Ipad)oBi, alrOPUTMHU PO3B’SI3aHHS IIi€l
3aj1adi, a TAKOXK BUKOPUCTaHHS LIUX aJTOPUTMIB IIPH PO3Mi3HABaHHI NAIUIIPHUX 300paskeHb.

Memoou. BUKOPUCTOBYIOTHCS MOIM(]iKOBaHI BepcCii MONIYKY HAWO1IBIIOr0 MapoCioy-
4yeHHs1 M Ha JBOJOJIBHOMY Ipad)oBi Ha OCHOBI MONIYKY Ta ayrMeHTauii M - 30UIbIIYIOUHX
HUISAXIB HA IbOMY IpadoBi.

Pesynomamu. Po3riissHyTO HOBY IOCTAaHOBKY IMOUIYKY HAMOUIBIIOrO MapoOCIONyYeHHS
Ha 3BaXCHOMY JIBOJIOJIBHOMY rpad)oBi, Baru pebep sSkoro HaOyBarOTh J[Ba 3HAYCHHS (HAIpH-
wiaf, 0 i 1): 3HaiiTH BCi mapocmonyveHHs, 110 MaloTh HalOLIbINY KiJIbKicTh pebep 3 Baroio 1,
i BUOpaTH cepel HUX Take MAPOCHONYYCHHS, IO Mae HAHOLIBINY KiTBKIiCTH pedep.
3anponoHOBaHO J[Ba aJTOPUTMH MOIIYKY HAHOLIBIIOrO MapoCIOydeHHS Y il MOCTaHOBIII 3i

cknanuictio O(mA/n ). PO3rIsIHYTO NPUKIAJN BXUBAHHA IIUX AITOPHTMIB JUIS YCYHEHHS

PO3pHBIB JIiHIM Ta MOUIYKY BiJIOBIAHOCTI OCOOJIMBUX TOYOK Ha MOPIBHIOBAaHUX BiIOMTKAX
HajbliB IPU PO3B’sA3aHHI 3a]1aui pO3i3HABAHHA MANUIIPHUX 300paxkeHb.

Bucnogku. 3anporioHOBaHO HOBI aJITOPUTMH TIOIIYKY HaHOLIBIIOrO NApOCHOIy4eHHS Ha 3Ba-
JKEHOMY JBOJIONIFHOMY rpadoBi. BHKoOpHCTaHHs 3anpONOHOBAHUX AITOPUTMIB IMPH3BOJUTEH 10
TMPHIIBUTYCHHS Ta 3pOCTAHHS HAIIHOCTI pO3Mi3HABAHHS 300paKEeHb BiJIOUTKIB MANBIIIB.

Knrouosi cnosa: natibinvute napocnonyuens, 08000abHUIL 2pag, 300padicenHs.
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HAXOXIAEHUE HAMBOJIBIIET'O ITAPOCOUYETAHUMA
HA B3BEHIEHHOM JIBY IOJIbBHOM I'PA®E

PaccmoTpena HOBas NOCTAaHOBKa 3a/add HAaXOXKICHHUS HaHOOJNBIIETO MAapoOCOYETaHHS Ha
B3BEIICHHOM JIBYJOJBEHOM rpade, Beca pedep KOTOPOro MPHHUMAIOT ABa 3HaYCHUs (HaIpH-
Mep, 0 u 1): HaliTH Bce mapocovyeTaHwus], coAepiKallue HauOoJbIIee KOJUYECTBO pedep ¢
BecoM 1, ¥ BEIOpaTh cpey HUX HauOoJIbIIee 1Mo pasMepy mapocodetanue. [IpeioxKeHs! qBa
ITOpUTMa ITOMCKA HanOOJBIIETO NapOCOYETaHHs Ha JABYJOIBLHOM Ipade B HOBOI MOCTaHOB-

Ke co CI0KHOCThI0 O(mA/n ). PaccMOTpeHBI PUMEPBI IPUMEHEHHUS ITHX AITOPUTMOB IS

YCTpaHCHUS pa3pbIBOB JIMHAHA W TIOMCKA COOTBETCTBUS OCOOBIX TOYEK HA JABYX CpaBHHUBAa€MbIX
OTIeYaTKax MajbLCB IIPU PEIICHUH 3aJa4r paCIIO3HABAHUA MATUJIIIAPHBIX 1/1306pa>1<eH1/H71.

Knrwouesvie cnosa: naubonvuiee napocouvemanue, 08y00IbHbILI 2pagh, U300paICeHUs.
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