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COMPARISON OF EIGENFUNCTIONS COMPUTED FOR CYLINDRICAL
CLOSED SHELLS BY AN ITERATIVE DECOUPLING PROCEDURE

A general procedure for estimating eigenvalues is presented within the framework
of a problem for an elastic thin closed shell implying its reduction to a differential
equation of the eighth order. The idea implies decoupling of the problem into two
simpler ones: a plane elasticity problem and a thin plate problem. Both problems
are reduced to a biquadratic equation. By choosing one of these problems to be the
main one, the corresponding functions for the other problem can be presented by a
linear combination of functions obtained from the main problem. The derived
eigenvalues are compared for the four dominant cylindrical-shell theories concer-
ning the concentrated radial load. The results slightly differ only for small num-
bers of the circumferential mode expansion and agree with earlier results obtained
through the use of different semi-analytical methods.

Key words: cylindrical shell, decoupling procedure, eigenvalues, concentrated radial
force, main homogeneous equation, auxiliary particular solution.

Introduction. A problem on the deformation of a cylindrical thin-walled
shell under the action of a concentrated load can be considered as a coupling
of two rather simple problems, ie. a plane problem of elasticity (“membrane
problem”) and a thin plate problem. Due to the actual curvature of the shell,
the force from the “membrane problem” is projected onto the radial direction
and the equilibrium equations involve the axial and circumferential displace-
ments. When the curvature of the shell tends to zero, these two problems
become quite independent and, thus, the general problem can be decoupled.
The method, which we suggest in this paper, rests upon a similar logic. First,
we consider both problems independent (decoupled). Then, we iteratively en-
counter the mutual effect of these problems on one another.

There exists a variety of the theories for the thin-walled cylindrical shells
implying different physical and geometric assumptions. The most dominant
approach is concerned with the decomposition of the involved functions into
the Fourier series with respect to the circumferential coordinate and the de-
termination of a coefficient for mode n. As a result, one can obtain an ordina-
ry differential equation of the eighth order with respect to the axial coordina-
te. There are at least twelve different characteristic equations corresponding
to different theories [10]. Despite the fact that some eigenfunctions were com-
pared of specific modes, they have been computed through the use of a solu-
tion of a biquadratic equation failed to be given in a closed analytical form.

Nevertheless, these eigenfunctions can be found analytically for some
simplified theories, e.g., the Donnell equation [23]. In [8], the simple expressi-
ons have been obtained for the eigenfunctions of the Fligoe equation. Morley
[13] derived another simplified equation providing an analytical solution. In
[22], the differential equations of [15] were analyzed.

Summarizing the analysis of the eigenfunctions, we can emphasize the
following features. First of all, it was shown in [8] that all eight eigenfunctions
can be represented in the form

_ ¥a,x [ cosbx _ ¥, x jcosd,x
Flys4(x)=ce {sinbnx ;o D@y g4lx)=e sind x| (1)

Then for lower modes n > 2, the eigenfunctions can be split into two groups
[5]: shortwave (first formula in (1)) and longwave (second formula in (1)) ones.
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The longwave (“long”) solution can be regarded rather practical. It was
derived by Vlasov [2] back in 1949 on the basis of the semi-membrane shell
theory implying the circumferential and shear strains to be zeros. Vlasov’s
theory has become quite popular due to its practical applications, e.g. for the
evaluation of the end effects in the toroidal shells [1, 18] with concern to the
concentrated force [14, 16], bending instability [11], buckling [24], analysis of
vibration of conventional and short shells [20]. However, it contradicts the ap-
plicability of the shortwave (“short”) solution concerning, e.g., mitered bend
under the inner pressure [6, 7].

According to Goldenveizer [3], the Vlasov’s hypothesis can be substituted
with the following one: the solution is to vary in the circumferential direction

faster than in the axial one, ie. d*Q/dx* <d®’Q/(Rde)*, where Q is any

parameter of the shell problem. This idea inspired us for our attempt. By
analogy, we assumed that, if the “long” fourth-order solution satisfies the
aforementioned requirement, then the supplemental “short” fourth-order

solution must to exist and satisfy the requirement d*Q/dx® > d*Q/(Rde)*.

Hence, both “long” and “short” solutions should be equally important.
This idea was developed in our works [17, 21] and eventually polished in [19],
where it was accounted that both solutions produce all eight components
(shell parameters) of the complete solution.

This paper implies two goals. Firstly, we suggest the iterative decoupling
procedure for finding the solutions to a characteristic equation. We start from
a simple solution constructed for one of two uncoupled problems (membrane
problem or plate one) and slowly refine them by taking into account the
influence of another, “alien” uncoupled problem. It can be shown that the
“long” solution corresponds to the membrane-generated problem, and the
“short” solution to the plate-generated problem. Secondly, we examine four
different formulations. For each of them, we compute the roots of
characteristic equation and eigenfunctions, and wvalidate their accuracy
through the mutual comparison.

Fig. 1. Directions of geometrical and force parameters: plane (@, ),

3D view of the element, and plane (x, 7).

1. Formulation of the problem.

1.1. General formulation of the problem for an infinite cylindrical
shell. Consider an infinite cylindrical shell of radius R related to the cylin-
drical system of coordinates (r,¢,x). Consider u, v, and w being the displa-
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cements, N, and N, denoting the membrane forces, L standing for the
shear force, @, and Q(p being the transverse forces, and M_, M(p, and MI(p

representing the bending moments (see Fig. 1). These functions are governed
by the following equations
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and related to the membrane and bending strains, &;€;,v; and x;,%;,
respectively, i,j = {x, ¢}, via the following constitutive equations:

N, =—(g, + us(p)H, N, =—(g, + pne )H, L= —thm ,

_ - _b-1
M, = (e T uxHe, M, =—(xy +wy,)He, My, = =——Hey,,,
where H = Eh/(1-p?), 2G = E/1+v), « = h*/12, p is Poisson’s ratio.

The strains are related to displacements via the geometric Cauchy
equations

— ou _low,w —10u,ov
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Decompose the functions into the Fourier series with respect to the cir-
cumferential variable to obtain the following:

{u(x, ), w(@, )} = {u, (), w, (x)} cos(np), v(@, §) = v, (x)sin(ng),
(N, (x,0), M, (x,9),Q, (2, 0)} = {N, , (), M, ,(%),Q,, ()} cos(no),

{L(x,9),Q,(x,9), M, (x,0)} = {L, (x),Q, ,(x), M, , (%)} sin(ne),

where j = {x,¢}. In what follows, indices n will be omitted for the sake of

€

(2)

brevity. The confusion between the Fourier coefficients and the original para-
meters will be avoided by indicating one or two arguments, respectively.

The encountering for the bending deformations depends on the specific
formulation of the problem. In order to compare different cases, we consider
the specific formulations below.

1.2. Different approaches to the problem formulation. According to
the main hypotheses of shell theories, the total displacements w, v, and w
can be given in the form, as follows:

u(r, @, x) = u(@,x) + ry,(@,x), v(r,@,x)="2v(p,x)+77,(9,%),

w(r, ¢, x) = w(e,x). (3)

Here, r is the radial coordinate that equals zero at the midsurface of the shell
and takes negative and positive values in the direction of the inner and outer
limiting surfaces, respectively.

Then, the membrane strains take the form [12]:

E’I‘:@’ E = 1 @ IZI; , E :a_"'_l'7 E :@—}—@,
or ¢ R+rdp R+7r T 0Ox ™ Ox oOr

o "R+rdp  or R+r % ar R+rdg

- 1 ow,06__ 5 - _0v, 1 & @
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When engaging the theory of thin shells, the transverse forces Qcp and
®, , and, hence, the strains induced by these forces are negligible. Within the
context of formulas (4), this implies the following:

1 w,®__o _, ow, du_g (5)
R+rop or R+r 7~ ox oOr '

Making use of (3) for the first formula in (5) yields

v(g,x) TP ) _
R+r R+r

L dw

R+r a(P y(P((va)_

Restricting ourselves with the linear terms of the Taylor series for Yo

and implying 1 /(R+7r)=(1—-r/R)/ R, we arrive at

__1ow, vex
R T
Now we use (3) within the context of the second formula in (5) to obtain
ow(e, x
7, (9,0 = - ARE).

In view of the fact that within the framework of the adopted shell

theory €, =0, we address the strains E(p, €., and Em, which in view of the

corresponding formulas in (3) and (4) yield the linear dependencies

E =8, T Epp = Epe tThyer T ={T,0}. (6)
By decomposing these strains into the Taylor series with respect to the
ratio r / R and encountering only the linear terms, we can compare the ob-
tained formulas with (5) which yields formulas (2) along with the expressions
(oL Ow w o Ow
® 2 ’ x ox

2w 1dov 1 du
=—-= == === 7
Karo R Opox - R 0x R2? 0o (")

As indicated above, the derived formulas (7) are based on the linear
approximation for the term 1/(r+ R). This can be done based on other
assumptions. If, for instance, 1/(r+R)=1/R, ie, (1+7/ R)~1, then using
the above approach, we can derive

1w, 1w __ 2w

R 09> RZO09 KT T op2

X(p:_

’
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Using approach [19] which implies the radial strain to be the linear part
of the membrane strains, we arrive at

1 8% o* 2 9
X(p - 2 IL;) u’z ) X;z; == 1;) ) X.’L‘(p = _E 6 é’u . (9)
R® 0o R ox Ppox

Finally, making use of Donnell — Mushtari — Vlasov theory, we can
obtain

1 o*w . dw 2 P*w

=-=— =-== =-2 2= 1
Xo R oo® Xz o2’ Ko R doox (10)
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2. Problem decomposition. The suggested approach implies the decompo-
sition of the formulated general problem into two coupled problems: a mem-
brane problem and a plate problem. The equilibrium equations in the axial
and circumferential directions are governed by the membrane problem, while
the ones in the radial direction are concerned with the plate problem. Due to
the non-zero curvature, the radial force can be projected onto the circumfe-
rential direction.

Within the framework of our approach, one of these coupled problems is
regarded as a main one, while the other problem is the auxiliary one. The
objective of the main problem is to generate the eigenfunctions using the
structure of formulae (1) allowing for the homogenization of the governing
equations. The auxiliary problem implies correction of the eigenfunctions.

Let us demonstrate the suggested algorithm for the case presented by
formulae (7).

Consider the equilibrium equations in projections onto the radial, circum-
ferential, and axial directions in the following form:

d*u dv
-—+a, ,—+a, ;u=RSI1
dxg v,1 dx u,0 ’
2
vazﬁ Buld +B,0v = RS2,
4 2
Yo, 371“5 + Vo 377“;’ + Vi oW = RS3. (11)
Here,
_n(l+p) _ n*l-p _Mdw
vl =T 9R 0 %w0 T oR? ' RS1 = R dx
__1l-mp x ntw
Poz __T(H?)’ Pur = 73R ( R2)R2’
dw n2j j
RS2= "1 |2 W_ l+e—|w], 12
R2( da? ( R? (12)
2 4
n 1 n
Ywa =&, Yy = —Zxﬁ, Yw.0 :E(IJ”BEJ’
RS3 = v (1|, Ldu 13
R2 xdxz sz v R do’ (13)

The first and second equations in (11) govern the membrane problem,
while the third one complies with the plate problem.
Step 1 (solving the main problem). Assume existence of c,,c,,d,,

u’rv?

d, € R allowing for the following representation:

RS1=c,u+ec, % RS2=d, %140,
Y dx » dx

The first iteration implies ¢, =c, =d, =d, =0. This means that the
main and auxiliary problems are decoupled. For the following steps, we have

d’u dv

L —c, )80+ - =

4a? (0va1 c“)dx (amo c, ) u=0,

Buz 5+ (B~ ) g+ (B — o = 0. (14)
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Equations (14) can be reduced to the following fourth-order equation:

diu d*u
—tn,—+tnu=0.
dx? ? da? ¢
B - -d
where 1, = (o, ¢+ U (0 - o) BT = (e P
Bv,2 Bv)z vaz

This equation generates the following eigenvalues:
.4+ dn? =
A, =1J N2 = ;2 An, =+c+id,
c=[Re(r,), d=[m*,).
The corresponding eigenfunctions those are bounded at the infinitely
distant points | 2 |- o, take the form:

@, (x) = exp(—cx)cos(dx), D,(x)=exp(—cx)sin(dx). (15)

If d =0, which is the case, e.g., for the first iteration, then the form of
the eigenfunctions will naturally be different. In this case, the eigenvalues are
real and equal ¥n / R. For such cases, however, we introduce minor complex

disturbance d = 0.001n / R in order to preserve the form (15).
Note that functions (15) have the following features:

o) (O @ (O (-, -d,
(@ij‘“(@;j’ I(@i)d‘”‘n (qnij H—(dn _Cn), (16)

where the dot indicates the derivative by x.
Within the context of (15), we can express the displacements in the form:

wz) (10 <D1(x))
(v(x))‘(Av,l Av,zj(cbz(x) : (a7

where A,, and A, , are to be found from the first equation of (14), which in

view of (17) yields

®, (%)) _ 1 (D(®)_ %uo ~Cu (q)l(x)j
(A A”'”(cbz(x)J . 0)(%—% (c’%m} Gy =G, @Dz(x)j'

This formula along with the properties (16) allow for deriving the following:

(Dl(.l’,') _ 1 _ Quo ~Cu 1 (Dl(.l’,')
(s 4) i) = ”)(cv o e, e, j(cbzm)'

v,1

Solving the latter equation with respect to A, ; and A, , concludes the step 1.
Step 2 (auxiliary problem). Now we intend to construct function
w(x) = Aw)l(x)QDI(x) + Awyz(x)d)z(x), (18)

by putting functions (17) into the third equation of (11), which yields:
o}
(Aw,l Aw,Z)( ’Yw,41_I4 + yw,2H2 + yw,Ono)(q);j =

_ XN 12 M
(4, 42w -0 0k

3 O}
(s (-2 ) o))
( v,1 ’U,Z)(R4 R2 (DZ
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where IT° is the unit matrix. Solving this equation allows for the determina-
tion of Aw,1 and A which finalizes the determination of the function (18).

In order to complete the cycle and begin the next iteration, we shall de-
termine the values for ¢; and dj, 7 ={u,w}, which allow for the satisfaction

w,2 7

of (12) and (13). After these values are found, we switch back to solving the
main problem (step 1) again implying the results of the supplementary prob-
lem to be the main ones.

3. Convergence.

It should be noted that for many iterative processes, the suggested sepa-
ration algorithm encounter the convergence problems due to the fact that for
greater values of n (starting, e.g, from n =9 as it might be seen from Fig. 2),
the eigenvalues exhibit the oscillating behavior, and, in the final count, the
algorithm appears to be divergent.
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Fig. 2. Oscillations of the eigenvaluesat R / h =40 and n =9.

This can be fixed by slowing the variation of the coefficients in the
following manner. Assume the coefficients c;_l and d;_l, j ={u,v}, were
found on the (7 —1)th iteration. The values of the coefficients on the current
operation are being changed to the values c; - c§_1 and d; - d;_l. In order to

prevent the divergence, we minimize the absolute values of these differences
by introducing the delay coefficient 0 < p <1 so that

C;yadjusted — c;fl,adjusted + p(c; _ c;:fl,adjusted),

. .- /,adjusted :
with an analogous formula for coefficient d;*"**““. This procedure can be

applied, if necessary, to all values determined within the algorithm routine.
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4. Results and discussion. We used the four approaches above, implying
representations (7) — (10), in order to compute the eigenfunctions

D, (x) = e ““cos(dx), D,(x)=-e “"sin(dx),

F(x) = e * cos(bx), F,(x)=e “"sin(bx).

Tables 1—-3 present computed coefficients ¢, d, a, b for each approach.
All the results will be compared with the results obtained for the case of (8)

by evaluating the relative difference 6 [%] at different n and R/h.

Table 1. Coefficients ¢, d, a, b computed through the four approaches at

R/h =20.
R/h = 20 Egs. (7) Egs. (8) Egs. (9) Egs. (10)

value 0, % value 0, % value 0, % value 0, %
c 0.015738 | 0.16 | 0.015713 - 0.015796 | 0.53 | 0.016969 | 7.99
n=2 | d | 0014221 | 022 | 0.014253 - 0.014153 0.7 0.015202 | 6.66
a | 0.305475 | 0.11 | 0.305125 - 0.305208 | 0.03 | 0.305606 | 0.16
b | 0270854 | 0.11 | 0.271152 - 0.271250 | 0.04 | 0.271020 | 0.05

c 0.115883 | 0.01 | 0.115866 - 0.116051 | 0.16 | 0.117138 1.1
d | 0.064541 | 0.25 | 0.064702 - 0.064120 0.9 0.064737 | 0.05
n=5 a | 0405488 | 0.09 | 0.405140 - 0.405332 | 0.05 | 0.405673 | 0.13
b | 0220668 | 0.08 | 0.220842 - 0.221417 | 0.26 | 0.221587 | 0.34
c 0.356058 | 0.02 | 0.356124 - 0.356244 | 0.03 | 0.357019 | 0.25
d | 0.103821 | 0.26 | 0.104087 - 0.102762 | 1.27 0.103189 | 0.86
n=10 a | 0.645651 | 0.04 | 0.645365 - 0.645512 | 0.02 | 0.645544 | 0.03
b | 0.181400 | 0.05 | 0.181492 - 0.182788 | 0.71 0.183143 | 091
c 0.854961 | 0.02 | 0.855112 - 0.855163 | 0.01 0.855737 | 0.07
d | 0.126859 | 0.32 | 0.127270 - 0.124568 | 2.12 | 0.124964 | 1.81

n=20 a | 1.144569 | 0.03 | 1.144281 - 1.144443 | 0.01 1.144275 0
b | 0.158347 | 0.02 | 0.158381 - 0.160970 | 1.63 | 0.161355 | 1.88

Table 2 Coefficients ¢, d, a, b computed through the four approaches at
R/h =30.
R/h = 30 Eqgs. (7) Eqgs. (8) Eqgs. (9) Eqgs. (10)

value 0,% value 0,% value 0,% value 0,%
¢ | 0.008457 | 0.12 | 0.008447 - 0.008479 | 0.38 | 0.009110 | 7.85
n=2 d | 0.007902 | 0.14 | 0.007913 - 0.007878 | 0.44 | 0.008463 | 6.95
a | 0.244401 | 0.08 | 0.244214 - 0.244246 | 0.01 | 0.244451 0.1
b | 0.225504 | 0.07 | 0.225672 - 0.225707 | 0.02 | 0.225563 | 0.05
c | 0.064114 | 0.03 | 0.064097 - 0.064195 | 0.15 | 0.064823 | 1.13
d | 0.041600 | 0.16 | 0.041667 - 0.041438 | 055 | 0.041828 | 0.39

n=5 a | 0299985 | 0.07 | 0.299790 - 0.299889 | 0.03 | 0.300108 | 0.11
b | 0.191879 | 0.06 | 0.191992 - 0.192220 | 0.12 | 0.192254 | 0.14
c | 0217369 | 0.01 | 0.217392 - 0.217467 | 0.03 | 0.217936 | 0.25
d | 0.076762 | 0.17 | 0.076889 - 0.076310 | 0.75 | 0.076555 | 0.43
n=10 a | 0453232 | 0.04 | 0.453072 - 0.453153 | 0.02 | 0.453215 | 0.03
b | 0.156725 | 0.04 | 0.156784 - 0.157356 | 0.36 | 0.157533 | 0.48

c | 0548767 | 0.01 | 0.548831 - 0.548869 | 0.01 | 0.549208 | 0.07
d | 0.098274 | 0.19 | 0.098460 - 0.097271 | 1.21 | 0.097487 | 0.99

n=20 a | 0.784633 | 0.02 | 0.784492 - 0.784557 | 0.01 | 0.784489 0
b | 0.135211 | 0.01 | 0.135231 - 0.136393 | 0.86 | 0.136599 | 1.01
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Table 3. Coefficients ¢, d, a, b computed through the four approaches at

R/h =40.
R/h = 40 Egs. (7) Egs. (8) Egs. (9) Egs. (10)
value 0, % value 0, % value 0,% value 0, %
c | 0.005454 | 0.09 | 0.005449 - 0.005465 | 0.29 | 0.005872 | 7.76
n=2|d | 0005183 | 012 | 0.005189 - 0.005171 | 0.35 | 0.005556 | 7.07
a | 0209515 | 0.06 | 0.209396 - 0.209411 | 0.01 | 0.209540 | 0.07
b | 0.197230 | 0.06 | 0.197341 - 0.197357 | 0.01 | 0.197258 | 0.04
¢ | 0.041535 | 0.03 | 0.041523 - 0.041582 | 0.14 | 0.041999 | 1.15
d | 0.029553 | 0.11 | 0.029587 - 0.029472 | 0.39 | 0.029753 | 0.56
n=s a | 0.245550 | 0.05 | 0.245422 - 0.245481 | 0.02 | 0.245631 | 0.09
b | 0.172908 | 0.05 | 0.172990 - 0.173104 | 0.07 | 0.173098 | 0.06
¢ | 0.150899 | 0.01 | 0.150908 - 0.150961 | 0.04 | 0.151290 | 0.25
d | 0.061006 | 0.12 | 0.061081 - 0.060761 | 0.52 | 0.060930 | 0.25
n=10 a | 0.354908 | 0.03 | 0.354799 - 0.354855 | 0.02 | 0.354918 | 0.03
b | 0.141460 | 0.03 | 0.141503 - 0.141820 | 0.22 | 0.141925 0.3
¢ | 0.398210 | 0.01 | 0.398245 - 0.398274 | 0.01 | 0.398508 | 0.07
d | 0.081816 | 0.13 | 0.081926 - 0.081260 | 0.81 | 0.081401 | 0.64
n=20 a | 0.602219 | 0.01 | 0.602129 - 0.602168 | 0.01 | 0.602136 0
b | 0.120650 | 0.01 | 0.120666 - 0.121322 | 0.54 | 0.121453 | 0.65

Evidently, the results for all the approaches resemble for n > 5 as their
difference is less than (1+2)%. For the smaller values of n, however, the

fourth case (the Donnell — Mushtari — Vlasov approximate theory) deviates
over 7%. This confirms the results of [4] indicating this theory to be more or

less exact for the modes with greater values of n, ie., when 1/n?® <1.

Consider the action of a concentrated force implying the following
boundary conditions:

Yoloeo =0, Ly =0, @l _,=P/2,

P(x,¢) = 28(x)cos(nx).

u|x=0 = 0’

Here, 8(x) is the Dirac function.

Table 4. Normalized values of radial displacement w and bending moment Mx
at x =0 and R/h =20.

R/h = 20 Eqgs. (7) Egs. (8) Egs. (9) Egs. (10)

value 0,% value 0, % value 0, % value 0, %
w(0) |1.864815| 0.17 | 1.868084 | — | 1.857412| 0.57 | 1.524150 | 18.41
n=2 Mx(O) 1478418 | 0.03 | 1477967 | — |1474964| 0.2 | 1.502798 | 1.68
w(0) |0.194101| 0.12 |0.194338| — |0.193662 | 0.35 | 0.188648 | 2.93
mEo Mx(O) 1.324107 | 0.05 |1.324832| — |1.321872| 0.22 | 1.321451 | 0.26
n =10/ w(0) |0.026330 | 0.03 |0.026338 | — |0.026308 | 0.11 | 0.026134 | 0.77
Mm (0) | 0.742840 | 0.02 |0.743003 | — | 0.742412| 0.08 | 0.742088 | 0.12
n =920| w0) ]0.003286 0 0.003286 | — | 0.003285 | 0.03 | 0.003280 | 0.18
Mm (0) | 0373819 | 0.01 |0.373839| — |[0.373749| 0.02 | 0.373705 | 0.04

n = 40| w(0) |0.000410 0 0.000410 | — | 0.000410| O |0.000410| O
Mx(O) 0.186877 0 0.186880 | — | 0.186861 | 0.01 | 0.186856 | 0.01
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Consider the computation of the dimensionless displacement and bending
moment:

o, U R E
w ’ M = .

Table 5. Normalized values of radial displacement w and bending moment Mx
at x =0 and R/h = 30.

R/h = 30 Egs. (7) Egs. (8) Egs. (9) Egs. (10)
value 0,% value |0,% value 0, % value 0, %
w(0) | 1.834894 | 0.12 | 1.837105 | — | 1.829958 [0.39| 1.494346 | 18.66
n=2 1\7[x(0) 1.441217 | 0.03 | 1.440751 | — | 1.438956 |0.12| 1466755 | 1.8
w(0) | 0.211476 0.1 0.211686 | — | 0.211099 |0.28| 0.205695 | 2.83
neo 1\7[x(0) 1441131 | 0.03 | 1.441576 | — | 1439222 [0.16| 1.440111 | 0.1
w(0) | 0.031850 | 0.04 | 0.031862 | — | 0.031827 |0.11| 0.031618 | 0.77
n=10 1\7130(0) 0.898627 | 0.02 | 0.898816 | — | 0.898149 |0.07| 0.897792 | 0.11
w(0) | 0.004021 | 0.02 | 0.004022 | — | 0.004020 |0.05| 0.004014 | 0.2
n=20 1\7130(0) 0457453 | 0.01 | 0457478 | — | 0.457381 |0.02| 0.457328 | 0.03
w(0) | 0.000502 0 0.000502 | — | 0.000502 | 0 | 0.000502 0
=40 1\7[x(0) 0.228859 0 0.228862 | — | 0.228846 |0.01| 0.228839 | 0.01

Table 6. Normalized values of radial displacement W and bending moment Mx
at =0 and R/h =40.

R/h = 40 Egs. (7) Egs. (8) Egs. (9) Egs. (10)

value 0, % value 0, % value 0, % value 0, %
w(0) 1.817302 | 0.09 | 1.818972 - 1.813599 | 0.3 1476783 | 18.81

n=2 1\7130(0) 1419971 | 0.03 | 1.419561 - 1418289 | 0.09 | 1.445827 | 1.85
w(0) | 0217785 | 0.08 | 0.217957 - 0.217468 | 0.22 || 0.211906 | 2.78

nEo 1\7[x(0) 1.482535 | 0.01 | 1.482756 - 1.480961 | 0.12 | 1.482836 | 0.01
w(0) | 0.036174 | 0.04 | 0.036188 - 0.036151 | 0.1 0.035913 | 0.76

n=10 1\7[x(0) 1.020621 | 0.02 | 1.020822 - 1.020106 | 0.07 | 1.019753 | 0.1
w(0) | 0.004638 0 0.004638 - 0.004637 | 0.02 | 0.004629 | 0.19

=20 1\7130(0) 0.527626 | 0.01 | 0.527656 - 0.527550 | 0.02 | 0.527489 | 0.03
w(0) | 0.000580 0 0.000580 - 0.000580 0 0.000579 | 0.17

n=40 1\7130(0) 0.264242 0 0.264246 - 0.264230 | 0.01 | 0.264222 | 0.01

The results shown in Tables 4—6 agree well with the previous ones: the
consideration of equations (7) and (9) exhibits high accuracy with difference
no greater than 0.6%, while the implementation of (10) provides good accuracy
only for greater values of n. At n =2, the error for the latter case exceeds
19%. For the bending moments, this error is smaller. This can be explained by
the fact that the Donnell — Mushtari — Vlasov theory neglects w in the ex-

pression for y,, but keeps the term with its second derivative. Therefore, the

difference for the bending moment Mx, which also contains the second deri-

vative of 1, is smaller, while the results for w itself are not as satisfactory.
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Fig. 3. The normalized radial displacement Fig. 4. The normalized bending moment
w(x) atn=2, R/h=20. M,(x) atn=2, R/h=20.

The foregoing conclusion is confirmed in Fig. 3 and Fig. 4, which demon-
strate the dimensionless displacement and bending moment computed for four

different variants presented by (7)—(10) at n =2 and R/ h = 20.

Conclusions. Herein, the problem for a cylindrical infinite shell under the
concentrated radial load is considered as a coupling of two problems, ie. the
“membrane” and “plate” one. An iterative decoupling method is introduced
for solving these coupled problems. One of the problems is considered as a
main one and is used to compute eigenfunctions. The other problem is consi-
dered as an auxiliary one and is used to refine obtained eigenfunctions. This
procedure can be applied not only to the cylindrical shell, but, in general, to
any coupled problem allowing to express the “alien” terms of the main equati-
on via its “native” terms.

Another finding of this work is the comparison of different approaches
for the formulation of a problem for cylindrical shells. We examined four
different variants of equations derivation, including the well-known Donnell —
Mushtari — Vlasov approximate theory. For each of these approaches, the de-
coupling procedure was applied to calculate eigenfunctions. Starting from
n =5, all these four theories produce similar results, their relative difference
rarely exceeds 2% for real and imaginary parts of eigenvalues. However, for
small values of n the Donnell — Mushtari — Vlasov theory is insufficient for
producing accurate results, with relative error for dimensionless radial
displacement being almost equal to 20%. Meanwhile, the other three
approaches still returned values close to each other, which allows to use any
of these theories in practical cases.
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MOPIBHAHHSA BIIACHUX ®YHKLINA, BU3HAYEHUX AN SAMKHEHUX LIUMIHAPUYHUX
OBOJIOHOK 3A IONOMOIOO ITEPALIMHOI MPOLIEAYPU PO3YENJEHHSA

3anponoHo8aHo 3a2aivbHy NPoyuedypy BUIHAUEHHS 8AACHUX 3HAUEHDb 3a0aui Oasl NPYHCHOT
MOHKOCTIHHOL 3AMKHEHOT YUNTHOPUYHOL 000A0HKU, AKA Moafeae Yy 38edenni 0o Ouge-
PEeHYIAABbHO20 DPIBHAHHA 60CbMO20 NOPAOKY. I0es rpynmyemuves Ha po3uenienHi 3adaui

167


https://doi.org/10.1016/0022-5096(61)90027-8
https://doi.org/10.1017/S0001925900002262
https://doi.org/10.1017/S0001925900002080
https://doi.org/10.1016/S0020-7683(02)00085-9
https://doi.org/10.1093/qjmam/12.1.89
https://doi.org/10.1007/BF00882358
https://doi.org/10.1007/BF00767243
https://doi.org/10.1115/1.4047828
https://doi.org/10.1016/j.ijsolstr.2006.06.025
https://doi.org/10.1016/j.tws.2021.108536
https://doi.org/10.1115/PVP2018-84932
https://doi.org/10.1115/PVP2018-85032
https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(248)
http://www.jstor.org/stable/43633536
https://doi.org/10.1016/j.tws.2007.02.001

Ha 081 npocmiwi: naocky 3a0avy meopii npyrcHocmi ma 3adauy 048 NAACMUHU, KOKCHA
3 axux 3eod0umuscsa 00 6ikeadpammuozo pieHaHHA. IIpu eubopi 00Hiel 3 yux 3adau 3a
OCHOBHY, 8AacHi PYHKYIT THWOI 3adaul 3HAXO0UMO Y BuUAAll ATHIUHUX KOMOTHAYIYU
PyHryi, 3HaludeHuxr 3 OCHO8HOI 3adaui. OMPumaHi 6AACHL YUCAA TNOPIBHAHO Oas
YOMUPBLOX HAUOMBUL NOWUPEHUL MeoPLU YUATHOPUUHUL O0O0A0HOK NPU HABAHMANCEHHT
30cepedacenoro padiaabHOM0 CUL0t0. Pe3ysvmamu He3HAUHO PIZHAMBCS MIHC CO0010 Auwe
0 MaAuUX HoOMepis uaenis Po3kaady, a makxox Oysxce O0o0Ope Y3200xcyrOmMbCs 3
nonepeorHiMu Pe3yLvbmamam, OMPUMAHUMU THULUMU HANIBAHAAIMULHUMU MeMOOaMU.

Katouoei caosa: yuaindpuuna o6040HKa, NPoyedypa Po3uenients, 8AACHT 4UCAQ, 30Ce-
pedicena pPadianvHa CuLd, 20408He 00HOPIOHE PIBHAHHSI, OONMOMINCHUU YACMKOBUL
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