O. M. Mulyava¹, M. M. Sheremeta², Yu. S. Trukhan^{2⊠}

BELONGING OF LAPLACE – STIELTJES-TYPE INTEGRALS TO CONVERGENCE Φ -CLASS

For a non-negative nondecreasing unbounded right-continuous function F on $[0,+\infty)$, an entire transcendental function $f(z)=\sum_{k=0}^\infty f_k z^k$ with $f_k\geq 0$ for all $k\geq 0$ and a non-negative on $[0,+\infty)$ function a(x) the integral $I(r)=\int\limits_0^\infty a(x)f(xr)dF(x)$ is called a Laplace – Stieltjes-type integral. Suppose that for a positive unbounded on $(-\infty,+\infty)$ function Φ the derivative Φ' is positive, continuously differentiable and increasing to $+\infty$. The conditions under which $\int\limits_{\tau_0}^\infty \frac{\Phi'(r)\ln I(r)}{\Phi^2(r)}dr<+\infty$ have been found.

Key words: Laplace – Stieltjes-type integral, convergence Φ -class.

Introduction. Let V be a class of non-negative nondecreasing unbounded right-continuous functions F on $[0,+\infty)$ and $f(z)=\sum_{k=0}^\infty f_k z^k$ be an entire transcendental function with $f_k\geq 0$ for all $k\geq 0$. Assume that a function $a(x)\geq 0$ on $[0,+\infty)$ is such that the Lebesgue – Stieltjes integral $\int\limits_0^K a(x)f(xr)\,dF(x)$ exists for every $r\geq 0$ and every $K\in [0,+\infty)$. The integral

$$I(r) = \int_{0}^{\infty} a(x)f(xr) dF(x), \qquad r \ge 0,$$
(1)

is called Laplace – Stieltjes-type integral and is direct generalization of the Laplace – Stieltjes integral

$$I^*(r) = \int_0^\infty a(x)e^{xr}dF(x). \tag{2}$$

Many authors studied the asymptotic properties of the Laplace – Stieltjes integrals I^* (see, for example, [2, 3, 4, 12–14]). The geometric properties of integrals (2) were studied in [7], and in [10] the conditions for belonging of I^* to the convergence Φ -class were found.

Denote by Ω a class of positive unbounded on $(-\infty, +\infty)$ functions Φ such that the derivatives Φ' are positive, continuously differentiable and increasing to $+\infty$ on $(-\infty, +\infty)$. Let φ denotes the inverse to Φ' function.

Let $\Psi(x) = x - \Phi(x)/\Phi'(x)$ be the function associated with Φ in the sense of Newton. Then Ψ is [6, p. 75] continuously differentiable and increasing to $+\infty$ on $(-\infty, +\infty)$.

Let $\Phi\in\Omega.$ We say that integral (1) belongs to the convergence Φ -class if

.

[⊠] yurkotrukhan@gmail.com

$$\int_{r_0}^{\infty} \frac{\Phi'(r) \ln I(r)}{\Phi^2(r)} dr < \infty. \tag{3}$$

As in [6, p. 21] we say that a positive on $[0,+\infty)$ function a(x) has regular variation with respect to $F \in V$ if there exist $b \ge 0$, $c \ge 0$ and h > 0 such

that
$$\int\limits_{x-b}^{x+c} a(t)\,dF(t) \geq ha(x)$$
 for all $x\geq b$.

For $I(r) = I^*(r)$, in [10] the following theorem is proved.

Theorem 1. Let $\Phi \in \Omega$, the function $\Phi'(r)/\Phi(r)$ is nondecreasing on $[r_0, +\infty)$ and

$$0 < h \le \frac{\Phi''(r)\Phi(r)}{(\Phi'(r))^2} \le H < +\infty.$$

$$\tag{4}$$

Suppose that $F \in V$, a(x) has regular variation with respect to F and

$$\int_{x_0}^{\infty} \frac{\ln F(x)}{x\Phi'(\Psi(\varphi(x)))} dx < \infty.$$
 (5)

In order that integral (2) belongs to the convergence Φ -class it is necessary and in the case where $v(x) := -(\ln a(x))'$ is continuous and increasing to $+\infty$ on $[x_0, +\infty)$ it is sufficient that

$$\int_{x_0}^{\infty} \frac{dx}{\Phi'\left(\frac{1}{x}\ln\frac{1}{a(x)}\right)} < +\infty. \tag{6}$$

The asymptotic properties of Laplace – Stieltjes-type integrals were studied in [8, 9, 11]. Here we will continue these studies and find the conditions under which integral (1) belongs to the convergence Φ -class.

1. Main result. For $r \ge 0$, let $\mu(r) = \mu(r, I) = \sup \{a(x)f(xr) : x \ge 0\}$ be the maximum of the integrand in (1) and as in [9], let $\nu(r) = \nu(r, I)$ be the central point of the maximum of the integrand. The following lemmas are proved in [9] and [10].

Lemma 1. Let $F \in V$, the function a has regular variation with respect to $F \in V$ and $\Gamma_f(r) := \frac{d \ln f(r)}{d \ln r} = O(r)$ as $r \to +\infty$. Then

$$\ln \mu(r) \leq (1 + o(1)) \ln I(r) + O(r)$$
 as $r \to \infty$.

Lemma 3. The central point $v(r) \nearrow +\infty$ as $r \to \infty$ and

$$\ln \mu(r) - \ln \mu(r_0) = \int\limits_{r_0}^r \frac{\Gamma_f(x \nu(x))}{x} dx.$$

Moreover, if the function a(x) is upper semi-continuous, then $v(r) = \max\{x \ge 0 : a(x)f(xr) = \mu(r)\}$ and $\mu(r) = a(v(r))f(rv(r))$ for each $r \in [0, +\infty)$.

Using these lemmas, at first we prove the following statements.

Proposition 1. Let $F \in V$, the function a has regular variation with respect to $F \in V$, $\tau < +\infty$ and $f'(x)/f(x) \nearrow K < +\infty$ as $x \to +\infty$. If $\Phi(x + O(1)) =$

$$=O(\Phi(x)) \ \ \text{as} \ \ x \to +\infty \ \ \text{and} \ \int\limits_{r_0}^{\infty} \frac{r\Phi'(r)}{\Phi^2(r)} dr < +\infty \ , \ \ then \ \ in \ \ order \ \ that \ \ integral \ (1)$$

belongs to the convergence Φ -class, it is necessary and sufficient that

$$\int_{r_0}^{\infty} \frac{\Phi'(r) \ln \mu(r)}{\Phi^2(r)} dr < +\infty.$$
 (7)

P r o o f. At first we remark that the condition $f'(x)/f(x) \nearrow K < +\infty$ as $x \to +\infty$ implies the condition $\Gamma_f(r) = O(r)$ as $r \to +\infty$. Therefore, by Lemma 1 for some $K_j > 0$, j = 1, 2, we have

$$\int\limits_{r_0}^{\infty} \frac{\Phi'(r) \ln \mu(r)}{\Phi^2(r)} \, dr \leq K_1 \int\limits_{r_0}^{\infty} \frac{\Phi'(r) \ln I(r)}{\Phi^2(r)} \, dr + K_2 \int\limits_{r_0}^{\infty} \frac{r \Phi'(r)}{\Phi^2(r)} \, dr \, ,$$

i.e. (3) implies (7).

On the other hand, by Lemma 2 in view of the condition $\Phi(x+O(1))==O(\Phi(x))$ as $x\to +\infty$ we have

$$\begin{split} \int\limits_{\tau_0}^{\infty} \frac{\Phi'(r) \ln I(r)}{\Phi^2(r)} dr &\leq K_3 + \int\limits_{\tau_0}^{\infty} \frac{\Phi'(r) \ln \mu(r+\tau+\epsilon)}{\Phi^2(r)} dr = \\ &= K_3 + \int\limits_{\tau_0^*}^{\infty} \frac{\Phi'(r-\tau-\epsilon) \ln \mu(r)}{\Phi^2(r-\tau-\epsilon)} dr \leq \\ &\leq K_3 + \int\limits_{\tau_0^*}^{\infty} \frac{\Phi'(r) \ln \mu(r)}{\Phi^2(r)} \bigg(\frac{\Phi(r)}{\Phi(r-\tau-\epsilon)} \bigg)^2 dr \leq \\ &\leq K_3 + K_4 \int\limits_{\tau_0^*}^{\infty} \frac{\Phi'(r) \ln \mu(r)}{\Phi^2(r)} dr \,, \end{split}$$

i.e. (7) implies (3).

Proposition 2. If $\Gamma_f(r) \asymp r$ as $r \to +\infty$, then (7) holds if and only if

$$\int_{r_0}^{\infty} \Phi_1(r) \, d\nu(r) < +\infty, \qquad \Phi_1(r) = \int_{r}^{\infty} \frac{dx}{\Phi(x)} \,. \tag{8}$$

Proof. By Lemma 3

$$\begin{split} \int\limits_{r_0}^{\infty} \frac{\Phi'(r) \ln \mu(r)}{\Phi^2(r)} \, dr &= -\int\limits_{r_0}^{\infty} \ln \mu(r) d\left(\frac{1}{\Phi(r)}\right) = \\ &= -\frac{\ln \mu(r)}{\Phi(r)}\bigg|_{r_0}^{\infty} \, + \int\limits_{r_0}^{\infty} \frac{d \ln \mu(r)}{\Phi(r)} = -\frac{\ln \mu(r)}{\Phi(r)}\bigg|_{r_0}^{\infty} \, + \int\limits_{r_0}^{\infty} \frac{\Gamma_f(r \nu(r))}{r \Phi(r)} \, dr \, . \end{split}$$

If (7) holds, then

$$0 < \frac{\ln \mu(r)}{\Phi(r)} \le \int_{r}^{\infty} \frac{\Phi'(t) \ln \mu(t)}{\Phi^{2}(t)} dt \to 0, \qquad r \to +\infty.$$

Thus, (7) holds if and only if

$$\int_{r_0}^{\infty} \frac{\Gamma_f(r \nu(r))}{r \Phi(r)} dr < +\infty.$$
(9)

Since $\Gamma_f(r) \asymp r$, i.e. $0 < c_1 \le \Gamma_f(r)/r \le c_2 < +\infty$, we have that (9) holds if and only if

$$\int_{r_0}^{\infty} \frac{v(r)}{\Phi(r)} dr < +\infty. \tag{10}$$

On the other hand,

$$\int\limits_{\tau_0}^{\infty} \frac{\mathrm{v}(r)}{\Phi(r)} \, dr = - \int\limits_{\tau_0}^{\infty} \mathrm{v}(r) \, d\Phi_1(r) = - \mathrm{v}(r) \Phi_1(r) \big|_{\tau_0}^{\infty} \, + \int\limits_{\tau_0}^{\infty} \Phi_1(r) \, d\mathrm{v}(r) \, .$$

From (10) it follows that

$$v(r)\Phi_1(r) = v(r)\int_{r}^{\infty} \frac{dt}{\Phi(t)} \le \int_{r}^{\infty} \frac{v(t)}{\Phi(t)} dt \to 0, \qquad r \to +\infty.$$

Therefore, (8) holds if and only if (10) holds.

Now we suppose that the function

$$w(x) = \frac{1}{x} \Gamma_f^{-1} \left(\frac{d \ln(1/a(x))}{d \ln x} \right)$$

is continuous and increasing to $+\infty$ on $[x_0, +\infty)$. Then v(r) is a unique point of the maximum of the function $\ln a(x) + \ln f(rx)$ and the function v(r) is continuous and increasing to $+\infty$ on $[r_0, +\infty)$.

To obtain an analog of Theorem 1, we also need the following lemma (see [1] and [5, p. 161]).

Lemma 4. If c(x) and b(x) are continuous on $(0,+\infty)$ functions, $-\infty \le C < < c(x) < B \le +\infty$, $b(x) \searrow b \ge 0$ as $x \to +\infty$ and for a positive function φ on (C,B) the function $\varphi^{1/p}$, p > 1, is convex on (C,B), then

$$\int\limits_0^y b(x) \varphi \bigg(\frac{1}{x} \int\limits_0^x c(t) dt \bigg) dx \leq \bigg(\frac{p}{p-1} \bigg)^p \int\limits_0^y b(x) \varphi(c(x)) \, dx, \qquad 0 \leq y \leq +\infty \, .$$

Theorem 2. Let $\Phi \in \Omega$, $\Phi(x + O(1)) = O(\Phi(x))$, $\Phi(x) = O(\Phi'(x))$ as $x \to +\infty$ and $\int_{r_0}^{\infty} \frac{r\Phi'(r)}{\Phi^2(r)} dr < +\infty$. Suppose that $F \in V$, the function a(x) has regular variation with respect to F, $f'(x)/f(x) \nearrow K < +\infty$ as $x \to +\infty$, $\frac{1}{x} \ln \frac{1}{a(x)} \le \frac{1}{x} f^{-1} \left(\frac{1}{a(x)} \right) + c_1$ and $x - c_2 \le \Gamma_f(x) \le c_3 x$ for some $c_j > 0$ and all $x \ge x_0$. Also suppose that $\tau < +\infty$ and the function w is continuous and increasing to $+\infty$ on $[x_0, +\infty)$.

In order that integral (1) belongs to the convergence $\,\Phi$ -class it is necessary and sufficient that

$$\int_{r_0}^{\infty} \Phi_1\left(\frac{1}{x}f^{-1}\left(\frac{1}{a(x)}\right)\right) dx < +\infty, \qquad \Phi_1(r) = \int_{r}^{\infty} \frac{dx}{\Phi(x)}. \tag{11}$$

 $\begin{array}{lll} & \text{P r o o f. Since } & a\big(v(r)\big)f\big(rv(r)\big) = \mu(r) \geq 1 & \text{for } r \geq r_0\,, \text{ we have } r \geq r_0 \\ & \geq \frac{1}{v(r)}f^{-1}\bigg(\frac{1}{a\big(v(r)\big)}\bigg) \text{ and } & \Phi_1(r) \leq \Phi_1\bigg(\frac{1}{v(r)}f^{-1}\bigg(\frac{1}{a\big(v(r)\big)}\bigg)\bigg). \end{array} \\ & \text{Therefore, (8) holds if } \\ & \int\limits_{r_0}^{\infty}\Phi_1\bigg(\frac{1}{v(r)}f^{-1}\bigg(\frac{1}{a\big(v(r)\big)}\bigg)\bigg)dv(r) < +\infty\,, \end{array}$

i.e. if (11) holds. By Propositions 1 and 2, (11) implies (3). The sufficiency of condition (11) is proved.

Now we prove the necessity of condition (11). Since

$$\left(\ln a(x) + \ln f(xr)\right)' = \frac{1}{x} \left(\frac{d \ln a(x)}{d \ln x} + \Gamma_f(xr)\right) = 0$$

for r = w(x) and w is continuous and increasing to $+\infty$ function on $[x_0, +\infty)$,

we obtain $r=w({\bf v}(r))$ and from (8) we get $\int\limits_{r_0}^{\infty}\Phi_1\big(w({\bf v}(r))\big)\,d{\bf v}(r)<+\infty$, i.e.

$$\int_{\tau_0}^{\infty} \Phi_1(w(x)) dx < +\infty. \tag{12}$$

We choose c(x) = w(x), b(x) = 1 and $\varphi(x) = \Phi_1(x)$. Then

$$\begin{split} \left(\phi^{1/p}(x)\right)'' &= \frac{1}{p} \left(\Phi_1(x)\right)^{(1/p)-2} \left(-\frac{p-1}{p} \left(\Phi_1'(x)\right)^2 + \Phi_1(x) \Phi_1''(x)\right) = \\ &= \frac{\left(\Phi_1(x)\right)^{(1/p)-2}}{p (\Phi(x))^2} \left(\Phi_1(x) \Phi'(x) - \frac{p-1}{p}\right) \end{split}$$

and in view of the conditions $\Phi(x+O(1))=O(\Phi(x))$ and $\Phi(x)=O(\Phi'(x))$ as $x\to +\infty$ we have

$$\Phi_1(x) \Phi'(x) \ge \Phi'(x) \int_x^{x+1} \frac{dt}{\Phi(t)} \ge \frac{\Phi'(x)}{\Phi(x+1)} \ge \eta > 0.$$

Therefore, the function $\Phi_1^{1/p}$ is convex for p>1 such that $\eta-\frac{p}{p-1}\geq 0$ and by Lemma 4 in view of (12) we have

$$\int_{x_0}^{\infty} \Phi_1 \left(\frac{1}{x} \int_{x_0}^{x} w(t) \, dt \right) dx \le \left(\frac{p}{p-1} \right)^p \int_{x_0}^{+\infty} \Phi_1 (w(x)) \, dx < +\infty \,. \tag{13}$$

The condition $\Gamma_f(x) \ge x - c_2$ implies $\Gamma_f^{-1}(x) \le x + c_2$ and therefore

$$\begin{split} \int\limits_{x_0}^x w(t) \, dt &= \int\limits_{x_0}^x \frac{1}{t} \, \Gamma_f^{-1} \bigg(\frac{d \ln \big(1/a(t) \big)}{d \ln t} \bigg) dt \leq \int\limits_{x_0}^x \bigg(\frac{d \ln \big(1/a(t) \big)}{dt} + c_2 \bigg) dt = \\ &= \ln \frac{1}{a(x)} - \ln \frac{1}{a(x_0)} + c_2 (\ln x - \ln x_0) \leq \ln \frac{1}{a(x)} + c_2 x \; , \end{split}$$

i.e. in view of the nonincreasing the function $\boldsymbol{\Phi}_1$ and of the condition

$$\frac{1}{x} \ln \frac{1}{a(x)} \le \frac{1}{x} f^{-1} \left(\frac{1}{a(x)} \right) + c_1,$$

we get

$$\int_{x_0}^{\infty} \Phi_1 \left(\frac{1}{x} \int_{x_0}^{x} w(t) dt \right) dx \ge \int_{x_0}^{\infty} \Phi_1 \left(\frac{1}{x} \ln \frac{1}{a(x)} + c_2 \right) dx \ge$$

$$\ge \int_{x_0}^{\infty} \Phi_1 \left(\frac{1}{x} f^{-1} \left(\frac{1}{a(x)} \right) + c_1 + c_2 \right) dx \ge$$

$$\ge c_4 \int_{x_0}^{\infty} \Phi_1 \left(\frac{1}{x} f^{-1} \left(\frac{1}{a(x)} \right) \right) dx , \tag{14}$$

since in view of the condition $\Phi(x + O(1)) = O(\Phi(x))$ as $x \to +\infty$

$$\Phi_1(x + c_1 + c_2) = \int_{x + c_1 + c_2}^{\infty} \frac{dt}{\Phi(t)} = \int_{x}^{\infty} \frac{dt}{\Phi(t - (c_1 + c_2))} \ge c_4 \int_{x}^{\infty} \frac{dt}{\Phi(t)} = c_4 \Phi_1(x).$$

From (13) and (14) we obtain (11). The proof of Theorem 2 is complete.

2. Addition. Here we suppose that

$$c_1 p(r) p(x) \le \ln f(xr) \le c_2 p(r) p(x), \tag{15}$$

where $0 < c_1 \le c_2 < +\infty$ and function p is a continuously differentiable and increasing to $+\infty$ on $[0,+\infty)$, p(0)=0. Then

$$\int\limits_0^\infty a(x) \exp\left\{c_1 p(r) p(x)\right\} dF(x) \leq I(r) \leq \int\limits_0^\infty a(x) \exp\left\{c_2 p(r) p(x)\right\} dF(x) \,.$$

Therefore.

$$\begin{split} I(p^{-1}(r/c_2)) &\leq \int\limits_0^\infty a(x) \exp\left\{rp(x)\right\} dF(x) = \\ &= I^{**}(r) := \int\limits_0^\infty a(p^{-1}(x)) \exp\left\{rx\right\} dF(p^{-1}(x)) \leq I(p^{-1}(r/c_1)) \,. \end{split} \tag{16}$$

We apply Theorem 1 to the integral $I^{**}(r)$. In the proof of Theorem 1 in [2], the conditions imposed on Φ are used to prove the necessity and sufficiency of condition (6). Condition for regular variation of a function a(x) with respect to F(x) is used only in proof of the necessity of condition (6). In the proof of the sufficiency of condition (6) only condition (5) and a continuous increase of the function $v(x) := -(\ln a(x))'$ are used. Therefore, Theorem 1 implies the following assertion.

Proposition 3. Let $F \in V$ and the function $\Phi \in \Omega$ satisfies the conditions of Theorem 1. If the function $a(p^{-1}(x))$ has regular variation with respect to $F(p^{-1}(x))$ and

$$\int_{r_0}^{\infty} \frac{\Phi'(r) \ln I^{**}(r)}{\Phi^2(r)} dr < \infty , \qquad (17)$$

then

$$\int_{x_0}^{\infty} \frac{dx}{\Phi'\left(\frac{1}{x}\ln\frac{1}{a(p^{-1}(x))}\right)} < +\infty.$$

$$\tag{18}$$

If the function $-(\ln a(p^{-1}(x)))'$ is continuous and increasing to $+\infty$ on $[x_0, +\infty)$ and

$$\int_{x_0}^{\infty} \frac{\ln F(p^{-1}(x))}{x \Phi'(\Psi(\varphi(x)))} dx < \infty , \qquad (19)$$

then (18) implies (17).

It is easy to check that the function $a(p^{-1}(x))$ has regular variation with respect to $F(p^{-1}(x))$ if a(x) has regular variation with respect to F(x), the function $-(\ln a(p^{-1}(x)))'$ is continuous and increasing if $-(\ln a(x))'/p'(x)$ is continuous and increasing, and (18) holds if and only if

$$\int_{x_0}^{\infty} \frac{p'(x) dx}{\Phi'\left(\frac{1}{p(x)} \ln \frac{1}{a(x)}\right)} < +\infty.$$
(20)

Therefore, in view of (16) the following theorem is true.

Theorem 3. Let $F \in V$, the function $\Phi \in \Omega$ satisfies the conditions of Theorem 1 and condition (15) holds. If the function a(x) has regular variation with respect to F(x) and

$$\int\limits_{r_0}^{\infty} \frac{\Phi'(r) \ln I(p^{-1}(r/c_1))}{\Phi^2(r)} dr < \infty\,,$$

then (20) holds. If the function $-(\ln a(x))'/p'(x)$ is continuous and increasing to $+\infty$ on $[x_0, +\infty)$ and the function F satisfies condition (19), then (20) implies

$$\int\limits_{r_0}^{\infty} \frac{\Phi'(r) \ln I \big(p^{-1}(r/c_2)\big)}{\Phi^2(r)} \, dr < \infty \, .$$

- 1. $\it Мулява$ О. $\it M$. Інтегральний аналог одного узагальнення нерівності Гарді та його застосування // Укр. мат. журн. - 2006. - 58, № 9. - С. 1271-1275.
 - https://umj.imath.kiev.ua/index.php/umj/article/view/3528.

Translation: Mulyava O. M. Integral analog of one generalization of the Hardy inequality and its applications // Ukr. Math. J. - 2006. - 58, No. 9. - P. 1441-1447. - https://doi.org/10.1007/s11253-006-0143-0.

- 2. Kong Y. Y., Huo Y. Y. On generalized orders and types of Laplace-Stieltjes transforms analytic in the right half-plane // Acta Mathematica Sinica (Chinese Ser.). -2016. - 59, No. 1. - P. 91-98. - https://doi.org/10.12386/A2016sxxb0009.
- 3. Kuryliak A. O., Skaskiv O. B., Zikrach D. Yu. On Borel's type relation for the Laplace — Stieltjes integrals // Мат. студії. — 2014. — **42**, No 2. — P. 134—142. 4. *Luo X., Liu X. Z., Kong Y. Y.* The regular growth of Laplace — Stieltjes transforms
- // J. of Math. (China). 2014. 34, No. 6. P. 1181-1186.
- 5. Mulyava O. M., Sheremeta M. M. Convergence classes of analytic functions. Kyiv: Lira-K, 2020. – 196 p. 6. Sheremeta M. M. Asymptotical behavior of Laplace-Stieltjes integrals. – Lviv:
- VNTL Publ., 2010. 210 p.
- 7. Sheremeta M. M. Geometric properties of Laplace Stieltjes integrals // Mat. meтоди та фіз.-мех. поля. – 2022. – **65**, No. 3-4. – P. 29–43. https://doi.org/10.15407/mmpmf2022.65.3-4.29-43.
- 8. Sheremeta M. M. On the growth of series in systems of functions and Laplace-Stieltjes type integrals // Мат. студії. - 2021. - **55**, No. 2. - Р. 123-131. https://doi.org/10.30970/ms.55.2.124-131.
- 9. Sheremeta M. M. Properties of Laplace Stieltjes-type integrals // Мат. студії. -2023. – **60**, No. 2. – P. 115–131. – https://doi.org/10.30970/ms.60.2.115-131.
- 10. Sheremeta M. M., Mulyava O. M. Belonging of Laplace-Stieltjes integrals to convergence classes // Укр. мат. вісн. - 2021. - 18, No. 2. - P. 255-278.

Translation: Sheremeta M. M., Mulyava O. M. Belonging of Laplace-Stieltjes integrals to convergence classes // J. Math. Sci. – 2021. – 258, No. 3. – P. 346–364. – https://doi.org/10.1007/s10958-021-05552-7.

- 11. Sheremeta M. Relative growth of series in systems of functions and Laplace Stieltjes-type integrals // Axioms. 2021. 10, No. 2. Article 43. https://doi.org/10.3390/axioms10020043.
- 12. Xu H. Y., Kong Y. Y. Entire functions represented by Laplace Stieltjes transforms concerning the approximation and generalized order // Acta Math. Sci. 2021. 41, No. 2. P. 646–656. https://doi.org/10.1007/s10473-021-0222-1.
- 13. Xu H. Y., Kong Y. Y. The approximation of Laplace-Stieltjes transformations with finite order on the left half plane // C. R. Acad. Sci. Paris, Ser. I. = 2018. = 356, No. 1. = P. 63-76. = https://doi.org/10.1016/j.crma.2017.11.011.
- 14. Xu H. Y., Xuan Z. X. Some inequalities on the convergent abscissas of Laplace Stieltjes transforms // J. Math. Inequal. 2023. 17, No. 1. P. 163–183. https://doi.org/10.7153/jmi-2023-17-12.

НАЛЕЖНІСТЬ ІНТЕГРАЛІВ ТИПУ ЛАПЛАСА – СТІЛТЬ ϵ СА ДО Φ -КЛАСУ ЗБІЖНОСТІ

Для невід'ємної неспадної необмеженої неперервної справа на $[0,+\infty)$ функції F, цілої трансцендентної функції $f(z)=\sum_{k=0}^\infty f_k z^k$ з $f_k\geq 0$ для всіх $k\geq 0$ і невід'ємної на $[0,+\infty)$ функції a(x) інтеграл $I(r)=\int\limits_0^\infty a(x)f(xr)dF(x)$ називається інтегралом типу Лапласа— Стілтьєса. Припустимо, що для додатної необмеженої на $(-\infty,+\infty)$ функції Ф похідна Ф' є додатною, неперервно диференційовною і зростає до $+\infty$. Знайдено умови, за яких $\int\limits_{r_0}^\infty \frac{\Phi'(r)\ln I(r)}{\Phi^2(r)}dr<+\infty$.

Ключові слова: інтеграл типу Лапласа – Стілтьєса, Ф -клас збіжності.

Received

² Ivan Franko National University of Lviv, Lviv

23.10.23

¹ National University of Food Technologies, Kyiv,