МЕТАЛЛИЧЕСКИЕ ПОВЕРХНОСТИ И ПЛЁНКИ

PACS numbers: 05.40.Ca, 68.35.Ct, 68.55.J-, 68.55.jm, 79.20.Rf, 81.16.Rf

Формування стаціонарних поверхневих структур у процесах іонного розпорошення

I. О. Лисенко, В. О. Харченко, С. В. Кохан, А. В. Дворниченко^{*}

Інститут прикладної фізики НАН України, вул. Петропавловська, 58, 40000 Суми, Україна *Сумський державний університет, вул. Римського-Корсакова, 2, 40007 Суми, Україна

Виконано дослідження процесів утворення стаціонарних поверхневих структур при іонному розпорошенні матеріалів. У межах узагальнення анізотропної моделі Бредлі–Харпера розглядається поведінка системи, що описується стохастичним рівнянням Курамото-Сівашинського з мультиплікативним шумом, обумовленим флуктуаціями кута розпорошення. Аналізується динаміка утворення стаціонарних поверхневих структур залежно від основних параметрів системи, які зводяться до кута падіння іонів, що налітають, та властивостей мішені (глибини проникання іона в мішень). Встановлено показники зростання поверхні та її шерсткості. Виявлено вплив внутрішнього мультиплікативного шуму та проаналізовано динаміку структурних дефектів.

Выполнены исследования процессов образования стационарных поверхностных структур при ионном распылении материалов. В рамках обобщения анизотропной модели Бредли–Харпера рассматривается поведение системы, описываемой стохастическим уравнением Курамото– Сивашинского с мультипликативным шумом, обусловленным флуктуациями угла распыления. Анализируется динамика образования стационарных поверхностных структур в зависимости от основных параметров системы, сводящихся к углу падения налетающих ионов и свойствам мишени (глубине проникновения иона в мишень). Установлены показатели роста поверхности и её шероховатости. Исследовано влияние внутреннего мультипликативного шума и проанализирована динамика структурных дефектов.

The formation of stationary surface structures during ion sputtering of materials is discussed. The behaviour of the system described by the stochastic Kuramoto–Sivashinsky equation with multiplicative noise caused by fluctu-

763

ations in the incidence angle is studied, using the anisotropic Bradley– Harper model. The dynamics of formation of stationary surface structures depending on the basic system parameters such as the angle of incidence and the properties of the target (the penetration depth of the ion into the target) is considered. The parameters of growth and roughness of the sputtered surface are determined. An influence of the internal multiplicative noise is studied. The dynamics of structural defects is analyzed.

Ключові слова: іонне розпорошення, морфологія поверхні, поверхневі структури, шерсткість поверхні.

(Отримано 1 березня 2013 р.)

1. ВСТУП

Дослідження процесів зміни морфології поверхонь матеріалів, що опромінюються важкими іонами (Kr^+ , Ar^+ , Xe^+) з енергіями ~ 0,1-100 кеВ в інтервалі температур 250-500 К, є актуальною задачею в області статистичної фізики, сучасного матеріалознавства, мікрота наноелектроніки [1, 2]. Окрім того, це дозволяє встановити зв'язок між процесами, які відбуваються в приповерхневих шарах матеріалів, підданих опроміненню, та відповідними процесами мікроструктурних змін в об'ємі впродовж та після проходження каскадів перерозподілу енергії. За останні роки було встановлено низку механізмів, що контролюють процеси самоорганізації поверхні при іонному розпорошенні [1, 3–9] та виявлено основні керувальні параметри такої самоорганізації, які зводяться до потоку іонного пучка, енергії іонів, що налітають, кута розпорошення та температури. Експериментально та числовим моделюванням було встановлено, що залежно від енергії падаючих іонів на поверхні мішені внаслідок розпорошення можуть формуватися хвильові (стаціонарні хвилі з певною орієнтацією) структури (при енергіях іонів 10²– 10⁵ eB) та ізотропні структури, відомі як наноточки й нанодірки (при енергіях іонів до 10^2 eB). Формування таких структур було досліджено на металічних поверхнях та напівпровідниках [10-16]. Поверхневі утворення характеризуються варіацією поля висоти в інтервалі 0,1–1 мкм, тоді як характерний розмір структур вимірюється від десятків ангстремів [16] до кількох сотень нанометрів. Основні теоретичні дослідження зміни морфології поверхні при іонному розпорошенні [17] ґрунтуються на моделі Кардара-Парізі-Занга-Вілліана. Її узагальнення виконано Курамото і Сівашинським та застосовано до процесів іонного розпорошення Бредлі та Харпером [3], Цуерно [4], Барабаші, Макеєвим і Дротаром [5, 6]. Було виявлено головні детерміністичні механізми, що спричиняють морфологічні нестійкості на різних стадіях еволюції системи. Статистична природа поверхневих ефектів досліджувалася введенням у розгляд флуктуацій поля висоти поверхні у вигляді адитивного Ланжевенівського джерела з інтенсивністю, пропорційною потоку частинок [18]. Картина впливу розкиду бомбардуючих іонів за кутом опромінення на зміну морфології поверхні досліджувалася в роботі [31]. Тут було встановлено основні характеристики поверхневих структур та виявлено вплив інтенсивності флуктуацій кута розпорошення та радіуса їх кореляції на зміну морфології поверхні. Однак особливості формування стаціонарних структур та гладкої поверхні при процесах іонного розпорошення не було вивчено повною мірою. Саме розв'язанню цієї задачі присвячено дану роботу.

У межах стохастичного узагальнення анізотропної моделі Бредлі–Харпера нами розглядається поведінка системи, що описується стохастичним рівнянням Курамото–Сівашинського з мультиплікативним шумом, обумовленим флуктуаціями кута розпорошення іонів. Аналізується динаміка утворення стаціонарних поверхневих структур у нелінійній моделі; встановлюються показники шерсткості поверхні. Буде виявлено залежність типу структур, їх морфології та кількості дефектів від інтенсивності внутрішнього мультиплікативного шуму.

Роботу побудовано наступним чином. У розділі 2 наводиться модель системи для опису процесів іонного розпорошення поверхонь, узагальнена введенням флуктуації кута розпорошення та чинника, що відповідає за релаксацію опромінюваної поверхні за рахунок перерозподілу вибитих атомів на поверхні мішені. У розділі 3 виконано лінійний аналіз на стійкість та встановлено фазову діаграму, що визначає області реалізації стійких поверхневих структур при розпорошенні. У розділі 4 представлено результати з числового моделювання процесів іонного розпорошення. Визначено вплив на зміну морфології поверхні параметрів мішені (глибини проникнення іона всередину матеріалу), кута розпорошення та інтенсивності його флуктуацій. П'ятий розділ присвячено дослідженню еволюції структурних дефектів. Тут проаналізовано залежність густини ймовірності розподілу кількості структур за розміром від інтенсивності шуму. Досліджено вплив флуктуацій на динаміку дефектів. Висновки роботи подано в розділі 6.

2. МОДЕЛЬ ЕВОЛЮЦІЇ ВИСОТИ ПОВЕРХНІ ПРИ ІОННОМУ РОЗПОРОШЕННІ

У межах загального підходу розглянемо *d*-вимірний субстрат так, що кожна точка на ньому характеризується радіус-вектором **r**. У момент часу *t* висота поверхні описується полем $z = h(\mathbf{r}, t)$. За умови, що морфологія поверхні змінюється під час розпорошення іонами, скористаємося положеннями моделі Бредлі–Харпера [3].

Розглянемо систему, в якій потік іонів лежить у площині x-z з

кутом падіння θ , виміряним від нормалі нееродованої поверхні. Згідно із стандартною схемою припустимо, що одержана поверхнею (в точці О) середня енергія при бомбардуванні іоном у точці Р твердого тіла задається Ґауссовим розподілом [3] $E(\mathbf{r}) = \{\varepsilon/[(2\pi)^{3/2}\sigma\mu^2]\} \times \exp[-z^2/(2\sigma^2) - (x^2 + y^2)/(2\mu^2)]$, який параметризується кінетичною енергією бомбардувального іона є та шириною розподілу паралельно (σ) та перпендикулярно потоку (μ). Параметри σ і μ залежать від фізичних властивостей матеріалу мішені і задаються енергією падаючого іонного потоку.

Швидкість ерозії на поверхні в точці О визначена за формулою $v = p \int_{R} d\mathbf{r} \Phi(\mathbf{r}) E(\mathbf{r})$, де сума береться за розподілом енергій по всім іонам, а $\Phi(\mathbf{r})$ та p — відповідні корекції для локального нахилу, залежного від однорідного потоку J та коефіцієнта пропорційності [19]. Узагальнене рівняння для локального потоку на поверхні з ненульовою локальною кривиною запишемо у вигляді [20]: $\Phi(x, y, h) = J \cos[\arctan(\{(\nabla_x h)^2 + (\nabla_y h)^2\}^{1/2})]$. Динаміка висоти поверхні визначається співвідношенням $\partial_t h \approx -v(\theta - \nabla_x h, \nabla_x^2 h, \nabla_y^2 h)$ [3–5, 21, 22], де $0 < \theta < \pi/2$. Розвиваючи цей вираз у ряд і залишаючи лише лінійні складові, одержуємо

$$\partial_t h \approx -v_0 + \gamma \nabla_x h + v_x \nabla_x^2 h + v_y \nabla_y^2 h$$
.

При цьому анізотропія пов'язується з різними значеннями коефіцієнтів розвинення вздовж напрямків x та y відповідно. Зазначимо, що v_0 задає швидкість ерозії на поверхні, $\gamma = \gamma(\theta)$ — стала, що визначає ерозію, залежну від нахилу потоку бомбування, а $v_x(\theta), v_y(\theta)$ — ефективні коефіцієнти поверхневого натягу, індуковані процесами ерозії вздовж напрямків x та y відповідно.

Якщо вважати, що поверхневий потік створюється різницею хімічних потенціалів, то права частина рівняння еволюції поля h має включати доданок ($-\nabla \mathbf{j}_s$), де $\mathbf{j}_s = K\nabla(\nabla^2 h)$ — поверхневий потік, K > 0— залежна від температури константа поверхневої дифузії. У загальному випадку потік не є стаціонарним, що може призводити до процесів відбору структур на ранніх стадіях еволюції системи [23– 26]. Проте у даній роботі ми будемо використовувати припущення про його стаціонарність. При термічно активованій поверхневій дифузії маємо визначення $K = D_s k \rho / (n^2 T)$, де $D_s = D_0 \exp(-E_a / T)$ коефіцієнт самодифузії (E_a — енергія активації для поверхневої дифузії), k — вільна енергія поверхні, ρ — поверхнева густина дифундуючих атомів, n — кількість атомів в одиниці об'єму аморфного тіла. Описана складова в динамічному рівнянні для h має певний внесок в області підвищених температур.

Припускаючи, що зміна поверхні відбувається плавно, при роз-

виненні в ряд можемо знехтувати просторовими похідними висоти *h* третього і вище порядків. Враховуючи нелінійні складові розкладу, одержуємо рівняння для величини *h'* = *h* + *v*₀*t* у вигляді [3, 4]

$$\frac{\partial h}{\partial t} = \gamma \frac{\partial h}{\partial x} + v_x \frac{\partial^2 h}{\partial x^2} + v_y \frac{\partial^2 h}{\partial y^2} + \frac{\lambda_x}{2} \left(\frac{\partial h}{\partial x}\right)^2 + \frac{\lambda_y}{2} \left(\frac{\partial h}{\partial y}\right)^2 - K \nabla^4 h, \qquad (1)$$

де для зручності штрих опускаємо. Невідомі коефіцієнти в рівнянні (1) визначені в роботі [4] наступним чином

$$\gamma = F_0 s \{ a_{\sigma}^2 a_{\mu}^2 c^2 (a_{\sigma}^2 - 1) - a_{\sigma}^4 s^2 \} / f^2 , \qquad (2)$$

$$v_{x} = F_{0}a_{\sigma}^{2}\{2a_{\sigma}^{4}s^{4} - a_{\sigma}^{4}a_{\mu}^{2}c^{2}s^{2} + a_{\sigma}^{2}a_{\mu}^{2}c^{2}s^{2} - a_{\mu}^{4}c^{4}\}/(2f^{3}), \qquad (3)$$

$$v_y = -F_0 c a_\sigma^2 / (2f) , \qquad (4)$$

$$\lambda_x = F_0 \frac{c}{2f^4} \{ a_{\sigma}^8 a_{\mu}^2 s^4 (3 + 2c^2) + 4a_{\sigma}^6 a_{\mu}^4 c^4 s^2 - a_{\sigma}^4 a_{\mu}^6 c^4 (1 + 2s^2) - (5) \}$$

$$-f^{2}(2a_{\sigma}^{4}s^{2}-a_{\sigma}^{2}a_{\mu}^{2}(1+2s^{2}))-a_{\sigma}^{5}a_{\mu}^{4}c^{2}s^{2}-f^{4}\},$$

$$\lambda_{y} = F_{0}c\{a_{\sigma}^{4}s^{2} + a_{\sigma}^{2}a_{\mu}^{2}c^{2} - a_{\sigma}^{4}a_{\mu}^{2}c^{2} - f^{2}\}/(2f^{2}).$$
(6)

У вище наведених виразах використано позначення

$$F_0 \equiv \frac{J\varepsilon pa}{\sigma\mu\sqrt{2\pi f}} \exp\left(\frac{-a_\sigma^2 a_\mu^2 c^2}{2f}\right),\tag{7}$$

$$a_{\sigma} \equiv a / \sigma, a_{\mu} \equiv a / \mu, c \equiv \cos(\theta), s \equiv \sin(\theta), f \equiv a_{\sigma}^2 s^2 + a_{\mu}^2 c^2.$$
 (8)

Всі керувальні параметри можна знайти, якщо відомі глибина проникнення іонів *a*, кут падіння потоку θ, потік *J* і кінетична енергія іонів є. Раніше встановлено [20], що глибина проникнення залежить від властивостей матеріалу мішені та енергії бомбардувального іона: $a \cong \varepsilon^{2m}/nC_m$, де C_m — константа, залежна від потенціалу міжатомної взаємодії [27], $m \cong 1/2$ для енергій від 1 до 100 кеВ. Рівняння (1) відоме як детерміністичне рівняння Курамото-Сівашинського [28].

Для опису еволюції поверхні в реальних умовах варто ввести в розгляд флуктуації поля висоти поверхні. Найпростішим випадком є врахування адитивного Ланжевенівського джерела з пропорційною потоку частинок інтенсивністю. У такому випадку рівняння висоти поверхні (1) узагальнюється введенням адитивного шуму. Дослідження такої системи з Ґауссовим білим шумом виконувалося в роботі [18]. Авторами були встановлені фазові діаграми при варіюванні параметрів a_{σ} , a_{μ} та кута іонного розпорошення θ , що ілюструють можливі типи поверхневих структур; досліджено вплив адитивного шуму на процеси росту поверхні та її шерсткість. Також було показано, що по закінченню процесів формування та коалесценції кількість поверхневих структур залишається постійною величиною з часом. У цей же час морфологія поверхні постійно змінюється, що не дозволяє одержати режим розпорошення, коли поверхневі структури будуть стаціонарними. У роботах [29, 30] авторами було застосовано рівняння (1) з білим шумом для дослідження процесів розпорошення кремнію іонами Ar. Було одержано фазову діаграму (кут падіння налітаючого іона, енергія іона), що ілюструє можливі типи структур на поверхні кремнію. Узагальнення рівняння (1) з урахуванням того, що бомбардувальні іони досягають поверхні випадковим чином, тобто потрапляють у різні моменти часу в різні місця, зроблено в роботах [31, 32]. У межах такого підходу іон може досягати поверхні під випадковим кутом, величина якого мало відрізняється від заданого кута падіння потоку θ_0 . Для опису такої моделі, переписуючи рівняння еволюції висоти (1) у вигляді $\partial_t h = \phi(\theta, \nabla_a h)$, де φ — детерміністична сила, та вводячи малі відхилення δθ від заданого кута θ_0 , можна розкласти в ряд функцію $\phi(\theta, \nabla_a h)$ в околі θ_0 . Отже, для правої частини виразу одержуємо: $\phi = \phi_0 + (\partial f / \partial \theta)_{\theta = \theta_0} \delta \theta$. Припустимо, що $\delta\theta$ — випадкове поле, тобто $\delta\theta = \delta\theta(\mathbf{r}, t)$. Нехай випадковий компонент δθ має Ґауссовскі властивості, тобто

$$\langle \delta \theta(\mathbf{r},t) \rangle = 0, \ \langle \delta \theta(\mathbf{r},t) \delta \theta(\mathbf{r}',t') \rangle = 2D\Sigma C_r(\mathbf{r}-\mathbf{r}')C_t(t-t'),$$
(9)

де D — параметр, який залежить від характеристик потоку та мішені, а саме є, σ , μ , a, p; Σ — інтенсивність шуму, яка задає дисперсію $\delta\theta$; C_r і C_t — просторова та часова кореляційні функції шуму $\delta\theta$. При подальшому розгляді будемо вважати, що $\delta\theta$ — квазібілий шум у часі з $C_t(t-t') \rightarrow \delta(t-t')$ та кольоровий в просторі з корелятором $C_r(\mathbf{r}-\mathbf{r'}) = (2\pi r_c^2)^{-d/2} \exp[-(\mathbf{r}-\mathbf{r'})^2/(2r_c^2)]$, де r_c — радіус кореляції флуктуацій. При $\Sigma = 0$ флуктуації напрямків потоку (кута падіння) зникають, і реалізується чисто детерміністичний випадок.

Отже, розкладаючи в ряд коефіцієнти при просторових похідних у рівнянні (1), одержуємо рівняння Ланжевена у вигляді

$$\partial_{t}h = \gamma_{0}\nabla_{x}h + \nu_{\alpha 0}\nabla_{\alpha \alpha}^{2}h + \frac{\lambda_{\alpha 0}}{2}(\nabla_{\alpha}h)^{2} - K\nabla^{2}(\nabla^{2}h) + \left[\gamma_{1}\nabla_{x}h + \nu_{\alpha 1}\nabla_{\alpha \alpha}^{2}h + \frac{\lambda_{\alpha 1}}{2}(\nabla_{\alpha}h)^{2}\right]\delta\theta,$$
(10)

$$\begin{split} & \exists e \quad \gamma_0 = \gamma(\theta_0), \quad \nu_{\alpha 0} = \nu_{\alpha}(\theta_0), \quad \lambda_{\alpha 0} = \lambda_{\alpha}(\theta_0), \quad \gamma_1 = \partial_{\theta} \gamma \Big|_{\theta = \theta_0}, \quad \nu_{\alpha 1} = \partial_{\theta} \nu_{\alpha} \Big|_{\theta = \theta_0}, \\ & \lambda_{\alpha 1} = \partial_{\theta} \lambda_{\alpha} \Big|_{\theta = \theta_0}. \end{split}$$

Параметр D зводиться до константи F. Це враховує той факт, що мультиплікативні флуктуації виникають у системі лише за присутності потоку іонів при $F \neq 0$ (аналог флуктуаційно-дисипативної теореми). Таким чином, стохастична система описується анізотропним рівнянням Курамото-Сівашинського з мультиплікативним шумом.

3. АНАЛІЗ НА СТІЙКІСТЬ

Відомо [18], що лінеаризоване детерміністичне (або з адитивним білим шумом) динамічне рівняння припускає розв'язок у вигляді $h(x, y, t) = A \exp[i(k_x x + k_y y - \omega t) + rt]$, де $\omega = -\gamma(\theta)k_x$ — частота, r = $= -[v_x(\theta)k_x^2 + v_y(\theta)k_y^2] - K(k_x^2 + k_y^2)^2$ — параметр, що відповідає за стійкість розв'язку. Під час еволюції системи відбувається відбір хвильових чисел, що задають напрямок хвиль. Хвильові числа, обрані в процесі еволюції, задаються виразом $k_a^2 = |v_a| / (2K)$, де α відповідає за напрямок (x або y) вздовж якого v_a набуває менших значень. Для нелінійної моделі без шуму відомо, що оскільки v_a і $\lambda_a \in$ функціями кута падіння потоку $\theta \in [0, \pi/2]$, то існують три області на фазовій діаграмі (a_{σ} , θ), де v_x і λ_x змінюють свій знак. Таким чином, варіація параметрів a_{σ} і θ може призводити до зміни напрямку орієнтації утворюваних хвильових структур.

Основні дослідження в цьому напрямку було зосереджено на виявленні характеру утворюваних поверхневих структур та з'ясуванні динамічних властивостей росту поверхні або її ерозії та встановленні закономірностей, що описують зміну шерсткості поверхонь [31–32]. Слід визнати, що розв'язання рівняння Курамото–Сівашинського (10) не передбачає існування пласкої поверхні та можливості реалізації стаціонарних структур. У зв'язку з цим виникає задача про з'ясування умов, коли поверхня опроміненого матеріалу залишається пласкою або на ній формуються стаціонарні структури, морфологія яких не змінюється з часом.

Для вирішення такого завдання модель Круамото-Сівашинського узагальнюється за рахунок уведення до неї лінійної складової – α^*h , що описує процеси релаксації опромінюваної поверхні за рахунок перерозподілу вибитих атомів на поверхні мішені. Введені до розгляду процеси згасання призводять до порушення трансляційної інваріантності поверхні. Як показано в роботах [33, 34], у найпростішому ізотропному випадку при $k = k_x = k_y$ для коефіцієнта згасання можна визначити критичне значення $\alpha_c^* = 0,25$, яке позначає границю утворення просторово нестійких мод (біфуркація Тюрінга). Відповідне критичне значення хвильового числа $k_c = (1/2)^{1/2}$. Це означає, що при наближенні величини α^* до свого критичного значення знизу кількість нестійких мод суттєво зменшується і залишається тільки одна $k = k_c$, яка відповідає за структуроутворення. Однак при $0 < \alpha^* < \alpha_c^*$ тривіальний розв'язок h = 0 є нестійким і моди, що знаходяться в інтервалі $1/2 + (1/4 - \alpha^*)^{1/2} \ge k^2 \ge 1/2 - (1/4 - \alpha^*)^{1/2}$, експоненційно зростають. Нелінійна складова відповідного рівняння Курамото-Сівашинського, що відповідає за перемішування цих мод, призводить до формування стійких структур [35, 36]. При $\alpha^* > \alpha_c^*$ у фіксованій області основних параметрів системи ніяких просторових модуляцій спостерігатися не буде і, як наслідок, одержуємо лише пласку поверхню, тобто розв'язок h = 0 є стійким. Дана модель широко використовується для вивчення стаціонарних структур з дефектами [37] і формування структурованих островів [38].

Розглянемо поведінку системи, що описується згасальним детерміністичним рівнянням Курамото-Сівашинського (10). Будемо досліджувати дещо спрощений випадок, а саме, $a_{\mu} = a_{\sigma}$. Виходячи з результатів лінійного аналізу на стійкість, коефіцієнт згасання для середнього значення поля висоти набуває вигляду $r = -\alpha^* - -v_x(\theta)k_x^2 - v_y(\theta)k_y^2 - K(k_x^2 + k_y^2)^2$. Використовуючи визначення основних керувальних параметрів системи було одержано фазову діаграму для параметрів системи при $a_{\mu} = a_{\sigma}$ (див. рис. 1). На рисунку 1 вище поверхні, яка обмежує критичні значення параметрів α^* , θ і a_{σ} , маємо стійкий однорідний стан, що відповідає реалізації пласкої поверхні матеріалу без структур. Для значень параметрів, які знаходяться під поверхнею на рис. 1, одержуємо просторово-модульо-

Рис. 1. Фазова діаграма для структуроутворення (для значень параметрів, які знаходяться під наведеною поверхнею, реалізуються стаціонарні структури, а над цією поверхнею — гладкий профіль поверхні матеріалу).

вані стаціонарні структури.

4. ЧИСЛОВЕ МОДЕЛЮВАННЯ

У даному розділі будемо досліджувати поведінку системи в межах використання методів числового моделювання. Для цього рівняння (10) з доданком $-\alpha^*h$ розв'язується на квадратній ґратці розміром $L \times L$ (L = 256) з періодичними крайовими умовами. Крок інтегрування за часом складав $\Delta t = 0,005$, за простором $\ell = 1$. Як початкові умови обрано Ґаусів профіль з $\langle x(\mathbf{r}, 0) \rangle = 0$, $\langle (\delta x)^2 \rangle = 0,1$.

На рисунку 2 показано динаміку структуроутворення при різних значеннях a_{σ} , α^* і при фіксованих значеннях кута розпорошення θ . Варто зазначити, що при $\alpha^* = 0$ (рис. 2, *a*) реалізується фіксована кількість островів (нанодірки), які хаотично виникають у зв'язку з первинними і вторинними нестійкостями. Це типова картина при розв'язку звичайного рівняння Курамото-Сівашинського. При

Рис. 2. Динаміка структуроутворення при $\theta = 0,5$ і $\Sigma = 0$: (a) — $a_{\sigma} = 2,0$, $\alpha^* = 0$; (б) — $a_{\sigma} = 2,0$, $\alpha^* = 0,1$; (в) — $a_{\sigma} = 2,7$, $\alpha^* = 0,5$.

α^{*} ≠ 0 (рис. 2, *б*, *в*) в області значень параметрів під поверхнею на фазовій діаграмі рис. 1 на протязі еволюції системи виникають стаціонарні структури. Залежно від значень параметрів системи (кута розпорошення та глибини проникнення іонів) можуть утворюватися структури з гексагональною симетрією з дефектами (при низькій енергії іонів) або хвильові структури з лінійними дефектами типу дислокацій (при високій енергії іонів).

Для ілюстрації того, що зростання α^* призводить до переходу системи з хаотичного режиму до регулярного стаціонарного розглянемо поведінку одноточкової часової кореляційної функції, визначеної наступним чином: $C(\tau) = \langle \delta h(\mathbf{r}, 0) \delta h(\mathbf{r}, \tau) \rangle$, де $\delta h(\mathbf{r}, t) = h(\mathbf{r}, t) - h_{tr}(t)$, $h_{tr}(t)$ задає постійність ерозії поверхні. Як відомо, одним з критеріїв хаотичної траєкторії є швидке спадання часової кореляційної функції $C(\tau)$ до нуля. Це означає, що система дуже швидко втрачає пам'ять. З рисунка 3 видно, що при $\alpha^* = 0$ часова кореляційна функція швидко спадає до нуля, що означає хаотичну поведінку висоти у фіксованій точці поверхні, тоді як при $\alpha^* \neq 0$ вона набуває певного сталого значення. Останнє означає наявність добре впорядкованого (постійного) сигналу $h(\mathbf{r}, t)$.

Іншим критерієм для констатування стаціонарності поверхневих структур є ширина інтерфейсу, обчисленого згідно зі стандартним визначенням: $W^2(t) = \langle (h - \langle h \rangle)^2 \rangle$. Відомо, що із залежності ширини інтерфейсу від часу $W^2(t) \propto t^{2\beta}$ можна визначити показник росту поверхні β . Залежності ширини інтерфейсу від часу при різних α^*

Рис. 3. Одноточкова часова кореляційна функція для поверхні при $a_{\sigma} = 2,0$ і $\theta = 0,5$.

Рис. 4. Часова залежність ширини інтерфейсу при різних значеннях параметра згасання α^* . Решта параметрів: $\theta = 0.5$, $a_{\sigma} = 2.0$.

подано на рис. 4. Тут при $\alpha^* = 0$ (суцільна крива) величина $W^2(t)$ постійно зростає з часом. На пізніх стадіях еволюції процес росту поверхні характеризується показником росту $\beta \approx 0,1$.

Врахування згасання в системі ($\alpha^* \neq 0$) призводить до уповільнення процесів росту на ранніх стадіях еволюції системи (пор. криві при $\alpha^* = 0$ та $\alpha^* = 0,01$). При цьому на пізніх стадіях еволюції величина $W^2(t)$ набуває стаціонарного значення. Збільшення α^* призводить до зменшення стаціонарного значення $W^2(t)$ (див. пунктирну та штрихову криві на рис. 4 при $\alpha^* = 0,01$ та $\alpha^* = 0,1$).

Розглянемо вплив мультиплікативного шуму на динаміку структуроутворення в згасальному рівнянні Курамото-Сівашинського, припускаючи флуктувальним кут опромінення θ з інтенсивністю флуктуацій Σ . Порівнюючи динаміку ширини інтерфейсу в детерміністичному випадку та за наявності мультиплікативного шуму (див. штрихову та штрихпунктирну криві на рис. 4) легко бачити, що шум прискорює процеси формування структур. З часом згасання пригнічує зростання величини $W^2(t)$ і, таким чином, $W^2(t)$ приймає менші стаціонарні значення на пізніх стадіях еволюції.

На рисунку 5 представлено еволюцію структур при $\Sigma = 0,3$ та різних значеннях параметрів системи. Видно, що з часом на поверхні формуються структури зі «структурними дефектами». У випадку гексагональних структур (рис. 5, *a*) такі дефекти можна ефективно пов'язати з міжвузловинними атомами та вакансіями; у випадку смугових структур (рис. 5, δ) спостерігаються лінійні дефекти (дис-

Рис. 5. Еволюція структур при $\theta = 0,5$ і $\Sigma = 0,3$: (*a*) — $a_{\sigma} = 2,0, \alpha^* = 0,1$; (*б*) — $a_{\sigma} = 2,7, \alpha^* = 0,5$.

локації, дисклінації). На протязі еволюції системи кількість дефектів зменшується. Динаміку структурних дефектів буде досліджено в наступному розділі.

На рисунку 6 наведено ілюстрації поверхневих структур при різних значеннях кута розпорошення θ , параметра a_{σ} , параметра згасання α^* та інтенсивності флуктуацій кута розпорошення Σ при t = 500.

Розглянемо спочатку вплив інтенсивності шуму на характер зміни поверхневих структур. На рис. 6, *a* (при $\theta = 0,5$, $a_{\sigma} = 2$, $\alpha^* = 0,1$), коли в детерміністичному випадку реалізуються структури з гексагональною симетрією, вплив шуму призводить до подрібнення структур. Для значень параметрів $\theta = 0,5$, $a_{\sigma} = 2,7$ та $\alpha^* = 0,5$, коли реалізуються вертикальні смугові структури (рис. 6, δ), врахування шуму призводить до повороту структур. При цьому величина інтен-

Рис. 6. Типові поверхневі структури при t = 500: (*a*) — $a_{\sigma} = 2,0, \alpha^* = 0,1, \theta = 0,5$; (*b*) — $a_{\sigma} = 2,7, \alpha^* = 0,5, \theta = 0,5$; (*b*) — $a_{\sigma} = 2,0, \alpha^* = 0,1, \Sigma = 0,3$.

775

сивності шуму $\Sigma \neq 0$ не впливає на значення кута повороту.

На рис. 6, *в* наведено типові поверхневі структури при $a_{\sigma}=2$, $\alpha^*=0,1$ та фіксованому значенні інтенсивності шуму $\Sigma=0,3$ і різних кутах розпорошення. З рисунка видно, що зміна кута розпорошення призводить до зміни типу структур. При цьому збільшення θ від 0 до 0,25 призводить до реалізації смугових структур з лінійними дефектами. Тут структури орієнтовані горизонтально і шум не впливає на їх орієнтацію. У наступному розділі буде досліджено динаміку структурних дефектів.

5. ДОСЛІДЖЕННЯ СТРУКТУРНИХ ДЕФЕКТІВ

Для випадку формування гексагональної симетрії утворюваних поверхневих структур дефекти пакування будемо визначати за алгоритмом, розвинутим для дослідження двовимірних систем, що моделювалися методами молекулярної динаміки [39]. Основні кроки цього методу є такими. Локальний кристалічний порядок можна описати орієнтацією шестикутників, точки яких відповідають положенню структур, структури ефективно представляються у вигляді атомів. Тоді кут орієнтації *j*-го атома $\varphi_j = [0, \pi/3]$ визначається із співвідношення

$$\Psi_{j} = \sum_{k \in nn(j)} \exp[6i\theta_{jk}] = \left|\Psi_{j}\right| e^{6i\phi_{j}} .$$

Два атоми будуть граничити, якщо $|\mathbf{r}_j - \mathbf{r}_k| < 1,25\nu$, де ν — положення першого піка двочастинкової кореляційної функції, θ_i — кут між відповідним вектором $\mathbf{r}_j - \mathbf{r}_k$ та віссю *x*. Ступінь безладу *j*-го атома визначається за формулою

$$D_j = 2 \sum_{k \in nn(j)} [1 - \cos 6(\varphi_i - \varphi_k)].$$

За поданою схемою обчислюється кількість дефектів як «атомів», що мають дефекти пакування (утворення з вакансіями, міжвузловинні атоми, ядра дислокацій).

Спочатку проаналізуємо еволюцію густини розподілу структур за розміром (у нашому випадку за площею). Для цього поверхня перерізалася на середній висоті і за алгоритмом перколюючого кластера встановлювалися загальна кількість структур та їхній розмір. Результати наведено на рис. 7 за різних часів еволюції системи при $\theta = 0.5$, $a_{\sigma} = 2$, $\alpha^* = 0.1$ та $\Sigma = 0.3$.

Тут основний пік вказує на найбільш імовірний розмір (площу) структур. Додаткові піки відповідають наявності структур іншого, відмінного від найбільш імовірного, розміру, або про наявність структурних дефектів. Видно, що з часом основний пік густини імовірності збільшується, а кількість додаткових піків та їх вели-

Рис. 7. Еволюція густини імовірності розподілу структур за розміром при $a_{\sigma} = 2,0, \alpha^* = 0,1, \theta = 0,5, \Sigma = 0,3.$

чина зменшується. Це є свідченням того, що з часом поверхня стає більш структурованою, а кількість дефектів зменшується.

Залежності форми густини імовірності від інтенсивності флуктуацій кута розпорошення на пізніх стадіях еволюції (t = 2000) подано на рис. 8. З рисунка випливає, що добре структурована поверхня за відсутності флуктуацій кута розпорошення стає більш дефектною при збільшенні інтенсивності шуму: зменшення та розмиття основного піка густини імовірності та поява й ріст інтенсивності другорядних піків свідчать про наявність дефектів.

Далі, проаналізуємо еволюцію кількості дефектів. Результати залежності відносної кількості дефектів N_{def}/N_s , де N_{def} — кількість структурних дефектів, а N_s — загальна кількість структур, від часу представлено на рис. 9 при $\theta = 0,5$, $a_{\sigma} = 2$, $\alpha^* = 0,1$ та різних значеннях інтенсивності шуму Σ . З рисунка видно, що в детерміністичному випадку ($\Sigma = 0$) та у випадку невеликих значень флуктуацій кута розпорошення ($\Sigma = 0,3$) на стадіях формування поверхневих структур кількість дефектів є меншою, ніж у випадку помірних та великих значень інтенсивності шуму ($\Sigma = 0,6$ та $\Sigma = 0,9$). Швидкість анігіляції дефектів є більшою для детерміністичного випадку та у випадку шуму малої інтенсивності, тоді як збільшення інтенсивності шуму уповільнює даний процес. На пізніх стадіях еволюції квазі-

Рис. 8. Залежності форми густини імовірності від інтенсивності флуктуацій кута розпорошення на пізніх стадіях еволюції (t = 2000) при $a_{\sigma} = 2,0$, $\alpha^* = 0,1, \theta = 0,5$.

стаціонарна величина кількості дефектів набуває менших значень для випадку $\Sigma = 0$ та $\Sigma = 0,3$. Отже, за умов формування гексагональних структур кількість дефектів зменшується з часом, але не зникає.

З точки зору статистичного аналізу поверхні важливим є з'ясування масштабних властивостей морфології поверхні. За відомими числовими даними можна виконати дослідження статистичних властивостей системи на основі розгляду залежної від часу кореляційної функції висот, визначеної наступним чином $C_h(\mathbf{r},t) = = \langle (h(\mathbf{r} + \mathbf{r}', t) - h(\mathbf{r}, t))^2 \rangle$. У межах гіпотези динамічної масштабної інваріантності залежність кореляційної функції від просторової змінної можна подати у вигляді $C_h(r) \propto r^{2\alpha}$, де α — показник шерсткості. Нами було виконано розрахунки кореляційних функцій та показника шерсткості в залежності від інтенсивності флуктуацій кута розпорошення при $\theta = 0,5$, $a_{\sigma} = 2$, $\alpha^* = 0,1$, t = 2000 та встановлено, що показник шерсткості поверхні не залежить суттєво від величини інтенсивності флуктуацій кута розпорошення і складає $\alpha = 0,85$.

У випадку, коли реалізуються страйпи (структури лінійного типу) наведений підхід визначення дефектів не може бути використаний. Дефектами, які можуть бути досліджені в такому випадку, є дислокації, дисклінації та межі зерен.

Рис. 9. Еволюція відносної кількості дефектів від часу при $\theta = 0,5, a_{\sigma} = 2,0, \alpha^* = 0,1$ та різних значеннях інтенсивності шуму Σ .

Далі сконцентруємося на дослідженні лінійних дефектів, як таких. При дослідженні дислокацій скористаємося підходом, розвинутим для дослідження дефектів у нематиках [40], де одним з мірників упорядкування є напрямне поле (директор) $\nabla x(\mathbf{r})/|\nabla x(\mathbf{r})|$ та відповідний нематичний параметр порядку $Q_{\alpha\beta} = Q_0[\hat{n}_{\alpha}\hat{n}_{\beta} - (1/2)\delta_{\alpha\beta}]$. Зокрема, для двовимірних систем роль параметра порядку виконує величина cos(2 θ), де $\hat{n} = (\cos(\theta), \sin(\theta))$. Тобто існує певний векторний параметр порядку $\hat{\mathbf{B}}$, заданий виразами $\hat{B}_x = \hat{n}_x^2 - \hat{n}_y^2$ і $\hat{B}_y = 2\hat{n}_x\hat{n}_y$. Далі будемо вважати, що всі дефекти формуються з ±1/2 дисклінацій в напрямному полі \hat{n} , яке переходить у «вихори» заряду ±1 для поля $\hat{\mathbf{B}}$.

Для ідентифікації дефектів визначимо ядра вихорів за формулою $A = \sum_{\alpha,\beta} (\nabla_{\alpha} B_{\beta})^2$. В області дефекту значення $\hat{\mathbf{B}}$ зазнає різкої зміни. Таким чином, точка розташування дефекту визначається за умови, що A більше певного значення. Також можемо записати A у вигляді $A = \sum_{\alpha,\beta} (\nabla_{\alpha} n_{\beta})^2 = (\nabla_{\alpha} \phi)^2$, де $\phi(\mathbf{r}, t) = 2\theta(\mathbf{r}, t)$, $\theta(\mathbf{r}) = \arctan\{\hat{n}_y(\mathbf{r}) / \hat{n}_x(\mathbf{r})\}$. Нематичний параметр порядку $Q_{\alpha\beta}$ повністю визначається кутом $\phi(\mathbf{r}) = 2\theta(\mathbf{r})$. Отже, знаючи похідну $\nabla \phi(\mathbf{r})$ можна обчислити індикаторну величину $A(\mathbf{r}) = |\nabla \phi(\mathbf{r})|^2$, яка дозволяє визначити такі дефекти, як дислокації, дисклінації та межі зерен.

Метод засновано на тому, що в області дефекту (дислокації, дисклінації або межі зерна) поле $\varphi(\mathbf{r})$ швидко змінюється, тоді як поза цими областями воно змінюється повільно. Отже, в точках з більшою інтенсивністю зміни $\varphi(\mathbf{r})$ знаходяться дефекти або частина межі зерна, тоді в області поза дефектами $A(\mathbf{r}) \approx 0$. Але ця величина стрімко зростає в місці знаходження дефекту.

Описаний алгоритм допомагає визначити області, де поле директора суттєво змінюється, і вивести відповідні точки. Далі необхідно згрупувати ці точки в структури. Елементи однієї структури знаходяться дуже близько один від іншого, але не обов'язково в сусідніх комірках. У такому випадку доцільно ввести фільтр a_0 , і, якщо відстань між точками менша ніж a_0 , то далі вони належать одній структурі. Для розрізнення таких точкових кластерів використано метод Хошена і Копельмана [41]. Таким чином, у будь-який момент часу є можливість визначити стан системи і наявність у ній зерен та дефектів. З наведеної процедури визначення дефектів можна одержати стаціонарну залежність кількості дефектів від параметрів системи.

На рисунку 10 наведено еволюцію кількості лінійних дефектів для різних інтенсивностей флуктуацій кута розпорошення при $\theta = 0.5$, $a_{\sigma} = 2.7$ та $\alpha^* = 0.5$. З рисунка видно, що врахування розкиду кута розпорошення призводить до збільшення кількості дефектів на ранніх стадіях еволюції; за великих часів кількість дефектів залишається ненульовою у порівнянні з детерміністичним випадком (пор. криві з кружками та квадратами). При помірних значеннях інтенсивності шуму швидкість анігіляції дефектів зростає і, як наслідок, структури стають бездефектними на пізніх стадіях еволюції (див. криву з трикутниками). При великих значеннях інтенсивності шуму дефекти, сформовані на ранніх стадіях еволюції, анігілю-

Рис. 10. Еволюція кількості лінійних дефектів для різних інтенсивностей флуктуацій кута розпорошення при $\theta = 0.5$, $a_{\sigma} = 2.7$ та $\alpha^* = 0.5$.

ють, проте стаціонарне значення їх кількості збільшується. Отже, помірні значення інтенсивності флуктуацій кута розпорошення призводять до швидшого структурування поверхні.

6. ВИСНОВКИ

Виконано дослідження процесів формування стійких поверхневих структур при іонному розпорошенні матеріалів у межах узагальненої моделі Курамото-Сівашинського. Враховано процеси релаксації опромінюваної поверхні за рахунок перерозподілу вибитих атомів на поверхні мішені та джерела флуктуацій кута розпорошення, у припущенні, що бомбардуючі іони досягають поверхні випадковим чином, тобто в різних місцях і в різні моменти часу. В межах такого підходу іон може досягати поверхні під випадковим кутом, величина якого на малу величину відрізняється від кута падіння потоку. В межах лінійного аналізу на стійкість встановлено фазову діаграму, що розділяє простір основних параметрів системи (кут падіння налітаючого іона та глибина проникання іона в мішень) на області, що відповідають умовам реалізації гладкої поверхні та структур на поверхні розпорошуваного матеріалу. Дослідження динаміки системи виконувалося з використанням процедури числового моделювання. Досліджено вплив стохастичного джерела на динаміку процесів формування поверхневих структур та на характер зміни густини розподілу структур за розмірами. Встановлено, що врахування флуктуацій кута розпорошення призводить до переорієнтації смугових структур при помірних кутах розпорошення. Вивчено динаміку структурних дефектів при різних значеннях інтенсивності шуму.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. M. Navez, C. Sella, and D. Chaperot, *Ionic Bombardment: Theory and Applications* (Ed. J. J. Trillat) (New York: Gordon and Breach: 1964).
- 2. L. Jacak, P. Hawrylak, and A. Wojs, *Quantum Dots* (Berlin: Springer-Verlag: 1998).
- 3. R. M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A, 6: 2390 (1988).
- 4. R. Cuerno and A.-L. Barabasi, *Phys. Rev. Lett.*, 74: 4746 (1995).
- 5. M. Makeev and A.-L. Barabasi, Appl. Phys. Lett., 71: 2800 (1997).
- 6. J. T. Drotar, Y.-P. Zhao, T.-M. Lu, and G.-C. Wang, *Phys. Rev. E*, **59**: 177 (1999).
- 7. T. Aste and U. Valbusa, *Physica A*, **332**: 548 (2004).
- 8. B. Kahng and J. Kim, Curr. Appl. Phys., 4: 115 (2004).
- 9. R. Kree, T. Yasseri, and A. K. Hartmann, *Nucl. Instrum. Methods B*, **267**: 1407 (2009).
- 10. S. Rusponi, C. Boragno, and U. Valbusa, *Phys. Rev. Lett.*, 78: 2795 (1997).

- 11. S. Rusponi, G. Costantini, C. Boragno, and U. Valbusa, *Phys. Rev. Lett.*, 81: 2735 (1998).
- 12. E. Chason, T. M. Mayer, B. K. Kellerman et al., *Phys. Rev. Lett.*, **72**: 3040 (1994).
- 13. J. Erlebacher, M. J. Aziz, and E. Chason, *Phys. Rev. Lett.*, 82: 2330 (1999).
- 14. W.-Q. Li, L. J. Qi, and X. Yang, Appl. Surf. Sci., 252: 7794 (2006).
- 15. J. Lian, Q. M. Wei, L. M. Wang et al., Appl. Phys. Lett., 88: 093112 (2006).
- 16. S. Facsko, T. Dekorsy, and C. Koerdt, Science, 285: 1551 (1999).
- 17. J. Munoz-Garcia, L. Vazquez, R. Cuerno et al., arXiv:0706.2625v1
- 18. V. O. Kharchenko, Functional Materials, 18: 156 (2011).
- 19. P. Sigmund, J. Matter. Sci., 8: 1545 (1973).
- 20. M. A. Makeev and A.-L. Barabasi, *NIMB*, 222: 316 (2004).
- 21. J. W. Cahn and J. E. Taylor, Acta Metall. Matter., 42: 1045 (1994).
- 22. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett., 56: 889 (1986).
- 23. D. Kharchenko, I. Lysenko, and V. Kharchenko, Physica A, 389: 3356 (2010).
- 24. D. O. Kharchenko, V. O. Kharchenko, and I. O. Lysenko, *Cent. Eur. J. Phys.*, 9: 698 (2011).
- 25. D. O. Kharchenko, I. O. Lysenko, and S. V. Kokhan, *Eur. Phys. J. B*, **76**: 37 (2010).
- 26. P. K. Galenko, D. Kharchenko, and I. Lysenko, Physica A, 389: 3443 (2010).
- 27. P. Sigmund, Phys. Rev., 184: 383 (1969).
- 28. Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys., 55: 356 (1977).
- 29. Д. О. Харченко, В. О. Харченко, ВАНТ, № 2: 16 (2011).
- 30. V. O. Kharchenko and D. O. Kharchenko, Cond. Mat. Phys., 14: 23602 (2011).
- D. O. Kharchenko, V. O. Kharchenko, I. O. Lysenko et al., *Phys. Rev. E*, 82: 061108 (2010).
- 32. V. O. Kharchenko, D. O. Kharchenko, and I. O. Lysenko, *Nanotechnology, part* 2: Synthesis and Characterization, Chapter 13 (Ed. J. N. Govil) (Houston: Studium Press LLC: 2012), p.367.
- 33. A. Keller and S. Facsko, *Materials*, 3: 4811 (2010).
- 34. D. Obeid, J. M. Kosterlitz, and B. Sandstede, Phys. Rev. E, 81: 066205 (2010).
- 35. C. Misbah and A. Valance, Phys. Rev. E, 49: 166 (1994).
- 36. P. Brunet, Phys. Rev. E, 76: 017204 (2007).
- 37. S. Facsko, T. Bobek, A. Stahl et al., Phys. Rev. B, 69: 153412 (2004).
- 38. S. Vogel and S. J. Linz, *Phys. Rev. B*, **75**: 155417 (2007).
- 39. Toshiyuki Yamanaka and Akira Onuki, Phys. Rev. E, 77: 042501 (2008).
- 40. Hai Qian and Gene F. Mazenko, Phys. Rev. E, 73: 036117 (2006).
- 41. H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods, Part 2 (Reading: Addison-Wesley Publishing Company: 1988).